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Abstract. Starting from the second-order finite volume scheme,though numerical value per-
turbation of the cell facial fluxes, the perturbational finite volume (PFV) scheme of the Navier-
Stokes (NS) equations for compressible flow is developed in this paper. The central PFV scheme
is used to compute the one-dimensional NS equations with shock wave.Numerical results show
that the PFV scheme can obtain essentially non-oscillatory solution.

1 Introduction

The finite volume (FV) method is widely used in commerdial codes. In IV method, second
order accurate central FV(2CFV) scheme is the simplest one and cffers a good comzromise
among accuracy, simplicity and efficiency. Its disz:ivantage is that there is csciliation solution
when the grid Reynolds number is lareer tnan abcut 2/1). The pertuibation finite volume (PFV)
method presented by Zhi Get retains the advantages of 2CFV method, however, its interpolation
approximations =< of higlr order accuirate. Numerical tests of using PFV schemes to compute the
scalar transport eruation and the Navier-Stokes equations for incompressible flow show that PFV
schemes have betier performances than 2CFV scheme[2,3]. Gao et al[4] discussed the significance
of higher-order accuracy reconstruction approximation, offered numerically the practical effect
and benefit in the upwind and central PFV schemes. Recently, Gao and Yang [5] developed
a perturbational finite volume method for the convective-diffusion integral equation, the PFV
scheme is an upwind and mixed scheme with any higher-order interpolation and second-order
integration approximations. The PFV scheme uses the least nodes like the standard three-point
schemes. The PFV scheme is applied on a number of 1-D linear and nonlinear problems, 2-D
and 3-D flow model equations, its numerical accuracies are higher than second-order central
scheme, the power law scheme (PLS) and QUICK scheme.

Starting from the second-order central finite volume scheme,though numerical value pertur-
bation of the cell facial fluxes, the perturbational finite volume (PFV) scheme of the Navier-
Stokes (NS) equations for compressible flow is developed in this paper. Numerical results of the
one-dimensional NS equations with shock wave show that the PFV scheme can obtain essentially
non-oscillatory solution.

2 Control equations and numerical methods

2.1 The PFV scheme of the transport equation

The integral form of the scalar transport equation is
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The finite volume scheme of eq(1) with a parameter « is as following
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where ¢ expresses any transported variable, such as temperature, energy and components of flow
velocity, p is the density, T is the velocity vector, I" is the diffusion coefficient, ¢ is the source
term. S and 2 are the surface and the volume or area of control volume, respectively. A typical
CV’s face labeled “jf” is considered. Suppose the line connecting the node P (CV center) and
the node jp (adjacent CV center) is nearly orthogonal to the interface of the control volumes j
and jp. m;y is the mass flux through the j-face

In PFV method [2-4], in order to improve FV accuracy, high order accurate of the inter-
polation approximation is obtained by a numerical value perturbation technique, i.e. the mass
fluxes of the cell faces mj; and the source term g, are expanded into power series of the grid
spacing and the coeficients of the power series are determined with the aid of the conservation
equation itself. Supposing there are perturbations exerted on the values of the mass fluxes m;;
and the source term g, i.e.
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By using the relations
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where R;; = _-LL| d; il= MJ— R;; can be regarded as cell Reynolds number. So we obtain
the penurbatlonal FV scheme
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where 1
o a
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Let o = 0, we obtain the central perturbational finite volume scheme.

2.2 The PFV scheme of the Navier-Stokes equation

The integral form of the NS equations for compressible flow is as follows
2/pdv+/p7f-71’ds=0, (6)
at Jy s
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For a perfect gas with constant specific heats, the equation of state is

