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Abstract: This paper reviews the concept of damage 

localization and its application to time-independent (quasi-static) 

and time-dependent processes in heterogeneous materials.  

For quasi-static process in a heterogeneous material with 

Weibull distribution, damage can be expressed by a function of 

state variable. Accordingly, the criterion for damage localization 

depends on Weibull modulus m. In particular, damage 

localization can appear even though stress gradient remains fixed 

and it is closely related to strain localization. 

For time-dependent process, damage evolution law can be 

expressed by a function of stress and damage f (σ ,D ) . 

Accordingly, the criterion for damage localization can be 

expressed by f D > f /D . Provided damage evolution law can be 

expressed by kinetics of microdamage, it is found that intrinsic 

Deborah number D* plays a key role in damage localization. The 

criterion for damage localization has been applied to two 

extremes of time-dependent processes: spallation under wave 

loading and creep. 
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1. Introduction 

“There is the other sort of problems, i.e. strength and 
plasticity theory, for which even essential physical 
formulation is still not available for engineering 
applications”, Tsien wrote in his well-known book 
“Physical Mechanics” about 40 years ago [1]. This still 
remains a challenge till now. “Although much has been 
learned, it appears that damage mechanics is a formidable 
problem whose difficulty may be of the same dimension 
as turbulence”, see Bazant and Chen [2]. They identified 
micromechanical basis of damage, etc. necessary and 
potentially profitable topics for the immediate future. 

What are the main causes for the long lasting 

challenge?  From engineering points of view, as noted by 
Becker et al. [3], this problem might be a 6 layer hierarchy. 
For instance, for a vehicle, these are platform, system, 
subsystem, component, element and material. “Though 
mission demands are made at the top level, failure is 
initiated at the lowest level” [3]. In fact, the initial damage, 
like microcrack or microvoid, may come from the lower 
microstructual level in materials. But the eventual rupture 
may result from the evolution of microdamage. This is 
particularly true for heterogeneous materials. Perhaps, the 
tragedy of Columbia may result from such a similar 
process. 

This paper intends to review the concept of damage 
localization and its application to the understanding of 
failure diagnostics in time-independent (quasi-static) and 
time-dependent processes of heterogeneous materials in 
engineering. 
 
2. Damage Localization 

It is well known that with progressive deformation an 
initially uniform damage field may become localized. And 
finally, along the localized damage, an approximately 
two-dimensional highly-damaged region may form and 
lead to eventual failure surface. It is assumed that damage 
localization occurs once the rate of relative damage 
gradient |∆D/∆x|/D (D denotes damage and ∆x is the 
increment of spatial coordinate) starts to become positive 
[4-6], namely, 
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where ∆t is the increment of time. Accordingly, damage 
localization can also be formulated as follows, 
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That is to say, provided damage increases, only when the 
relative increment (defined by (∆z/∆t)/z for argument z) of 
damage gradient overtakes the relative increment of 
damage itself, damage localization can occur. Obviously, 
this is true in geometrical and kinetic sense. By means of 
this simple definition of damage localization, one can 
identify the occurrence of damage localization. In next 
two sections, this criterion is applied to two typical 
processes, i.e. quasi-static and time-dependent processes 
to explore what special features will govern the damage 
localization in the two processes. 
 
3. Damage Localization in Quasi-static Process 
3.1 Theoretical analysis 

In order to study damage localization of quasi-static 
process in heterogeneous materials, a theoretical model is 
proposed. Suppose that a heterogeneous sample be driven 
by boundary displacement quasi-statically. Moreover, the 
sample consists of linear elastic but brittle units, namely 
all units have the same elastic modulus E0 but different 
breaking stress threshold σc (later in Section 3, we will 
take normalized stress and strain, i.e. σ=stress/η and 
ε=E0strain/η where η is the position factor in distribution 
function h(σc)). To depict heterogeneity, it is assumed that 
σc follows a probability distribution function h(σc), like 
Weibull distribution [7], 

( ) c1
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where m is the shape factor (Weibull modulus). The 
smaller the Weibull modulus m is, the more diverse the 
threshold σc is, that is to say, the more heterogeneous the 
sample is. 

Under uniaxial monotonic loading, mean field 
approximation gives the relations between nominal stress 
σ, nominal strain ε and damage D as follows, 
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In this quasi-static process, instead of time t the 
“temporal” variable should be a governing variable, like 
the boundary displacement U. Substituting the relation 
G(D) into criterion Eq.(2) and assuming a fixed stress 
gradient , i.e. 
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one can derive the following critical condition for damage 
localization, 

/G G D′′ ′− ≥ .                                  (8) 
Conditions (7) and (8) imply that even though stress 
gradient remains fixed damage localization can still appear. 
Figure 1 gives a schematic illustration of the criterion (8) 
for Weibull distribution. Notice that initially G(D) 
increases with increasing damage D, i.e. G′>0 and the 
function is convex, hence G′′<0. Moreover, prior to 
damage localization −G′′<G ′ /D, whereas as soon as 
D>DDL, damage localization appears. For Weibull 
distribution, criterion (8) gives the following to calculate 
the critical damage value DDL for damage localization, 

