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Abstract-Because of the load transfer effect of interface layer, 

the stress distribution inside the composite structure of 

film/substrate can be very different from the Timoshenko's 

model. In this paper, we give the derivation and analysis of such 

load transfer effect of shear-lag (S-L) model. The micro-structure 

size (boundary conditions) effect together with interface load 

transfer effect becomes more and more important as the micro­

structure size including the three dimensions of thickness, width 

and length shrinks. The microstructure size is also responsible 

for the so-called edge-induced stress. The edge effect and 

difference of S-L model and Timoshenko model are also 

demonstrated. 
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L INTRlDUCTlON 

Edge-induced stress problem has been intensively studied 
for its importance in the film/substrate composite structure of 
the micro-electronic componentso For this topic, reader should 
refer to the excellent review article [1] and book by Freund 
and Suresh[2] for comprehensive readingo Hu [3] derived the 
stress distribution in a semi-infinite film on an infinite 
substrate 0 His derivation uses Flamant solution, which models 
the substrate as half-spaceo Therefore, the size effect of 
composite structure is not incorporated in the modeL In Hu's 
model [3], the interface effect is incorporated in the 
compatibility condition as a constraint condition between the 
film and substrate at the interface 0 Unlike Hu's approach of 
using the interface effect as constraint condition, Chen and 
Nelson's shear-lag (S-L) model [4] assumes that there is an 
interface layer, in which the interfacial shear and normal 
stresses account for the load/stress transfer between the two 
material layerso Such interface layer, as for Cu/Si composite is 
about 1 nm, has been experimentally observed by Murray and 
Noyan et al [5, 6]0 The interface layer itself demonstrates the 
quite different properties with those in the material layer, for 
example, in the bending case of the composite structure(which 
is thin enough to be modeled as Euler-Bernoulli beam) 
consisting of two layers, the interfacial shear stress is the same 
magnitude of the normal stress inside material layeL While, 
the shear stress inside the material layer is so small to be 
ignoredo The interfacial shear stress plays an essential role in 
load/stress transfer between the material layers 0 Compared 
with Hu's model [3], S-L model, which is capable of 
describing size effect of the composite structure, has been 
successfully applied to explain the enlarging difference 
between the experimental data and Timoshenko's model as the 
micro-structure size reduceso Timoshenko's model [7] does 
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not consider the interfacial effect and geometrically his 
structure is infinitely long (but finite in width and thickness)o 
In this paper, both interfacial and size effects on the film stress 
distribution are presentedo The stress distribution of S-L model 
is also compared with that of Timoshenko's model to 
demonstrate these effects 0 The significant results difference 
can be shown between those of S-L model considering both 
interfacial and size effects and those of Timoshenko's modeL 
So for the recently developed ultra-thin micro-structures, for 
example, the one used for DNA sequencing (Au/SiNx 
composite structure) [8], the interfacial and size effects will be 
the significant and impOliant factors influencing the 
measurement and perfonnance of those micro-structureso 

It MODEL D EV ELOPM ENT AND RESULTS DISCUSSION 

Figure 10 (a): The schematic diagram of bilayered composite structure with 
an interface under an unknown force couple and moments acting on the two 
material layerso (b) free body diagram analysis in S-L model on the both 
material layers and interface layer 

We first derive the Timoshenko's model for the bilayer 
bending caseo The equilibrium requires the balance of both 
force and moment as follows 

(1) 

and 



(2) 

As illustrated in figure lea), Fi and Mi (i = 1, 2) are the axial 
force per unit width and bending moment acting on the 
different layer. From (I), we have 

For the derivation of S-L model, it is extremely lengthy and 
omitted here. The reader can refer to the papers [4, 5] for the 
detailed derivation. Here we just give such governing equation 
for interfacial normal stress, O"o(x), illustrated in figure 1 (b), as 
follows [5] 

