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Abstract

The oscillatory behaviour of the Rayleigh—Marangoni-Bénard convective in-
stability (R-M-B instability) regarding two combinations of two-layer fluid
systems has been investigated theoretically and numerically. For the two-
layer system of Silicone oil (10¢St) over Fluorinert (FC70), both linear insta-
bility analysis and 2D numerical simulation show that the instability of the
system depends strongly on the depth ratio H, = Hi/H of the two-layer
liquid. The oscillatory regime at the onset of R-M-B convection enlarges
with reducing T’ = Ra/Ma values. In the two-layer system of Silicone oil
(2¢St) over water, it loses its stability and onsets to steady convection at
first, then the steady convection bifurcates to oscillatory convection with
increasing Rayleigh number Ra. This behaviour was found through numer-
ical simulation above the onset of steady convection in the case of ' = 2.9,
&= (Ra — Ra;)/Ra. = 1.0, and H, =0.5. Our findings are different from
the previous study of the Rayleigh—Bénard instability and show the strong
effects of the thermocapillary force at the interface on the time-dependent os-
cillations at or after the onset of convection. We propose a secondary oscilla-
tory instability mechanism to explain the experimental observation of Degen
et al. [Phys. Rev. E, 57 (1998), 6647— 6659]

1. Introduction

The convective instabilities and mechanisms in two or more superposed layers .
of liguid—lquid systems are more complex than those in the single-layer
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systems, due to the competition between instabilities in the separate layers
and the various interfacial surface tension driven modes. Many scientists
have extensively studied two- or multiple-layer convection in view of several
interfacial phenomena in nature and in numerous engineering applications,
The study of two-layer convection becomes an important new direction for
the field of pattern formation and bifurcation phenomena in non-equilibrium
systems, and much attention has been focussed on the instability analysis of
multi-layered convection in the case of external thermal gradient perpendic-
ular-to the liquid interface, for example the classic problems of the Rayleigh—
Bénard convection [1-4| or the Raylelgh Marangonl Bénard convection
[5-9] in two-layer liquids.

For the flow in a two- or multi-layer system, one of the most interesting prob-
lems is the possibility of finding time-dependent states at or after the onset of
convection, since the buoyancy-induced oscillatory instability was discovered
by Gershuni and Zhukhovitskii [1]. The oscillatory convection in the two-
layer Rayleigh-Bénard system where thermocapillarity is negligible was in-
vestigated theoretically [1, 2, 4] and experimentally [2, 10]. Both, the instability
analysis and experimental observation found two possible convective states:
thermal coupling or mechanical coupling in two-layer Rayleigh-Bénard con-
vection for different combinations of two liquids. In a narrow transition
region between the two different states, the time-dependent convection (the
Hopf modes) may appear [11]. Renardy and Joseph [3] have conducted fairly
extensive analytical studies on the stability of the two-layer Bénard system by
using the perturbation theory. Their findings indicate that the onset of insta-
bility could be oscillatory. The linearised perturbation analysis of the system
performed by Rasenat et al. [2] reveals that oscillatory instability is possible
due to the cyclic variation between viscous and thermal coupling. Colinet
and Legros [4] revisited the problem theoretically by -assuming an undeform-
able interface and by selecting the fluid properties of a model two-layer sys-
tem, and gave a typical stability diagram for one range of layer depth ratios
in which the oscillatory modes arise between the two different stationary con-
vective states.

Recently, experiments on the two-layer Rayleigh—Bénard system with two
different pairs of fluids were performed by Degen et al. [10]. They found
time-dependent patterns at or near the convective onset, but some evident
differences such as the periods of the time-dependent flow and the time-
dependent region of layer depth ratios have also been shown in comparison
with the theoretical predictions [11}]. In fact, for the two-liquid systems used
in Degen’s experiments, the oscillatory convection region for the total layer
depth /7 = 12 mm is too small to observe experimentally and to confirm the
oscillatory instability phenomena at the convective onset. It should be men- .
tioned that most previous investigations of this problem were performed
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Figure 1 Schematic diagram of two-layer liquids.

mainly with regard to the instability behaviour induced by the buoyancy
force, focussing on the oscillatory behavior at onset of the whole system. Ne-
pomnyashchy and Simanovskii pointed out that the Marangoni effect could
change the supercritical oscillatory instability in the pure buoyancy-driven
case into a critical one [9].

The objective of the present study is to investigate theoretically the interac-
tion between Rayleigh—Bénard instability and Marangoni instability in a
two-layer system with the emphasis of the oscillatory instability at or after
the onset of the Rayleigh—Marangoni-Bénard convection.

