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A B S T R A C T :  In the framework of the two-fluid model, a hypersonic flow of a 
nonuniform dusty gas with low inertial (non-depositing) particles around a blunt 
body is considered. The particle mass concentration is assumed to be small, so that 
the effect of particles on the carrier phase is significant only inside the boundary 
layer where the particles accumulate. Stepshaped and harmonic nonuniformities of 
the particle concentratinn ahead of the bow shock wave are considered and the corre- 
sponding nonstationary distributions of the particle concentration in the shock layer 
are studied. On the basis of numerical study of nonstationary two-phase boundary 
layer equations derived by the matched asymptotic expansion method, the effects of 
free-stream particle concentration nonuniformities on the thermal flux and the friction 
coefficient in the neighborhood of stagnation point are investigated, in particular, the 
most "dangerous" nonuniformity periods are found. 
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1 I N T R O D U C T I O N  

High-speed aircraft traveling in dusty atmosphere may meet aerosol or dust clouds with 

spatially nonuniform distribution of particles. In experimental studies of dusty-gas flow past 
blunt bodies in shock tubes or wind tunnels, it is very difficult to ensure the particle concen- 
tration uniformity during the testing time. These problems require a theoretical evaluation 
of nonstationary effects in the flow, induced by particle concentration nonuniformities ahead 

of the bow shock wave. It should be noted that  investigations of dusty-gas flows past bodies 
are typical not only in connection with applications in high speed aerodynamics but  also 
in certain technologies (spray-coating using two-phase jets, powder metallurgy, etc.). The 
presence of even small amount of particles in the free stream may drastically change the 
flow structure in the near wall region of a blunt body immersed in a high speed gas flow. 
For fairly large particles, the effect of surface erosion may be predominant (see, for example, 
Humphrey[i]). As was revealed in a series of experimental investigations in dust tunnels, 
ballistic ranges, and shock tubes with fairly inertial particles[2~6]; in hypersonic flows the 
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particles colliding with body surface may result in a sharp increase in the heat flux in the 
stagnation region of the body. Three basic physical mechanisms of heating augmentation 
are important in these conditions: turbulization of the boundary layer by particle wakes, 
additional turbulization due to the roughness of the body surface caused by impinging parti- 
cles, and the main mechanism, the conversion of kinetic energy of the particles into thermal 
energy of the body. Low-inertial particles (less than several microns in size) usually do not 
deposit on the body surface. However, a theoretical analysis[ 7,s] and experiments [~ demon- 
strated that low-inertial particles may accumulate in the boundary layer on the up-wind 
surface of a blunt body, which also results in a noticeable change in the boundary layer 
structure and intensifies the heat transfer near the stagnation point even at very small par- 
ticle concentrations in the free-stream. In this paper, we restrict our consideration to the 
regime of absence of particle inertial deposition on the body surface (low-inertial particles) 
and focus on nonstationary effects induced by particle concentration nonuniformities ahead 
of the bow shock wave. 

2 F O R M U L A T I O N  OF T H E  P R O B L E M  

As the basis of the mathematical modeling, we use the two-fluid model of dusty gas 
with negligibly small volume fraction of particles [1~ Consider a plane or axisymmetric blunt 
body traveling at a supersonic velocity, which enters a layer of a nonuniform dusty gas at 
instant t = 0. In the reference frame fitted to the body, nonstationarity of the problem is 
attributable to nonstationary conditions on the bow shock wave. We introduce a curvilinear 
coordinate system fitted to the stagnation point with the x and the y axes directed along 
and normal to the surface generatrix. We assume that the carrier phase is a perfect viscous 
gas and the particles are monodispersed spheres with the radius a and the mass m. Below, 
the subscript s denotes the dispersed-phase parameters, the subscripts ~ and c refer to 

t h e  free-stream and stagnation parameters, the asterisk signifies the dimensional variables 
where it is required to distinguish them from the corresponding nondimensional variables. 

The expressions for the interphase momentum and energy exchange can be written as 
follows 

f s  = 6~a/~*(V* - V*)G qs = 47raA*(T* - T*)D 
1 2/3 

G = (1 + -~Res )[1 + ~i(Ms,Res)] n = (1 + 0.3PrW3Re~/2)~2(Ms,Re,) 

Here, V* is the velocity, T* is the temperature, i z* and ~* are the gas viscosity and thermal 
conductivity, Pr is the Prandtl number of the gas, Res and Ms are the particle Reynolds 
and Mach numbers, the correction functions ~1, ~2 are taken in the form of Carlson and 
Hoglund In]. For the temperature dependence of'p* and A* we assume the power law with 
the exponent w. 

