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A main method of predicting turbulent flows is to solve LES equations, which was called traditional LES 
method. The traditional LES method solves the motions of large eddies of size larger than filtering scale ∆n 
while modeling unresolved scales less than ∆n (see Fig.1). Hughes et.al. argued that many shortcomings of 
the traditional LES approaches were associated with their inabilities to successfully differentiate between 
large and small scales. One may guess that a priori scale-separation would be better, because it can predict 
scale-interaction well compared with posteriori scale-separation. To this end, a multi-scale method was 
suggested to perform scale-separation ab initio.  
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Fig.1  A sketch of traditional LES (a) and multiscale Method (b) 
 

The primary contents of our multiscale method are: (i) A space average is used to differentiate scale. (ii) 
The basic equations include the large scale equations and fluctuation equations. The basic unknown 
quantities for an incompressible turbulent flow are iU1 , 1P , ( immi UU ,1−− ) and ( 1−− mm PP ), i=1,2,3 and 
m=2,…,n. where  
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(iii) The large-scale equations and fluctuation equations are coupled through turbulent stress terms. The 
large-scale equations are  
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The middle m-levels fluctuation equations (m≥2, m≤n-1) are  
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and the last n-level fluctuation equations are 
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the conditions of the velocities at the boundary walls are 

0miU =   (i=1,2,3; m=1,2,…,n) (5) 
 

iv) Some discussions: It should be noted that these turbulent stress formulae in above equations do not 
contain any empirical relations or constants. The action of unresolved scales less than n∆ on the n-level 
fluctuation motions is modeled mainly by the last term of the right hand side of the equations (4b). This 
term also may be substituted by an empirical subgrid scale model. It should be noted that there is no action 
of the unsolved scales on the resolved scale ranging from 1n−∆  to L. For the case of 2-D shear turbulent 
flow, this turbulent stress reduces to well-known one of Prandtl mixing length theory. If the y-direction is 

the normal of the shear flow, the Prandtl mixing length lp equals to 21
2 3

y∆ . The mixing length lp, as we 

know, is an empirical length, but the grid spacing y∆ is a definite one. The molecular viscous terms in the 
equations (2.b) and (3.b) are much smaller than the turbulent stress terms and then they should be 
neglected. Retaining them is to satisfy 0miU =  (i=1,2,3; m=1,2,…,n), i.e. no slid conditions at the walls. 
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From here we know that there exist obvious difference between the multiscale model and traditional 
calculation.  
The nonlinear dynamics of the m-level fluctuation motions are governed mainly by their interactions with 
slightly larger scales of (m-1)-level and slightly smaller scales of (m+1)-level have a little effect. 
 

v) Approximate closed differential equations for the large scales larger than ∆m are as follows: 
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vi)  We use the multiscale equations of n=2, i.e., the large and small scale (LSS) equations, to simulate 3-D 
evolutions of a channel flow and a planar mixing layer flow. Some interesting results are given. Such as, 
for both cases of the channel and planar mixing layer flows, the average values of the velocity, fluctuation 
velocity and turbulent stress given by the multiscale simulations are consistent with those by the NS 
computations. The reverse-transfer process of the energy from the small scales to the large ones were 
brought to light in computations of LSS equations. For the case of planar mixing layer flow, the maximum 
fluctuation velocity, maximum turbulent stress and their twice abrupt-increase processes explored by 
multiscale computations are not captured in the NS calculations, see Fig.2. The twice abrupt-increase of 
both the maximum fluctuation velocity and maximum turbulent stress are corresponding to the “burst” 
phenomena in the transition flow. In addition, a wavelike increase of the momentum thickness of the 
mixing layer flow was shown by NS computations, see Fig.3, its cause is not clear in the past. The 
calculations for LSS equations show that a direct-reverse transfer of the energy between the large and 
small scales results in the wavelike increase of the momentum thickness. These new results should be 
gains of the multiscale, i.e. a priori scale-separation method. The results of multiscale calculation include 
both normal data of the flow field and interactions between different resolved scales that play a key role in 
flow-evolution. 
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Fig.2  Variations of average fluctuation velocity          Fig.3 Variations of dimensionless average  

(AFV) and maximum fluctuation velocity                      momentum thickness of planar mixing 
(MFV) of planar mixing layer flow with                       layer with time T. 
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