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Adiabatic shear banding instability in bulk metallic glasses
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In this letter, a linear instability analysis was performed to highlight the mechanism of formation of
adiabatic shear banding instabilities in bulk metallic glasses �BMGs�. It is found that this instability
is determined by the free volume coalescence-diffusion Deborah number. The most important
findings are that both free volume coalescence softening and adiabatic heating softening exert an
influence on the formation of adiabatic shear banding instability in BMGs, and higher strain rate
promotes the growth of instability. These results are of particular significance in understanding the
mechanism of formation of shear bands in BMGs. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2067691�
Recently, bulk metallic glasses �BMGs� have attracted
large interest due to their unique physical, mechanical, and
chemical properties.1–3 However, plastic deformation of
BMGs at high stresses and low temperatures �e.g., room tem-
perature� is prone to be localized into shear bands. Two im-
portant hypotheses, namely free volume softening4–8 and lo-
cal adiabatic heating softening,9,10 have been proposed to
explain the formation mechanism of shear bands in BMGs.
However, the precise physical nature of the mechanism of
formation of shear bands in BMGs still remains unclear. Fur-
thermore, it is noted that these investigations are mainly fo-
cused on quasistatic conditions. However, considerable re-
search work has demonstrated that the formation of shear
bands in BMGs is a rate-dependent process.11–13 In this con-
nection, particularly, Johnson and co-workers recently re-
ported the striking findings that Zr-based bulk metallic glass
matrix composite exhibited a peculiar “self-sharpening” phe-
nomenon in the course of penetration.14 This self-sharpening
behavior results from localized adiabatic shear banding,
which is a typical dynamic shear instability phenomenon in
materials at high strain rate. Though great progress in under-
standing adiabatic shear banding instability in crystalline ma-
terials has been made during past several decades,15 the
physical nature of adiabatic shear banding instability in
BMGs has not previously been identified.

Here, the dynamic thermoplastic instability of BMGs in
one-dimensional simple shear is analyzed using linear stabil-
ity analysis. The onset criterion and the formation mecha-
nism of adiabatic shear banding instability are clearly
revealed.

Consider dynamic thermomechanical deformation of a
bulk metallic glass in one-dimensional simple shear, i.e., de-
formation can only occur in the direction of the x-axis direc-
tion but there may have a gradient along the y axis. The
governing equations for this problem can be written as
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where Eqs. �1a�, �1b�, �1c�, and �1d� are the constitutive
equation, the momentum equation, the energy equation, and
the diffusion-production equation of the free volume concen-
tration, respectively. In these equations, � is the shear stress,
� is the shear strain, �̇ is the shear strain rate, � is the density,
� is the temperature, Cv is the specific heat, � is the thermal
conductivity, K is the Taylor-Quinney coefficient �K�
0.9� , � is the free volume concentration, and D is the diffu-
sion coefficient of the free volume concentration. While
g�� ,� ,�� in Eq. �1d� is the net generation rate function of the
free volume concentration, the explicit expression of which
was given by Spaepen4 and Huang et al.8

To perform a linear stability analysis, we impose a small
perturbation ��� ,�� ,��� on the smoothly developing homo-
geneous state ��0 ,�0 ,�0�, which is a solution of Eq. �1�, such
that

��,�,�,�� = ��0 + ��,�0 + ��,�0 + ��,�0 + ��� , �2a�

���,��,��,��� = ��*,�*,�*,�*�e�t+iky , �2b�

where ��* ,�* ,�* ,�*� are the magnitudes of the perturbation,
� is the rate of growth, and k is the wave number. The
stability of the deformation is determined by the sign of the
real part of �.