The nondimensional variables are introduced as follows 
x* y* p* n* #* 

x = - -  y = - -  P = - ' 7 -  n s  - -  - -  -~ 
L L pr n:oo(0 ) # = 

p* 2T*% 2T~ % t* Uoo 
P =  �9 2 T -  T s =  t -  

PooU'Zoo U 2 U~ L 
Here, n, is the particle number concentration scaled to its value on the shock front on the 
symmetry axis: at t = 0, L the radius of curvature of the body at the stagnation point, Uoo 
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the free stream velocity, and cp the specific heat of the gas at constant pressure. Under 
the assumption of absence of crossing particle trajectories, the nondimensional equations of 
dusty gas flow take the form 

Op Ons 
0--t + div(pV) = 0 cOt + div(nsVs) = 0 

cOV 
p-~- + p ( V V ) V  + Vp + al~#ns(V - Vs)G = .2--~ [-V(#divV) + 3div~S] 

o g  

+ ( v , v )v ,  v A  
COt 

CO--~- + (V,V)Ts = 3 r~PD(T - T,) 

COT 
cOt + P ( V V ) T =  2(VV)p+ 2~ca [2#S2- ~#(divV)2l+ n-~rdiv(#VT)+ 

2al3#nsG [ V - V .  [2 , 2 a~p ._.,~. 

3"- !p T 3"- 1 %#* p= ~ # = T  ~ ~ -  P r -  A* 
3 '+1 

mn~o o 1 #~ 6ra#~L Poo 
- _ _  p*= 

p* Re U~p~L mUoo 

(2.1) 

Here, 7 is the specific heat ratio, 1/a the gas compression at the hypersonic velocity, S the 
strain rate tensor, and cs the specific heat of the particle material. 

For the carrier phase, on the body surface the no-slip condition and a fixed wall tem- 
perature T~ are specified. Ahead of the bow shock wave the flow velocity and temperature 
are assumed to be constant while the particle concentration is nonuniform in the flow di- 
rection. This i s  the reason of the occurrence of nonstationarities in the shock and the 
boundary layers. Hereafter we consider step-shaped and harmonic nonuniformities of t h e  
particle concentration. 

We assume that the flow Reynolds and Mach numbers are high (e << 1, M~ >> 1) and 
the particle mass concentration is small (a << 1). These assumptions make it possible to 
simplify significantly the problem formulation: when a -+ 0, outside the boundary layer the 
effect of particles on the carrier phase vanishes and hence all the flow parameters are time- 
independent except for the particle concentration. For gas parameters, in the inviscid region 
of the shock layer we can use the well-known hypersonic solutions [12'13] and the dispersed- 
phase equations in Lagrang e variables Can be reduced to ordinary differential equations on a 
fixed particle trajectory[14]. This makes it possible to investigate the nonstationary behavior 
of the particle concentration in the shock layer and then to use it as the outer solution for 
the nonstationary boundary layer flow. 

The other restriction is that in what follows we consider only the regime of absence 
of particle inertial deposition, i.e. the case of sufficiently small particles. This regime 
takes place when the particle inertia parameter is greater than a certain threshold value 
obtained by Osiptsov and Shapiro[S]: •/U 1 ~__ ~~ ) where Re,o = 2ap*Uoo/#* and U 1 = 

Oue/Ox(O, 0) is the nondimensional velocity gradient of the inviscid flow at the stagnation 
point. 
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3 INVISCID F L O W  R E G I O N  

As an example of a blunt body, we consider a sphere of radius L, for which the hyper- 
sonic solution for gas parameters in the shock layer [12] can be written in the nondimensional 
form as follows 

u ( x , Y ) - :  ( Y  + v ~  - 4 y ) s i n ( x )  

= 2 8 ~  4y 2 (1 Y 

2 1 
T = I + u 2 - v  ~ p =  - 

( 7 -  1) M2  

0 < y < Ysh Ysh = a 1 -- + 4a 

This is an asymptotic solution (M 2 >> 1, a << 1) correct to the terms of the order 
of a2/a. In the expression for the temperature we retain the higher-order terms which are 
important near the symmetry axis. 

