
COMPUTATIONAL MECHANICS 
WCCM VI in conjunction with APCOM’04, Sept. 5-10, 2004, Beijing, China
© 2004  Tsinghua University Press & Springer-Verlag 
  
  
  

3D Finite Volume Scheme for Czochralski Crystal Growth 
Jing Lu, Zi-Bing Zhang, Qi-Sheng Chen*

Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan-xi Road ,Beijing, 100080, China
e-mail: qschen@imech.ac.cn 
 
Abstract A general three-dimensional model is developed for simulation of the growth process of silicon 
single crystals by Czochralski technique. The numerical scheme is based on the curvilinear 
non-orthogonal finite volume discretization. Numerical solutions show that the flow and temperature 
fields in the melt are asymmetric and unsteady for 8’’ silicon growth. The effects of rotation of crystal on 
the flow structure are studied. The rotation of crystal forms the Ekman layer in which the temperature 
gradient along solid/melt surface is small.  
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INTRODUCTION  
 

The growth of silicon single crystals is the basis for electronic device fabrications. Czochralski (Cz) 
method is the most widely used technique due to its ability to meet the stringent requirements of large 
diameter crystals with a high degree of crystallographic perfection, low defect density and uniform 
dopant distribution. Currently, the Cz technology is being used to grow silicon crystals of up to 300 mm 
diameter. 
Numerical simulation has proved to be an important and effective method for investigation of such 
complicated growth process especially for the growth process of 8’’ and 12’’ crystals. Numerical 
simulations of transport phenomena in Cz process have been performed by many investigators. Derby 
and Brown [1] developed a thermal-capillary model for heat transfer in CZ systems, which accounts for 
conduction-dominated heat transfer throughout the CZ system and includes calculation of the 
crystal/melt and melt/gas interfaces. Brown et al. [2] used finite element discretizations for the 
temperature field and interface shapes. Bornside et al. [3] added diffuse-gray radiation throughout the 
system. This approach was called the integrated thermal-capillary model (ITCM) that time. Kinney and 
Brown [4] used the Integrated Hydrodynamic Thermal Capillary Modeling (IHTCM) to model turbulent 
convection in the melt of CZ silicon systems. Lipchin and Brown [5] merged the finite-element method 
for solution of the ITCM and the finite-volume method for calculation of turbulent convection. Jafri et al. 
[6] used a finite-volume discretization to simulate laminar convection in a prototype CZ model using 
orthogonal staggered meshes. Zhang and Prasad [7] presented finite-volume calculations based on a 
discretization with a nonorthogonal curvilinear grid. They expressed the governing equations in 
curvilinear coordinates and transformed the computational domain to a rectangular region. Zhang et al. 
[8] and Prasad et al.[9] used a dynamic model to simulate CZ growth of silicon crystal. Nunes and 
Naraghi [10] used a radiation model called Discrete Exchange Factor (DEF) to simulate CZ growth 
system. The governing equations for the DEF method are obtained by discretizing the integral equations 
of Continuous Exchange Factor (CEF). Gevelber [11] used a lump model to model the CZ growth 
system. Seidl et al.[12] and Müller et al.[13] measured oxygen concentration within the melt volume 
using an electrochemical oxygen sensor. The oxygen sensor consists of thermocouple, solid ionic sensor 
and electronic melt contact. Chatterjee and Prasad [14] developed a full 3-dimensional adaptive finite 
volume scheme, and Chatterjee et al.[15] used it for simulation of low pressure Cz growth process. Jing 
and Kobayashi [16] investigated the effect of RF coil position on spoke patterns observed on the free 
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surface of oxide melt by 3-dimensional numerical simulations. Li et al. [17] conducted a global 
numerical simulations using finite element method to analyze the influence of crystal and crucible 
rotations on silicon melt flow and oxygen transport in a small Cz furnace. 
In this paper, we used the 3D MASTRAPP [14,15] to investigate the effects of rotation of crystal and 
crucible on flow pattern and the temperature field in an 8’’ silicon growth system. 
 