( ) ( ) ( ) ( )ln 1 1 ln 1 1 2 1 0m D m D D D m D .− − − + − + −   = (9) 
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Figure 1  Curves of −G′′, G ′ /D, G ′  and G versus damage D. 

 represents the critical damage to localization in accord 

with −G′′=G ′ /D.  represent catastrophic failure. (Weibull 

modulus m=2) 

 
Similarly, the critical condition for strain localization can 
also be derived, 

/ ,F F ε′′ ′− ≥                                  (10) 

and 

( ) ( )2 21 ln 1 ln 1 0m D m D .+ − + − =                  (11) 

We denote the solutions to Eqs.(9) and (11) by DDL and 
DεL respectively, i.e. the critical damages for the 
occurrence of damage localization and strain localization. 



Later in the Section, we simply call the critical values as 
corresponding localization points. According to Eqs.(9) 
and (11), both DDL and DεL depends on Weibull modulus 
m, the characteristics of heterogeneity. 

The nominal stress-strain curve and the nominal 
strain and damage at the two kinds of localization for m=2, 
4 and 10 are shown in Fig.2. It can be seen that the 
stresses corresponding to DDL and DεL decrease with 
decreasing Weibull modulus m. That is to say, the more 
heterogeneous (less Weibull modulus m) the medium is, 
the more likely to localization it is. Moreover, both 
damage and strain localization happen prior to 
catastrophic failure. This indicates that localization might 
be a precursor to failure. In addition, strain localization (  
in Fig.2) always appears ahead of damage localization (  
in Fig.2) under mean field approximation. 
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Figure 2  Nominal stress versus damage fraction curve 

(solid line). ,  and  represent strain localization, 

damage localization and catastrophic failure. 
 
3.2 Comparison of observed and predicted localization 

As an example, typical raw and processed 
experimental nominal stress-strain curves σ (ε )  of a 
gabbro specimen with dimension of 5×5×13mm3 under 
uniaxial compression are shown in Figs.3 and 4. Figure 5 
shows seven patterns (corresponding to the states marked 
in Fig.3) of surface strain ε22

* (subscript 2 denotes the 
loading axis) of the gabbro sample. 

At the initial loading stage (between A and B in 
Figs.3 and 5), the surface strain field remains nearly 
homogeneous. This indicates that the mean field 
approximation should be valid before B. However, a small 
but high-strain-gradient domain appears at B, signifying 
the emergence of macroscopic strain inhomogeneity. This 

is identified as strain localization point experimentally. 
Hereafter (from C to J in Figs.3 and 5), strain localization 
domain extends gradually and runs through the whole 
sample in the end. More importantly, it can be seen that 
the strain localization point is prior to the catastrophic 
point (J in Figs.3 and 5). 
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Figure 3  Raw experimental nominal stress-strain curve of a 

gabbro sample under uniaxial compression. Points A-J on the 

curve represent ten stages during the loading process, 

including the initial stage (A), strain localization point (B) 

and catastrophic point (J). 
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Figure 4  Processed dimensionless nominal stress-strain 

curve σ(ε) (bulk solid line) and theoretical one (solid line).  

represents strain localization point determined by 

experiment, while  and  represent strain and damage 

localization points predicted by theory. 

 

From the experimental measurement, the strain 
localization point corresponds to the following nominal 
stress, strain and damage (  in Fig.4), 
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L L L0.725,  0.711  and  0.0194.Dε ε εε σ= = =    (12) 



 

 

 
Figure 5  Evolution patterns of surface strain ε22

*. The ten 

patterns, A-J, corresponding to the points marked by the 

same letters in Fig. 3.  indicates that the area 
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In this case study, the predicted strain localization appears 
prior to the experimental one. Also, the agreement 
between the theoretically predicted and experimental 
nominal stress-strain curves looks satisfactory prior to 
maximum nominal stress. And both strain and damage 
localizations occur prior to catastrophic failure.  
 
4. Damage Localization in Time-dependent Process 
4.1 Criterion for damage localization 

According to damage mechanics, there should be a 
damage evolution law in time-dependent process. 
Generally speaking, the evolution law can be expressed by 
a function of stress σ and damage, 

( , ).D f Dσ=                                  (15) 

The combination of the evolution law (15), the criterion 
for damage localization (2), and some approximations 
similar to the quasi-static case, gives the following form 
of the criterion for damage localization, 

,Df f D>                                 (16) 

where fD denotes the partial differentiation of function f 
with respect to damage D. Now, the criterion for damage 
localization is no longer a geometrical description, like 
Eq.(2), but a physical assessment. This means that as soon 
as the tangent of the evolution law with respect to damage 
becomes greater than its secant on the section of current 
stress, damage localization is about to appear, see Fig.(6). 
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Figure 6  A schematic of criterion Eq.(16). The f–D plane is 

a section of constant stress. Bulk solid curve is the 

intersection of the evolution law f (σ ,D )  and the section. 

Solid straight line is the secant of the curve equal to its 

tangent. Hence,  denotes damage localization. 