It is clear that, since the boundary conditions for the particle velocity and temperature 
on the shock front are time-independent, these parameters are steady-state and equal to 
the steady-state flow paran~(Jters obtained for the constant particle concentration in the 
free stream. In the inviscid shock layer the only nonstationary parameter is the particle 
concentration for which, on a fixed particle trajectory, the following relationship is valid 

d 
dr  Inns = -divVa 

From this it follows 

) ns(T, XO) = ns(0, x0) exp ( -- divVa dt (3.1) 

Here, x0 is the abscissa of the origin of a particle trajectory on the bow shock wave (at 
y = ysa), and r is the nondimensional time of the particle motion along this trajectory. 
Since the particle velocity field is time-independent, it follows from this equation that a 
particle concentration nonuniformity is transported at the dispersed-phase velocity, with the 
nonuniformity amplitude depending on the deformation of an elementary Lagrange volume 
of the dispersed phase. Equation (3.1) can be rewritten in the following form 

n,( t ,  xo) = ns l ( t  - z, xo)nsu('r, Xo) (3.2) 

Here, t is measured from the instant at which the leading point of the shock front enters 
the concentration nonuniformity, nsl is the concefitration on the shock front, and nsu is 
the particle concentration distribution in the shock layer in the case of the uniform particle 
distribution ahead of the shock wave. Relation (3.2) in fact reduces the nonstationary 
problem to thesteady state one: to calculate the particle concentration in the nonstationary 
problem at a fixed point of the shock layer one must calculate ns~ from the steady-state 
problem, find the time of particle motion along the trajectory from the wave surface to the 
considered point (T), and determine the particle concentration on this trajectory on the 
shock front at the instant t -  v (nsl( t  - T ,  xo)) for a given particle distribution ahead of the 
shock front. 
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The steady-state problem is solved in the Lagrangian variables x0,% in which the 
equations of motion and energy of the dispersed phase take the form 

dxs _ Us dys dus UsVs 
d r  1 + Ys d r  = Vs dr  = j3#G(u - us) 1 + ys 

2 dTs 2/3c v # D ( T  - Ts) dvs us 
d r  = I~#C(v  - vs)  + 1 + y----'~ dr 3csPr  

In the Lagrange form, the continuity equation for the steady-state flow with the uniform 
particle distribution ahead of the bow shock can be written as follows 

1 (1 + Ys)s in (xs ) [usw3/a  - VsWl(1 + Ys)] 
ns(7-, Xo) (1 + Ysh) 2 sin(xo) cos(xo) 

To use this equation for calculating the particle concentration along a fixed particle 
trajectory, we introduce the following additional variables 

0z~ (r, xo) Ou~ (r, xo ) Oy, (r, xo) Ov~ (T, xo) 
wl - OZo w2 = Oxo w3 - Oxo w4 - OXo 

The equations for these variables are derived by differentiating the equations of particle 
motion with respect to xo 

dwl" w2 usw3 

d r  1 -4- Ys (1 -F ys)  2 

dw2 ( Ou Ou ) 0~0 UsV~W3 dr  = I 3 # G  W l - ~ x + W 3 - ~ y - W 2  + j O ( u - u s )  (G#) u s w 4 + v s w 2  + _ _  
1 + Ys (1 + ys) 2 

dw3 
dr  ---- W4 

dw4 ( Ov ov 0 2u,w2 u~w3 BuG + + Z(v W3~'~ W4) -- Vs ) - . ~Xo( G . ) - I - 1  -}- Y----~s (1 + ys) 2 dr  .wl ~xx y 

These equations together with the particle motion equations constitute a system of 
ordinary differential equations along a fixed particle trajectory, which makes it possible to 
calculate all the dispersed-phase parameters, including the concentration. The expression 
for O(#G)/Oxo is cumbersome and not reproduced here. 

The conditions on the shock wave follow from the continuity of particle parameters on 
the shock front 

T = 0 : Xs ---- XO Ys ---- Ysh Us = sin(x0) Vs = -- COS(X0) 

Ts = Too wl = 1 w2 ---- COS(X0) W3 = 0 W4 = sin(x0) 

Detailed numerical calculations of the steady-state problem for a sphere travelling in 
the uniform dusty-gas flow were performed in Osiptsov and Shapiro [15] for both the regimes 
of presence and absence of particle inertial deposition on the body surface. 