2. Physical model and basic equations

The theoretical model of a two-layer Rayleigh-Marangoni-Bénard system
is assumed to be infinite in the horizontal direction as shown schematically
in Figure 1. The total depth of two layers, H = H; + Ha, is used as the non-
dimensional scale for length, where the subscripts 1 and 2 refer to the upper
and the lower fluid layers, respectively. The thickness ratio of two layers is
defined as H, = H,/H>. A temperature difference AT = T, — T is imposed
parallel to the acceleration of gravity g between the top and bottom isother-
mal rigid plates. When AT > 0, the bottom boundary is hotter than the top
boundary (72 > T'1). The dimensionless ratios of the fluid properties are
k* =K /K (thermal diffusivity), f* = f,/8, (coefficient of thermal expan-
sion), * = x;/x, (thermal conductivity), #* =y /p, {dynamic viscosity),
p* = p,/p, (density), and v* = v; /v (kinematical viscosity), respectively. The
interface between the immiscible liquids is assumed to be flat [9, 16]. The in-
terfacial tension at the interface is considered to be a linear function of tem-
perature: o = oy + (06/0T)(T — Ty),-where Ty is the reference temperature
of the interface and do /0T is usually negative.

The governing equations for each fluid layer are the heat transport
equation and the Navier—Stokes equations with the Boussinesq approxi-
mation, i.e., only the densities p; are dependent on the temperature, p; =
poil1 = B:{(T: — Tp)]. In a two-layer Rayleigh—Marangoni-Bénard system, the
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convection arises due to buoyancy and temperature- dependénée of the inter- -
facial tension, and their contributions are estimated by two unportant non-
dimensional parameters: the Rayleigh number

- Ra = gp,ATH? [ (vax2),
and the Marangoni number
- Ma = (—00/3T)ATH [ (1y52).

At the onset of convection, these parameters correspond to the critical values
Ra,, Ma, with the critical temperature difference AT,. By using v2/H, H 2/,
H, and AT as the scaling factors for velocity, time, length, and temperature,
respectively, the dimensionless governing equations in such two-layer systems
are

V.V, =0, | (1)
Al P 72 £

—a—+v -VV; = —CI'Vp; + C/V*V, + CFg#, (2)
08;

= TVir Vﬁ' —~CrV28, (3)

where { = 1 identifies the upper-layer liquid; i =2, the lower-layer liquid.
V; = (4;,0,w;) is the dimensionless velocity; g is gravitational acceleration;
8; = (T; — Tp)/AT, dimensionless temperature; and p;, dimensionless pres-
sure. The constants in the right-hand side of the dlmensmnless equations
(1}-(3) above are respectwely Cl=1/p*, C/=»* = Raf*/Pr, Cf =
K*/Pr, C§ =1, Cy =1, C2 —Ra/Pr Cy = 1/Pr, wherefPr— v /Ky is the
Prandtl number correspondmg to the physical properties of liquid (2). Bound-
ary conditions and the initial condition needed in numerical simulation can
be found in [13].

For the linear instability analysis of the problem in such a two-layer system,
we considered the base state of the system with a flat interface at z=0, a
zero velocity field, and a temperature field that varies linearly with z in
each fluid. Introducing the spatial normal perturbations proportional to
exp[At + i(kxx + k,y)] mto the linearised form of the governing equations
(1)-(3), the dimensionless linearised governing equations of the two-layer
system can be written for the amplitudes of the perturbation quantities w;,
the velocity component in the vertical direction z and #;, the temperature in .
each layer [14]:

J. Non-Equilib. Thermodyn. - 2005 - Vol. 30 No. 3




Oscillatory instability of Rayleigh-Marangoni—Bénard _ 309

V(D _'kz)zw] _%ﬁﬁ%zgl _ ’1(1_)2 _ kz)wh | 7 (4)
k*(D* — kH)6 —aa—IjPrwl gzprei, . ‘ ' (5)
(D? - k) w,y — %klaz = ,1(152 — kD, _ (6)
(D? — k)8, — %Prwz = iPrBZ; | (7)

with the boundary conditions

: H
w=Dw =0, =0 atz_1+H,,’ (8)

W] = Wy = 0, le = DWZ,

6, =6, x'DO =D,

Mua

D2W2 - ﬂ*DZWI = —,szﬂz atz =10, (9)
=Dwy =8,=0 atz——L (10)
W= =0= T 14+ H

where D is the dimensionless differential operator d/dz, 2 is the time growth
rate, k = (k2 +k§)}/ 2 is the dimensionless wave number, and 87;/0z is the
temperature gradient of liquid (i) at the given initial state.