4.2 Damage evolution law based on meso-kinetics 
More interestingly, when turning to mesoscopic 

essence of damage evolution, we notice that the evolution 
of microdamage depends on two fundamental mesoscopic 
kinetics: the laws of nucleation rate nN and growth rate V 
of microdamage. Generally, they can be expressed by, 

N N 0 0( , )  and  ( , , )n n c V V c c .σ σ= =                 (17) 

Based on the evolution equation of number density of 
microdamage, the other formulation of damage evolution 
law f in terms of these two mesoscopic kinetics is obtained 
approximately [10-12], 

f

0
N 0 00

N0
N0

( ; ) '( )d d
( ; ) ( )d 1 ,

( ; ) ( )d

c

c
n c c c c

f n c c c
n c c c

σ τ
σ τ

σ τ

∞

∞

∞


= ⋅ +



∫ ∫
∫

∫







   (18) 

where τ denotes the microdamage volume proportional to 
c3, and cf is the time-dependent front of microdamage size,  
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4.3 Intrinsic Deborah number D* 
Notice that the expression of function f includes two 

meso-scopic time scales: the characteristic microdamage 
nucleation time tN=(nN

*c*4)−1 and growth time tV=c*/V*, 
where all letters with * denote the corresponding 
mesoscopic characteristic parameters. Clearly, the 
dimensionless number D*=tV/tN characterizes the ratio of 
the two intrinsic mesoscopic time scales: growth over 
nucleation. Since both time scales are relevant to intrinsic 
relaxation, D* is called “intrinsic Deborah number”. 
Furthermore, by means of the criterion for damage 
localization, (16), the magnitude of the critical damage to 
damage localization can be estimated by, 
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where all variable with bar above are non-dimensional and 
normalized in order of O(1), for instance 

0 0 / * (1)c c c O= = . Hence it is very clear that the intrinsic 

Deborah number D* is a proper indicator of critical 
damage to damage localization. 

A specific example of damage evolution under 
time-dependent loading, i.e. spallation in metals under 
stress wave loading, is shown in Fig.7. It is found that for 
the tested metals under such intensive but short stress 
wave loading, the intrinsic Deborah number D* is very 
small, roughly speaking D*∼(10−2∼10−3). From the 
relationship of the intrinsic Deborah number D* and the 

critical damage DL for damage localization, Eq.(20), 
damage localization should occur at the similar small 
damage of (10−2∼10−3). In experiments, according to the 
localization condition, we obtained the critical damage to 
localization DL∼4×10−3 [12]. Clearly, the intrinsic Deborah 
number D* does characterize the magnitude of the critical 
damage DL, (also see Fig.8). The other important aspect is 
the time scale. The wave loading time in spallation is 
about 1 µs, which is in the same range of the characteristic 
micridamage growth time scale tV. This indicates that the 
competition between the imposed loading time and 
microdamage growth governs the spallation. Some further 
simulations demonstrate that the intrinsic Deborah number 
does give a proper indication of damage localization. 
 

     
Figure 7  Microcracks on a section of an impacted 

aluminium alloy specimen. 

Figure 8  Effect of intrinsic Deborah number D* on damage 

localization in spallation. All curves are calculated with fixed 

Mach number M=0.0305, damage number S=0.153, 

trans-scale Deborah number De=65.9 but different intrinsic 

Deborah number D* (as shown in the Figure). The less the 

intrinsic Deborah number is, the more localized the damage 

becomes[12]. 



On the other extreme of time-dependent processes, 
namely creep, the concept of damage localization seems to 
be effective too. We applied the criterion for damage 
localization to Hayhurst’s experimental results of creep [13]. 
For three metals: Cu, Al and 316 steel, the predicted and 
observed (in square bracket) ratios of damage localization 
time over whole life (namely damage D=1) are 0.66[0.83], 
0.65[0.96] and 0.70[0.71] [10]. The simple estimation 
seems to be reasonable. 
 
5. Conclusion 

In heterogeneous materials, damage localization may 
occur in either quasi-static or time-dependent process. As 
soon as damage localization appears, materials are subject 
to severe weakening, hence damage localization can be 
assumed as an early precursor to failure in engineering. 

This paper reviews the concept of damage 
localization and its application to time-independent 
(quasi-static) and time-dependent processes in 
heterogeneous materials.  

For quasi-static process in a heterogeneous material 
with Weibull distribution, damage can be expressed by a 
function of state variable. Accordingly, the criterion for 
damage localization depends on Weibull modulus m In 
particular, it is found that damage localization can appear 
even though stress gradient remains fixed and it is closely 
related to strain localization. 

For time-dependent process, damage evolution law 
can be expressed by a function of stress and damage 
f(σ,D). Accordingly, the criterion for damage localization 
can be expressed by fD> f /D . Provided damage evolution 
law can be expressed by mesoscopical kinetics of 
microdamage, it is found that intrinsic Deborah number 
D* plays a key role in damage localization. This analysis 
has been applied to two extremes of time-dependent 
processes: spallation under wave loading and creep. 
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