The particle distribution in the shock layer depends on the two nondimensional pa- 
rameters 130 = ~/Ul  and Rb = Re2/3 /6  only. It follows from the numerical calculations that 
with decrease in particle inertia (increase in the parameter/30), once a certain threshold 
value 13~ is passed, the particles no longer deposit on the body surface. 
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0.0 0.8 1.6 
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Fig.1 Particle trajectories for fl0 = 8.1, 

Rb = 2.5: curves 1 ~ 7 correspond 
to x0 = 0.7 ~ 0.1 

In Fig.2, the dashed curve shows a typ- 
ical steady-state profile of the particle con- 
centration in the shock layer for the uniform 
free-stream distribution of the particles. For 
comparison, in the same figure we plotted 
the particle concentration profile correspond- 
ing to t -- 4 for the step-shaped concentra- 
tion nonuniformity in the free stream, with 
the step amplitude equal to 0.9 and the step 
length equal to 0.5. Clearly, the amplitude of 
the concentration nonuniformity sharply in- 

creases with the decrease of the distance from 
the wall. This follows from the fact that  on 
the symmetry axis the time of motion of a 

marked particle towards the wall is infinite 
and the distance between any two marked 
particles tends to zero with time. Hence, 
no mat ter  how small is the initial difference 
in the concentration at  the locations o f  the 

marked particles, as the time increases, this 

Therewith, the particle concentration 
grows unboundedly near the limiting (the 
nearest to the Surface) particle t rajectory 
which, due to the difference in inertial prop- 
erties of the phases, does not coincide with 

the front surface of the body. For Rb > 2.5, 
for axisymmetric and plane flows the thresh- 
old value of ~0 is equal to 8 and 4, respec- 

tively. In what follows we will consider the 
near-critical flow regime with absence of the 

particle deposition. For this case, the typi- 
cal pat tern of the particle trajectories is rep- 
resented in Fig.1. It follows from the cal- 
culations that  in the no-deposition regime a 
very thin particle-free region arises between 

the limiting particle t rajectory and the body 
surface. 

45 t 
30 

0.00 0.2! 0.50 

Y/Ysh  

Fig.2 Propagation of the" step-shaped nonuni- 
fortuity in the shock layer. Dashed curve: 
uniform distribution in the free stream; 
Solid curve: step-shaped uonuniformity 
with the initial step amplitude equal to 
0.9 and length equal to 0.5 (t=4, fl = 
8.1, Rb = 2.5) 

concentration difference tends to infinity. It is also clear that  the concentration distribution 
for the nonuniform flow lies between the concentration profiles for both the uniform flows 
with free-stream concentrations equal to the maximum and the minimum values of the 
concentration nonuniformity in the free stream. 

Figure 3 presents the successive locations of the leading front of the nonuniformity 
in the shock layer  vs. t ime for ~0 = 8.1 and Rb = 2.5, curves 1,~6 correspond to t = 
0.01, 0.1, 0.5, 1.0,1.5, 2.0. As is clear, as the time increases, a fixed Lagrangian volume of the 

dispersed phase is compressed in the y direction and extends in the x direction, therewith 
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the nonuniformity front does not reach the frontal surface of the body at any finite time 

interval. It  is important  to find the dimensions of the free-stream Lagrangian region which 
can simultaneously enter the shock layer and hence determine the current distribution of 
the  particle concentration in the shock layer. 

In Fig.4, in the cylinder coordinates scaled to L and fitted to the leading point of the 
shock wave (zl is directed opposite the free stream and rl  is the distance from the symmetry 
axis) we present the calculated boundaries of such free-stream region which at instant t = 4 
occupies almost the entire shock layer ( 0 < x < 1). 

1.2 

0.8 

0.4 

0.0 

3 j  
J 

j l  
f 

0.0 0.5 1.0 1.5 
X 

Fig.3 Propagation of the nonuniformity front 
in the shock layer. Curves 1,,-6 corre- 
spond to t = 0.01, 0.1, 0.5, 1.0, 1.5, 2.0; 
/~o = 8.1, Rb = 2.5 

4 

1 

/ 
c0.0 0:5 Z0 

r 1 

Fig.4 Initial Lagrangian region in the cylinder 
coordinates which occupies the shock 
layer at t = 4,/~0 = 8.1, Rb = 2.5 

In Fig.5, we plotted the particle con- 
centration distribution (t = 4) in the near- 
wall region on the symmetry axis for the 
case of harmonic free-stream nonuniformity 
with the period equal to ~rL/6 and the am- 

plitude equal to 0.3. Clearly, with decrease 
in distance from the wall the concentration 

increases unboundedly, the amplitude of the 
nonuniformity also increases and the period 
sharply decreases. 