Combining Eq. �1� with Eq. �2� yields the following
characteristic equation:

�4 + a�3 + b�2 + c� + d = 0, �3�

where

a = �� + �Cv�Dk2 − G�� + �CvG�F0�/�Cv, �4a�

b = �k2	 + ���Dk2 − G�� + k2��G�F0 + K�̇�G�F0�/�2Cv,

�4b�
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d = k4�Q0�Dk2 − G��/�2Cv, �4d�

and �=K�̇P0+�k2+R0Cvk2 ,	=�R0k2+�CvQ0−K�0P0.
Whereas Q0= ��� /���0 ,R0= ��� /��̇�0 , P0=−��� /���0 ,F0=
−��� /���0 ,G�=�g�� ,� ,�� /�� ,G�=�g�� ,� ,�� /��, and G�=
�g�� ,� ,�� /��. According to the Routh-Hurwitz theorem,16 if
d
0 then at least one of the roots of Eq. �3� has a positive
real part, which indicates that unstable deformation occurs.
Hence, the onset criterion for this adiabatic shear instability
can be obtained

De =
tD

tG
� 1, �5�

where tD=1/Dk2 is the characteristic time for the free vol-
ume diffusion, and tG=1/G� is the characteristic time for the
free volume coalescence. Whereas De is called the free vol-
ume coalescence-diffusion Deborah number, which measures
the competition between the free volume coalescence and the
free volume diffusion. Obviously, the competition between
these two microscopic rate-dependent processes controls sta-
bility. If De�1, i.e., the free volume coalescence is faster
than the free volume diffusion, perturbation will grow expo-
nentially and deformation becomes unstable, whereas for the
opposite case, perturbation will die out and deformation re-
mains stable.

It is interesting to find that the quasistatic instability cri-
terion derived by Huang et al.8 can also be expressed as Eq.
�5�. However, the momentum and energy equations were not
considered in their quasistatic analysis. It is noted, although
the momentum and energy equations were incorporated into
the governing equations for the present dynamic shear insta-
bility problem, whether instability occurs or not is not related
as
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explicitly to the thermal softening and the strain rate accord-
ing to Eq. �5�. So, a question naturally arises: do these fac-
tors exert any influence on the initiation of adiabatic shear
banding instability? Actually, these factors influence instabil-
ity markedly in some other ways which will be demonstrated
later.

Of all instability modes meeting the critical condition of
Eq. �5�, one with the maximum perturbation growth rate �m
is the dominant instability mode. The critical characteristic
time for this dominant instability mode can be characterized
by tc�1/�m.17 The maximum growth rate �m can be ob-
tained by solving the characteristic Eq. �3�. After estimating
the quantity order and ignoring the secondary small terms,
the critical characteristic time of instability, tc, can finally be

FIG. 1. Variation of free volume coalescence rate G� with shear strain rate.
written as
tc =
2�CvR0

K�0P0 − �CvQ0 + �CvR0G� + ��K�0P0 − �CvQ0 − �CvR0�2
. �6�
It can readily be seen from Eq. �6� that besides the free
volume softening �G��, strain hardening �Q0�, and strain rate
hardening �R0�, thermal softening �P0� also exerts a signifi-
cant influence on the characteristic time. This is quite differ-
ent from the quasistatic case where the sole softening effect
is free volume coalescence.8 Furthermore, we find from Eq.
�6� that strain hardening and strain rate hardening retard the
perturbation growth, whereas thermal softening and free vol-
ume softening accelerate the growth. According to the rela-
tive importance of the free volume softening and the thermal
softening, the critical characteristic time given by Eq. �6� can
be converted into the following two simple expressions. If
the free volume softening is dominant, i.e., K�0P0−�CvQ0

�CvR0G�, then the critical characteristic time simplifies to

tc =
1

G�

. �7�

If thermal softening is dominant, i.e., K�0P0−�CvQ0
��CvR0G�, then the critical characteristic time is expressed
tc =
R0

*

�̇0

�Cv

K�0P0 − �CvQ0
, �8�

where R0
*=�� /�ln��̇ / �̇0� is the strain rate sensitivity coeffi-

cient of materials, and �̇0 is the current strain rate. It is very
interesting that the expression of the characteristic time for
the dominant thermal softening case, i.e., Eq. �8�, is totally
identical with that of the classical adiabatic shear instability
for crystalline materials where thermal softening is the sole
factor leading to instability.17

Now let us turn to the discussion of the strain rate effect
on instability. Figure 1 shows the variation of free volume
coalescence rate G� with strain rate for a model material of
Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. From this fig-
ure, it can be found that G� increases with increasing strain
rate. Hence, it can readily be found that from Eqs. �7� and �8�
that the critical characteristic time of instability for both
cases decreases with increasing strain rate. This might be the
main reason that shear band instability is more probable at
high strain rates. This result is consistent with the available

11–13
experimental observations.
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