(3) cfO""(x) _ q,c cta;,(x) + E"b d2a;,(x) Ep"(lx-a2) 0" (x) =0. (11) 
dx6 17 dx4 17 dx2 17 

" 

Substitute equation (3) into (2), it shows 

P(t1 +t2) 
= M M 1 + 2· 2 

For the longitudinal normal strains of the two layers, they 
have the following forms 

du1(x) 1 P t1 
--- =& +--+-

dx E1t1 2p 

du2(x ) 2 P t2 -"--'---'-=& +--+-. 
dx E2t2 2p 

(4) 

(5) 

&
1 

and &2 
are the 'free" strains in the two layers, which can 

be induced by thermal expansion [5, 7] , dislocation [9] or 
other sources. Generally speaking, they are the functions of x 
and z [9]. For simplicity reason, here we treat them as 
constants as those in thermal expansion case [5, 7]. P is the 
radius of curvature at interface. The relation between the 
bending moment and curvature is the following 

M =
E// 

i 12p· (6) 

Substitute (6) into (4), we have 

(7) 

The compatibility requires that 

1 P tl 2 P t2 & +--+-=& +--+-
E1t1 2p E2t2 2p 

(8) 

In Timoshenko's model, the middle-surface displacements are 
the only variables of describing the deflection of the 
composite beam, the equation above physically indicates that 
there is no relative slip between the two layers. From the 
equation above, we also derive the expression for P as 

&2 _&
1 

P = 2 3 3 (9) 
11 E1t1 + 11 Ei2 + 3(t1 + t2) /(E1t1 + Ei2 ) 

The stress inside layer 1 is 

And for interfacial shear stress To(X), the following equation 
sustains 

Here Eo, Go and 17 are the interfacial Young's modulus, shear 
modulus and thickness, respectively. a, band c are the 
followings: 

(13) 

Here tI and t2 are the thicknesses of the two material layers. DI 
and D2 are bending stiffness of the structure. 

Equation (11) is a sixth order ordinary differential equation 
(ODE) and its solution has the following forms 

q;(x) = £'! aR(4x)+ 4 siri(4x)+ � a.:B-iJP;)caf.j3�) 
+4 siri(4x)caf.j3�)+ A; siIi(4x)siI(8�)+ 4, siIi(4x)caf.j3�). ( 14) 

Here Ais (i = 1 to 6) are the unlmown constants to be 
determined. B], f3h and f3v are the eigenvalues solved from 
characteristic equation of ( 1 1). The symmetry requires O"o(x) to 
be an even function, therefore (14) changes as 

The three boundary conditions are [5] 

L 

f (Yo (x )dx = 0, 

-L 

d
2

(Yo(L) 
= ° 

dx2 ' 

d4 (Yo(L) Eob 
(Yo(L) = 0. 

dx4 
17 

( 16) 

With these three boundary conditions, AI, A3 and A5 can be 
solved. In practice, for TO(X), it is unnecessary to solve the 

(10) sixth order ODE of (12). The following equation is more 
convenient to be used to solve TO(X) once O"o(x) is solved [4, 5] 
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d40-0
4
(X) _ Eob 

0-0 (X) = 
Eoa d 'o(x ) 

dx '7 '7 dx 
( 17) 