Such behavior of the particle concentra- 
tion poses a problem for the effect of particles 
on the boundary layer structure and the pos- 
sibility of appearance of peak heat fluxes to 
the body surface. To derive the boundary 
layer equations, we must know the asymp- 
totic behavior of the particle parameters ob- 
tained in inviscid problem as y -~ 0. 

An asymptotic analysis of the behavior 

30 

0 
0.0 0.1 0.2 

Y/Ysh 
Fig.5 Particle concentration distribution near 

the wall on the symmetry axis at t = 4 
for harmonic free-stream concentration 
profile (amplitude =0.3, period= ~rL/6). 
Dashed curve - -  concentration distribu- 
tion in the uniform flow (rio = 8.1, Rb = 
2.5) 
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of the dispersed-phase parameters in the neighborhood of a potential-flow stagnation point[ 16] 
indicated that in the exact steady-state solution the singularity of n8 has the type n~ ~ 1 / y  r 

where r varies over the range 0 < r < 2 - V~ (plane flow) or 0 < r < 3 - ~ (axisymmetric 
flow). The concentration singularity is integrable and hence the mean distance between the 
particles remains finite and the model of noncolliding particles is still valid [16]. The anal- 
ysis and the calculations carried out by Osiptsov and Shapiro [15] demonstrated that if the 
particle concentration is represented as ns = d ( x ) / Y [  + ... where Y1 is the nondimensional 
distance from the limiting particle trajectory, for x _< 1 the function d(x )  is almost constant, 
equal to d(0) which is a function of f~o and Rb. In Osiptsov and Shapiro Is], the value of d(0) 
was calculated over a wide range of fl0 and Rb. 

We will now determine the near-wail asymptotics of the particle concentration for the 
nonstationary problem on the symmetry axis. Using relation (3.2), for y << 1 we can write 

n s ( t , y )  = n s I ( t  - v )  d ~  ) 

Now we will evaluate the time r which it takes for the nonuniformity front to reach 
the near wall region. In the neighborhood of the stagnation point, for small y we can write 

U ---- U l X  V = --2JUly Vs = Vsly  

where 

Then, for small y we obtain 

T = const + 1__ In y 
Vsl 

and hence the asymptotics of the particle concentration takes the form 

n s ( t , y )  = d(O) n s l ( ~  ) ~ = t - - - l l n y  - const (3.3) 
y ,  Vsl 

This asymptotics will be used as the matching condition with the particle concentration 
in the boundary layer. From Eq.(3.3) it is clear that the concentration nonuniformity front 
reaches the outer edge of the boundary layer at large values of t. 

The particle accumulation in the near wall region in the no-deposition regime allows 
us to assume that inside the boundary layer the effect of particles on the carrier phase 
may be considerable even a t  very low mass concentrations a in the free stream. Below we 
investigate the bounds layer structure in the stagnation point neighborhood in the regime 
of no inertial deposition of particles. 

4 N O N S T A T I O N A R Y  B O U N D A R Y  L A Y E R  N E A R  T H E  S T A G N A T I O N  
P O I N T  

To derive the boundary layer equations we use the technique of the matched asymptotic 
expansions[ 17]. A review on mathematical modeling of dusty-gas boundary layers can be 
found in Osiptsov[lS], in particular, the steady-state boundary layer at the stagnation point 
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of a body in a uniform hypersonic dusty-gas flow was studied in Osiptsov and Shapiro [s]. 
Below, we consider the nonstationary two-phase boundary layer on a front surface of a 
body with finite curvature and restrict our consideration to the regime of absence of inertial 
deposition of particles/30 > fl0. The other limitation is that we consider only a neighborhood 
of the stagnation point, a region X = x / e l l / 4  ~ 0(1) (here, el = e/a),  since for x ,-, 0(1) due 
to noncoincidence of the body surface and the limiting trajectory the particle trajectories 
do not enter the boundary layer from the outer flow. 