In a system of two-layer fluids, there are two other Rayleigh numbers and
two Marangoni numbers corresponding to the upper liquid-layer and the
lower liquid-layer, respectively, which are defined as follows:

Ral = gﬁlATlHIB/(V]Kl), .Rag = gﬁz.ﬂTgH;/(VZKz);

Ma1 = (—60/8T)AT1H1/(y1x1), Ma2 = (—aO'/BT)ATgHz/(ﬂQICz).
Here AT; (i = 1,2) is the local temperature difference applied across the i-th
liquid.
The ratio of Rayleigh number Ra to Marangoni number Mg for a system of

two-layer liquids is given by
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T = Ra/Ma = g, p,H*/(~20/2T),

which represents the relative magnitude of thermogravitational convection
and interfacial tension-driven convection and can be controlled by smply
varying the total depth H of the two-layer system. -

3. Linear instability results

A real two-liquid system of Silicone oil (10cSt) (in the upper layer) over
Fluorinert FC70 (in the lower layer) is selected here since this pair of fluids
has been more recently investigated theoretically [12] and experimentally
[10). The ratios of their physical properties are, respectively, x* = 2.762,
fr =11 =1917 p* = 0344, p* = 0482, v* = 0.714, and Pr = 406. The
interface-tension temperature coeflicient of the system is taken as do/0T =
—4.46 x 107N /mK.

We analysed the oscillatory instability regime of R-M-B convection in this
system with a total depth A = 6 mm and in the ground gravity condition
g = 9.8 ms™2 for a larger range of two-layer thickness ratios (H, = H,/H;)
from 0.2 to 5.0. In the'case # = 6 mm, the corresponding ratio I' = Ra/Ma
= 15.35 is about four times less than the value of I' = 61.38 for the same
liquid system with = 12 mm, discussed in the experiments of Degen et al.
[10] and analysed theoretically by Renardy and Stoltz [12]. When H = 6 mm,
the osciliatory instability at the onset of convection is found here in the re-
gion of 1.5 < H, < 2.1, in which the maximum of the imaginary part of A,
A: = 0.085 corresponds to H, = 1.8 shown in Figure 2b. When increasing H,
progressively from 1.5 to 2.1, the critical Rayleigh numbers decrease from
25010 to 21520, and in the case H, = 1.8 for the critical values Rac = 22983
and kc = 5.025, the convective oscillation has the most intensity. It is notable
that the transition from the monotonic onset to the oscillatory one occurs at
the depth ratio H, = 1.5, near the intersection (H, = 1.361) of the two neu-
tral curves of Ral and Ra2. Here the depth ratio H, = 1.361 is the balance
point (Ra; = Ray) of this two-layer system.

Figure 3 presents the influence of the thermocapillary effect on the instability
of the system by comparing the different cases I' = 15.35, I' = —15.35, and
I' = oo {Ma = 0). When considering the Marangoni effect at the interface,
the neutral stability curve of the system displaces to the right in comparison
with the Rayleigh—Bénard instability states of the system without the Maran-
goni effect (Ma = 0) considered in Colinet and Legros’s work [4]. In the
case of the Rayleigh—Bénard instability of the system when neglecting the .
thermocapillary effect (I = o), the oscillatory onset does not exist in this
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Figure 2 Variation of the critical parameters Rap, Ra;, and Mag, Ma; for different depth
ratios H, and the corresponding critical frequency in a Silicone oil-Fluorinert two-layer sys-

tem (I’ = Ra/Ma = 15.35).
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Figure 3 Comparison of the neutral stability curves for the system with different Marangoni
effects; normal (Ma > 0), abnormal (Ma < 0), and without Marangoni effect (Ma = 0).

system (the same as the results of Renardy and Stoltz {12]). When considering
the Marangoni cffect at the interface, a larger oscillatory regime for 1.5 <
H, < 2.1 is found in the R-M-B convective instability of the system. In the
sense of the Marangoni effect with a positive value of /37, the oscillatory
regime at the onset appears in the region of 0.892 < H, < 1.41 when assum-.
ing 8o /0T = 4.46 x 107°N/mK for I' = —15.35.
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Figure 4 Oscillatory convection at the onset in the system of Silicone il {10¢St} over Fluori-
nert (FC70) for different total depths H of two layers.