PHYSICAL AND MATHEMATICAL MODEL 
 

The conventional Cz method is a “batch process” in which a single crystal is grown from the melt in a 
crucible as shown in Fig.1. The crucible is initially filled with the polycrystalline silicon charge. Thermal 
energy is supplied by a heater surrounding the crucible to the silicon charge. A seed crystal is then 
dipped into the melt and slowly withdrawn from the melt whereby recrystallization of silicon in the form 
of single crystals occurs. In order to improve uniformity, the growing crystal is rotated while it is pulled 
from the melt, and simultaneously the crucible is rotated in the opposite direction. 
In addition to buoyancy-driven natural convection which is caused by the temperature gradients in the 
melt, other flows such as forced convection due to the rotation of crystal, and Marangoni convection 
induced by non-uniform temperature distribution on the free surface are also involved in the process. The 
complex flow pattern becomes asymmetric for 8’’ growth process, and temperature distribution is also 
three-dimensional. 
 

 
 

Fig. 1 Schematic of Cz growth system 
 

1.Governing Equations A general convection-diffusion equation for any variable φ  for an 
incompressible flow in a three- dimensional Cartesian coordinate system can be expressed as: 
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iJ  is the total flux which takes the form as: 
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where  is the coefficient of diffusion and  is an accumulation of source terms. In the generalized 
non-orthogonal coordinate system, the convection-diffusion equation transforms to: 
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where  is the mathematical (nonphysical) source term that arises due to the nonorthogonality of the 
coordinate system,  contains the auxiliary fluxes and  is the Jacobian of transformation. Details 
about  and  can be found in [14]. 
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Similarly, the continuity equation in Cartesian system is, 
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The above equation can be written in non-orthogonal system as: 
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where  is the mass source/sink term,  contains the auxiliary covariant fluxes analogous to  
[14].  
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2.Boundary Conditions  The solid/liquid interface considered in this work is caused by phase change 
and is isothermal. For the case of solidification (also melting), Stefan condition for energy balance holds 
true at the interface in the following form: 

( )sf s s lh V k T k Tρ = ∇ − ∇ l                                                              (6) 

where  is the interface velocity vector,  is the latent heat, k is the thermal conductivity, T is the 
temperature and subscript  and l  refer to solid and liquid phases, respectively. 

V~ sfh
s

At the free surface, the following vector equation holds tenable by assuming quasi-steady state 

( )2p p Hσ∞ − − ⋅ n nT+ ⋅
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where σ  is the surface tension, T
~~  the viscous stress tensor, H the mean curvature of the meniscus, a 

denotes the arc length, n the unit normal vector and t the unit tangent vector.  
Presence of a periodic direction ( 3ξ ) in the cylindrical Cz system calls for specific periodic boundary 
condition to be imposed. In the case of a closed azimuthal direction ( 3ξ ), the period is π2  and the 
boundary condition is of the form, 

( ) ( )3 30 2φ ξ φ ξ= = = π .                                                               (8) 
 

3.Numerical Method  For the numerical solution of transport problems in domains of irregular shapes 
with moving phase change interfaces and boundaries, control volume method has been found to be a 
better option. For the numerical purpose, the discretized form of Eqs. (3) is obtained through integrating 
itself over the control volume as follow: 
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In the above equation superscript 0 denotes previous time step values, and the subscripts e, w, t, b, n, s 
denote the points at the center of the corresponding control volume face. The physical source term, , 
is generally linearized as: 

φS

( ) C PP
S S Sφ Pφ= + .                                                                 (10) 

Through applying proper operations, the final discretized form is obtained as: 

P P E E W W T T B B N N S Sa a a a a a a bφ φ φ φ φ φ φ= + + + + + + ,                                    (11) 

where the details about ,  etc. can be found in [14]. Accordingly, the continuity equation, energy 
equation and other auxiliary equations are discretized by this means. 
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RESULTS AND DISCUSSION 
 

1.Effect of Grashof number  As mentioned earlier, the three main driving forces in Cz melt are 
buoyancy, crystal/crucible ration and surface tension on the free surface. The important non-dimensional 
numbers such as Prandtl number, Grashof number, Marangoni number, Crucible Reynolds number and 
Crystal Reynolds number are defined as: 

αν /Pr = , , )/()( 23 νβ fw TTRgGr −= )/()( ρνασ RTT
T

Ma mW −
∂
∂

=
,  

2Rec cRω ν= , 2Res s Rω ν= ,                                                     (12) 

where ν  is the kinetic viscosity, α  the thermal diffusivity, g the gravitational acceleration, β  the 
coefficient of thermal expansion, R the radius of crucible,  the temperatures at crucible wall,   

the freezing point of Si, 

wT fT

T∂
∂σ  the surface tension differentiation with respect to temperature, cω  the 

rotation rate of crucible, and sω  denotes the rotation rate of crystal. We will focus on the effect of 
Grashof number on the flow field and temperature distribution in the 8’’ Cz growth system with other 
parameters fixed. 
For 8’’ Si growth, the non-dimensional parameters are , , , 

,  for 0.48 m diameter crucible, 15 rpm rotation rate of crystal and 5 rpm 
rotation rate of crucible, and 150 K temperature difference between crucible temperature and freezing 
point. 