The longitudinal normal sh'ess inside layer 1 is as follows 

x 

f '0 (x )dx 

0-1 (x ) = �-L"----__ (\8) 
tl 

The complex sixth order ODEs of S-L model make it hard for 
us to properly understand the physical nature of interfacial 
load/stress transfer mechanism as acknowledged by Murray 
and Noyan [5, 6]. The lap-shear (L-S) model developed by 
Suhir [ 10] has the similar sixth order ODEs for interfacial 
normal and shear sh'esses and such complex forms of 
governing equations might be the reasons why those models 
are not widely accepted and applied to multilayered structures 
[11]. Mathematically, the complex forms of governing 
equations are the concomitant results due to the self­
equilibrium requirement for interface layer [11]. Physically, 
the nature of those interface layer models (both S-L and L-S) 
are a direct and convenient way of modeling the interface as 
non-ideal or say, damaged interface (DI), which allows the 
relative slip between the two material layers. As mentioned 
above, (8) does not allow such slip. In S-L model, the slip is 
related to parameter Goll1 and the middle-surface longitudinal 
displacements of the two layers [4, 5]. In damaged interface 
model [12], similar relation also holds and the equivalence of 
Dl and S-L models is proved by Tullini et al [13]. While, such 
complex and difficult mathematics still troubles us for better 
understanding of the interfacial influence on the stress transfer 
between the layers. Based on the previous works [4, 6], the 
following approximate solution for the longitudinal stress 
inside layer 1 is derived 

( ) � E ( 1_ 2
)[

cosh(px) 
o-IX � 

18 8  
cosh(PL) 

�-------

P 
� Go ( _1_ + _1_ )

, 
'7 Ell E2t2 

1] , 

(19) 

We present our results derived from the equation above in the 
fmID of aJ(x)lolx) in order to make the comparison atCx) is the 
longitudinal stress derived by Timoshenko's model in (10). As 
shown in the derivation, there are no boundary conditions 
applied in Timoshenko's model as it assumes the beam is 
infinitely long. Another assumption in Timoshenko's model is 
worthy to be pointed out that the radius of curvature, p, is 
assumed constant. The two assumptions combined result in 

that a,(x) is a constant as far as 81 -8
2 

is a constant.. 
Figure 2 shows the longitudinal stress distribution inside the 

layer \ as the micro-structure length is fixed as 2,um and fJ 

varies as2x1 06m-l, lx1 07m-1 and3x1 07m-l. In this 
case, when fJ increases, more and more areas inside the micro­
structure except the edge parts approach to Timoshenko's 
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value. The physical reason is that as fJ becomes larger, the 
interface becomes stronger and allows less slip between the 
two material layers, which approaches the case of no slip in 
Timoshenko's model. Figure 3 is the case whenfJ is fixed as 3 
x 106m,l and length varies as 2,um, 4,um and 6,um. The size 
effect is clearly shown. As fJ, which is directly related to 
interfacial properties indicated in (19), is fixed, the length 
variation is solely responsible for the stress distribution. When 
micro-structure size increases, more and more aJ(x) inside 
layer \ approaches to or equals at. In reality, for the two 
materials bonded to form interface, the properties like elastic 
constants, roughness and work of adhesion should keep 
constant if no fWiher processing is applied after the fonnation 
of interface. Thus, the interfacial parameters should also keep 
constant and the size effect will be the dominant factor 
determining the micro-structure stress distribution. So the 
application, performance and reliability etc related to the 
micro-structure stress distribution will be greatly influenced, 
too. 

III. CONCLUSION 

Micro-structure size and interfacial properties are the two 
factors influencing the layers' stress distribution. 

Mathematically, the size effect is embodied via boundary 
conditions and interfacial influence is incorporated in the 
governing equations. Fundamentally and physically, such size 
effect is a reflection of the micro-structure increasing interface 
effect due to the increasing ratio of surface to volume when its 
size decreases. 

6 
b 

08 

Ci6 

Q4 

G:l 

. , 
I 

I 

/", .... . " 
� j)=ief , 

� , , , 
\ 

\ 

1 
• 
l 
, 

G�-�-�-�-�-�-���-���-� 
-1 - 0 . 8 -0 E -04 - 0 . 2 -0 02 Q.4 0.6 0.3 

Figure 2. Interfacial effects on the longitudinal stress distribution of layer I 

when the structure length 2L is fixed as 2 flm. jj varies as 

2 x I 0 6 m - 1 , I x I 0 7 m - 1 and 3 x I 0 7 m - 1 • 
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Figure 3. Size effect when the interfacial parameter fJ is fixed 
as 3 x I 0 7 m -1 • The length varies as 2 !1m, 4 11m and 6 11m. 
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