The oscillatory convection regions at the onset state are given in Figure 4 for
different depths H of two-layer fluids. The R-M-B convective instability in
the four different cases H = 12, 6,4, and 3 mm has been investigated numeri-
cally. Here we consider both thermogravitational and thermocapillary effects,
which may be represented by I' = Ra/Ma. '

A narrow gap 1.461 < H, < 1.564 of the oscillatory onset of the Rayleigh—
Marangoni-Bénard convection is found in the neutral stability curve of
Rac—H, plane for I' = 61.38 (H = 12 mm). The corresponding critical Ray-
leigh number Ra. of the system decreases from 26840 to 26321, and the
critical wave number kc falls from 5.13 to 5.08 when increasing H, from
1.461 to 1.564. When the total depth H of the system is reduced from 6 to 3
mm, the oscillatory instability at onset occurs in the larger gap regions of the
two-layer depth ratio H, from 1.5~2.1 to 1.6~3.5. This variation in the gap
regions is due to the augment of thermocapillary effect at the interface (repre-
sented by the decrease of the value I' = Ra/Ma from 15.35 to 3.84 given in
Figure 4).

4. Numerical simulation

A finite volume method with SIMPLEC (Consistent Semi-Implicit Method
for Pressure Linked Equations) was used for the 2D numerical simulation of
the non-linear problem of R-M-B convection in the rectangular cavity with .
the aspect ratio of A = L/H = 10. The governing equations are discretised
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pling at H, = 1.0; (center) oscillatory state at H, = 1.8; (left) thermal coupling at H, = 3, with
I =1535 )

on a staggered grid using QUICK difference for convective terms and central
difference for diffusive terms. An implicit three-level second-order scheme is
constructed for the unsteady simulation. The calculations are carried out us-
ing a deferred correction method on a (31 + 31) x 501 mesh of uniform grids.
The deferred correction procedure has two-order precision and converges at
approximately the rate obtained for a pure upwind approximation [15].

4.1. Critical oscillatory instability in the Silicone oil-Fluorinert liquid system

In our 2D numerical simulation of Rayleigh-Marangoni—Bénard instability
in the Silicone oil (10cSt) and Fluorinert FC70 system with H = 6 mm, simi-
lar three types of coupling modes have been detected when the depth ratio
changes within a large range from H, =0.2 to 5.0. The variation in the
critical Rayleigh numbers as a function of H, are presented in Figure 5 for
both theoretical and numerical results. In the region of smaller thickness ratio
H, = 0.2 to 1.6, the coupling mode between the two layers is the mechanical
coupling (MC), as shown typically for H, = 1 in Figure 5 (left). For a larger
thickness ratio, H, = 2.2 to 5.0, the coupling mode is the thermal coupling
(TC) and the corresponding convective structure is shown in Figure 5 (right)
for H, = 3. In this case, small counter-rotating sandwich cells are devel-
oped near the interface in the upper layer. While 1.6 < H, < 2.2, the time-
dependent oscillatory convection regime appears and a constant phase offset
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Figure 7 Time variation of the streamlines at four instants in a period of the critical oscilla-
tion flow for H, = 1.8, 4 = 10, and T’ = 15.35 (H = 6 mm) in the Silicone oil-Fluorinert two-
layer system. Time sequence is aligned downwards, -

exists between the roll patterns, so that the convective mode of the system is
neither TC nor MC; sce Figure 5 (middle).

The critical Rayleigh numbers, Rac, Ra;, Ra,, and the streamfunction ratios
of the two-liquid layers with H = 6 mm are plotted in Figure 6 for different
H,. As the prediction of the linear instability analysis, the numerical results
show an intensity oscillatory convection mode when the thickness ratio is
close to 1.8. In this case, the oscillatory period is 2.8 min and the dimension-
less wave number is k¢ = 5.02. The corresponding strearmfunction contours
at four different instants within one oscillation period P = 2.8 min at 0,
1/4P, 1/2P, 3/4P are presented respectively in Figure 7 for H, = 1.8 and
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AT = 6.5°C. The flow field remains mirror symmetric to the centre of the
cavity (x = A4/2). One can see that during one oscillation period a pair of
convective rolls occurs at two lateral sides at first in each layer, and then
travels continuously to the centre. It is evident that in this case the oscillatory
instability mode of the system is travelling wave one. This oscillatory instabil-
ity regime is a result of the competition between the MC and the TC in the
two liquid layers. '