910=Gr 019.0Pr = 410=Ma
5108.1Re ×=t 60000Re =b

 

 
 

(a) (b)       

Fig. 2  (a) Flow field for , (b) flow field for  710=Gr 910=Gr
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The flow fields in crucible are presented in Fig. 2a and b for  and , respectively. As 
can be seen, there are two kinds of dominant flow patterns in the vertical plane, namely 1 and 2. Due to 
the crystal rotation, fluid is sucked up from underneath the crystal and pumped radially outwards. This 
phenomenon is known as Ekman suction which corresponds to flow pattern 1 formed near the free 
surface in Fig. 2. Simultaneously, the applied temperature boundary conditions result in buoyancy-driven 
flow in the melt, which corresponds to flow pattern near the bottom of crucible as shown in Fig. 2. A 
close look at the flow field reveals that for high Gr numbers ( ) natural convection plays an 
important role in the melt flow as the Ekman suction caused by crystal rotation. This tendency increases 
with Gr number. We can see in Fig. 2 that the zone occupied by flow pattern 2 (natural convection) is of 
approximately the same size as pattern 1 (Ekman suction) for while it becomes much larger 
than pattern 1 when Gr number increases from  to . 

710=Gr 910=Gr

710≥Gr
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710 910

 

  
 

(a) (b) 
 

Fig. 3  (a) Temperature field in the vertical plane for  (b) for  710=Gr 910=Gr
 

Fig. 3 (a) and (b) show the temperature distributions in the vertical plane in the melt for and 
, respectively. For silicon growth, the temperature boundary conditions on the crucible side wall 

and bottom are maintained at 

710=Gr
910=Gr

1=θ  and kept constant in Cz process as demonstrated in Fig. 3. The 
freezing temperature, 0=θ , lies at the melt/crystal interface where formation of single crystal occurs. 
Here we will focus on the temperature variation on the free surface to count for the Marangoni flow and 
the interface behavior. As can be seen from Fig. 3, there exists an outward temperature gradient along the 
free surface between the crucible wall and the crystal edge. The surface tension force induces an inward 
flow towards the crystal. By comparison between (a) and (b), it can be found that the temperature 
variation concentrates more at the edge of crystal for  than that for . The large 
temperature gradient near the triple point may have a considerable influence upon the interface behaviors 
from the crystal quality point of view. The rotation of crystal causes an outward flow from underneath 
the crystal to the triple point and the outward flow meet the inward flow just outside the triple point. The 
variation of temperature inside the thin Ekman layer is very small. 

910=Gr 710=Gr

Axial view of velocity distribution on the melt surface for and  are demonstrated in 
Fig. 4. As indicated from the flow field in Fig. 4, the velocity distribution in the core of the plane where 
the magnitude varies linearly with the radius is determined by the counter-clockwise rotation of the 
crystal, which ensures the axisymmetry of the thermal condition, while the velocity vectors at the edge of 
the plane correspond to the clockwise rotation of the crucible. The crystal rotation thus gives rise to 
centrifugal flow as is shown in Fig. 4. Effect of Gr number is then observed by keeping the rotation rate 
of both crystal and crucible fixed. Analyzing the velocity distributions between crystal and crucible wall, 
we can see that the velocity field for are more uniform than that for . This highlights 

710=Gr 910=Gr

710=Gr 910=Gr
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the importance of 3-D simulation in capturing the feature of Cz process by comparison with 2-D 
simulations. 
 

 
 

(a) (b) 
 

Fig. 4  Velocity distribution on the melt surface (a)  (b)  710=Gr 910=Gr
 
CONCLUSIONS 
 

The flow structure and temperature distribution in the melt are analyzed using the three-dimensional 
MASTRAPP, which is based on the non-orthogonal finite volume technique. The effect of Grashof 
number on the flow structure is studied. The Ekman layer becomes smaller when increasing the Grashof 
number from  to . The temperature variation inside the Ekman layer is found to be very small. 710 910
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