p=pRT, 9)
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Similar to the process of the PFV scheme for the scalar transport equation, the (2N+2)th-
order accurate central PFV scheme for the momentum equation is as follows
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The (2N+2)th order accurate central PFV scheme for the enargy equation zisc can bz writien
as following
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¢ expresses u and v, §; is the directional variable along the line connecting juncture nodes p and
— —_
jp. ™y is the mass flux of the cell j-face, Rjs = thjs d j/puS;,Pis = m,.,g,,| d ;|/kS;. Ry and
Pj; are respectively the cell Reynolds number and Peclet number in the d j-direction. When ¢
e_)'cpresses u, P = E(wu?w +¢‘=v_e’u)1{'9f -?1-; if % expresses v, § = Z(‘/’zv?z + ¢vv?u)jf : g'J'-
. _ Bu; i 2 u — — . .
¥ is the sfir%s tensor, ;; = ;1.(-6—:? + 5) — 5;.1.-5;-;-6;,‘ , € and "€ are the unit vectors in th.e
x- and y-direction respectively,  is the dynamic viscousity, k is the thermal conductivity, H is
the total enthalpy per unit mass, T is the absolute temperature(K), p is the pressure. The other
terms in eq.(10) and (11) are discreted by central scheme.
The discrete continuity equation is expressed as the 2CFV scheme or fourth order accurate
artificial-viscosity PFV scheme.
To solve the ordinary differential equation

dv
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where L(v) is a discretization of the spatial opertor, the second-order Runge-Kutta is applied,
v H/2 = o™ 4 §t(L(v))",
VM = F(0" 0™ R) 4 S (L(v)", (13)

3 Numerical results

The PFV scheme (10) and (11) are applied into computing the one-dimensional Navier-Stokes
equation.
The boundary conditions and initial conditions are as following[6]

p(0,2) = u(0,¢) = T(0,t) = 1,
_2/(y=-1)+M3
wL,t) = oD
—(_2 ~1y/=1 2
T(L,1) = (Gxiyme — 350G + Gegwr (14)
When t = 0,p(1,0) = 1/u(1,0),the other variables is obtained by linear interpolation of
boundary conditions. In our computation, p(1,t) is given by extrapolation of interior poinis.The
grid number N = 200.
First, we using both the second-order central finite vohune (2-CFV)schese and tie second-
order perturbational finite volume (2-PFV) scheme to compute ihe cose with M = 2, iz = §00.

The variations of the density p, velocity u, pressure 7 znd tewperature T with ihe distance are
given in Figs.1 and 2.

o ——

Fig- 1. 2-CFV scheme, Re=800 Fig. 2. 2-PFV scheme, Re=800

In Figs.1 and 2, the average grid Reynolds number is 4, there are small oscillations domain
in the solutions of second order accurate CFV scheme, however, there are no oscillations in the
solutions of 2-PFV scheme.

Then, the case with M = 2, Re = 3000 is computed by using 2CFV, fourth- and sixth-order
perturbational finite (4-PFV and 6-PFV) volume schemes. Figs.3 and 4 given the comparisons
of the pressure and velocity.

Figs.3 and 4 show that the 2-CFV scheme emergences the more oscillatory solutions than
the Fig.1, when Re from 800 to 3000, especially on the downstream of shock-wave. The 4-PFV
and 6-PFV can remain the property of essentially non-oscillatory. The 6-PFV scheme has higher
resolution of shock wave than the 4-PFV does.

Figs.5 and 6 given the numerical results of 2-CFV and 6-PFV schemes with Re = 5000.

In Fig.5, there are obvious oscillations in whole computational domain in the contributions
of density p, velocity u, pressure p and temperature T'. Fig.6 shows that 6-PFV scheme is an
essentially non-oscillatory scheme, even through the grid Reynolds number is about 30.
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Fig.5. 2-CFV, Re=5000

4 Conclusions
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Comparison of pressure, Re=3000

Fig. 8. 6-PFV, Re=5000

Starting from the second-order finite volume scheme, though numerical value perturbation of
the cell facial fluxes, the perturbational finite volume (PFV) scheme of the Navier-Stokes (NS)
equations for compressible flow is developed. The formulation of the PFV scheme is consistent
with that of the second-order central finite volume (2-CFV). Numerical results of the one-
dimensional Navier-Stokes equation show that the PFV scheme can obtain essentially non-
oscillatory solution even much larger cell Reynolds number, thus it has a wider applicable range
of Reynolds number than that of the second order finite volume scheme. Our next work is to
use the PFV scheme computing 2-D and 3-D Navier-Stokes equations and to solve practical

engineering flow problems.
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