4.2. Secondary oscillatory instability in the Silicone oil-water liquid system

We studied another two-layer liquid system [Silicone oil (2cSt) over water]
numerically: This system had been investigated experimentally [10] and theo-
retically [12] by other scientists. For the purpose of comparison, we used the
same parameters as used in [10, 12]. However, in the linear stability analysis
of [12], they did not take the Marangoni effect into consideration. We
need one more parameter da/7T to describe the Marangoni effect. Here
we assumed d6/8T = —1.0 x 107*N/mK and this is reasonable as discussed
in [16]. To investigate the onset of convection, a time-consuming equivalent
heating process should be applied in steps. Our strategy was to apply a faster
heating process (i.e., a uniform heating rate of 0.1°C/h} to find out the bi-
furcation phenomenon in the two-layer system first. Then we performed un-
steady calculations again for the convection mode under a fixed temperature
difference to confirm that the observation we obtained is a physical one.

For the Silicone oil-water system, the main finding from our numerical sim-
ulation.is that convective instability of the system will take two bifurcation
processes from the static state to time-dependent convection. A typical time
variation behaviour of this system is shown in Figure 8. For an initially static
Silicone oil-water system, it loses its stability and onset to steady convection
at Rac(steady) = 1.1 x 10*. Then it undergoes a secondary bifurcation to a
time-dependent convection at Rac(oscillation) = 2.2 x 104,

We summarised different results obtained by several authors in Table 1. Lin-
ear stability analysis predicts that the Silicone oil-water two-layer system will
Jose its stability and onset to steady conveetion, no matter whether or not we
consider the Marangoni effect. Our numerical results and experimental obser-
vation agree well on the onset of oscillation. Degen et al. did not find steady
convection in their experiments. This could be explained from the temperature
distribution in the two-layer system. As shown in Figure 8, when the system
goes into steady convection, the isotherm lines remain flat in the oil layer. “Un-
fortunately, using water presents another difficulty in that its variation of index
of refraction with temperature is small” [10], thus a shadowgraph method
would not detect the steady convection, When the convection becomes oscil:
latory, isotherms in the oil layer curl up and then are detected in experiments.

1. Non-Equilib. Thermodyn. - 2005 - Vol. 30- No. 3
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Figure 8 Time variation of maximum streamfunction in lower layer and correspending
streamlines and isotherms at five instants in Silicone oil-water system for depth ratio
H =05 A4=65andT =29 (H =12 mm).

5. Conclusion

The feature of oscillatory instability of the Rayleigh—Marangoni—Bénard con-
vection in a thin two-layer system has been studied here by considering the
real thermocapillary effect at the interface in the two-layer system Silicone
oil {10cSt)-Fluorinert FC70. There exists an oscillatory convection region
due to the competition between the thermocapillary forces and the buoyancy
forces. The Marangoni effect enlarges the region of oscillatory regime for the -
layer thickness ratio H, in the R-M-B instability in comparison with that in
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(c) Isotherms

Figure 8 (continued)

Table 1 Comparison of critical Ra for the onset of steady (Ra(st)) and oscillatory convection
(Rafos)) in the Silicone oil-water system obtained by different methods, with H,=0.5,
A=65andT =29 (H = 12 mm).

Method _ ' Ruac(st) Rac(os)
Experiments [10] , no : 2.1 x 10*
Linear stability (Ma = 0} [12] 1.0 x 10* no
Linear stability (I = 2.9) 0.70 x 107 no

2D simulation (" = 2.9) 1.1 x 10 22 % 104

the Rayleigh-Bénard instability of the system without considering the ther-
mocapillary effect (Ma = 0). The oscillatory instability phenomena at the
onset in the system were confirmed by our numerical simulation investigation
for the non-linear instability problems. In the transition between two basi-
cally coupling modes, MT and TC, the travelling wave of the oscillatory con-
vection at the onset of R-M-B instability is detected via the direct numerical
simulation in the two-layer fluid system. This travelling wave is a result of the
competition between the. Rayleigh-Bénard the instability and the interfacial
Marangoni effect. The typical intermediate Marangoni convection cells near
the interface between two-liquid layers were observed first in the thermal cou-
pling mode.

For the Silicone oil-water system, it is found that the two-layer system will
lose stability and onset to steady convection firstly, then the steady convec-
tion bifurcates to oscillatory convection with increasing Ra. This secondary
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oscillatory instability mechanism explains the difference between the experi- -
mental observation of Degen et al. {10] and the linear stability analysis of
Renardy and Stoltz [12]. Our results show the strong effects of thermocapil-
lary force at the interface on the time-dependent-oscillations at or after the
onset of convection. ' '
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