We assume that in the no-deposition regime the leading terms of the outer (inviscid) 
solution in this region near the body surface (e -+ O, a -~ O, X is fixed and y -~ O) is known 
and can be represented in the form (denoted by subscript e) 

Ve = Vse = 0 

n e( x ,  y, t) ~ d( X ) n , A  X,  

1/4 1/4 ~ ~.-~ 
61 u e ( X )  61 Use(A) 

p ~ ( X )  T e ( X )  

d(X) O(1) 

Pe = Pc + x/ Pel(X) 

T,e(X) ~ O(1) 

To derive the boundary layer equations we introduce a stretched boundary-layer coor- 
dinate 71 = y / x / g - ;  and a new "inner" time 

l 
t i  = t -- ~ In el 

ZVsl 

The expression for the inner time follows from the fact that at a fixed X matching the 
outer and inner expansions of the particle concentration can be most easily carried out in 
the variables (y, ~) and (7, ~) as Y --+ 0 and ~ ~ co, respectively, when the value of qo is 
fixed'. The condition of coincidence of the expression for ~ in the outer variables (t, y) and 
the inner variables ( t i ,  7)  gives the required expression for ti. We note that the matching at 
a fixed ~ means that the outer coordinate tends to zero (y -~ 0) and the outer time tends 
to infinity t -~ co while the inner coordinate and the inner time tend to plus and minus 
infinity, respectively (7 ~ co, t ~ -co). We will seek the inner solution in the boundary 
layer in the form of series in el. For the normal velocities of the phases and the particle 
concentration the leading terms (denoted by subscript 0) are 

v vo(X, 7, ti) v / ~  V so ( X , rl , t i ) d(X)n,o(X,,7, ti)le[/  

For the longitudinal velocity components, the leading terms are 

1 / 4  z , r  
e I Uso[]~., ~], tl) 

For other variables the leading terms are of the order of unity. As is usually in the 
matched asymptotic expansion method, the orders of the quantities in the expansions are 
chosen from the conditions of matching with the outer solution. Substituting the inner 
expansions in (3.1) and retainingthe leading terms, we obtain the boundary layer equations 
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for the no-deposition regime on the frontal surface of a body with finite curvature 

1999 

Opo OpouoX j OpovoX j 
Oti + OX + 0------~ - 0 

Onto On~ou~oX j On,ovsoX j 
- - +  + =0  
Ot~ O X Or# 

/ Ouo Ouo ~3 + 

0 [ O u o ~  dp~x 
0"-~ t"~ ) dX 

0p0 ~/-  1 
= 0 Pc - poTo 

0y 27 

Ouso Ouso Ouso 
or---( + M"~ T f , -  + v .o - ~ -  = n ~o ( Mo - M.o ) 

Ov,o Ovso Ovso 
Ot---T + M'~ + v'~ = nUo@o - v~o) + U~o 

OTto OTto OTto 2cp3 
+ ~ , o - u ~  + ~o o---~- = d~,Pr u~176 - T~o) Ot----[~ 

OTo ] 1 0 [ OTo \ OTo + [ OTo + vo--~ -. Pr  Or# Ot~ Po i, Mo-~ - -  t . Q - N - ) +  

2a3 
3e=Ta--pr~ d#onso (Tso - To) 

#o = T ~  

(4.1) 

The boundary and matching conditions take the form 

~ = 0 :  uo = vo = O T o = T o  

---1" O0 : MO ~ Me ItsO -'~ Mse 

To --+ Te Tso -'+ T,e Ov,o Ov,e 
0--~- -+ Oy ~=o 

r I ~ c~, ti -+ -c~  (~o = const) : rfnso --~ n s f ( X ,  ~o) . 

From Eqs.(4.1), it is clear that the source terms describing the effect of particles on 
the carrier phase in the boundary layer are of the order of alera/2 and hence this effect is 
significant even at small a. To obtain the quantitative estimate of this effect for nonuniform 
free-stream profiles of the particle concentration, we consider a local solution of Eqs.(4.1) in 
a small neighborhood of the stagnation point where the outer solution can be represented 
in the form (subscript 1 refers to the leading coefficients) 

U e = M I X  Ve = - - 2 J M l y  

Use ---- U s l X  Vse = v s l y  

Te = 1 + . . -  T,e = 1 + " "  n.~ = d(O)n.l(~)ly ~12 
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We seek the local solution of Eqs.(4.1) near the stagnation point in the form 

Uo = UlX f ( t i , z )  + " "  

u ,o  = u , l X Y , ( t i ,  z) + . . .  

To = O(t~, z) + . . .  

po = r  z ) l g ( t ,  z )  

vo = --Ulrlg(tl,z) -F. . .  

v,o = Vslrlgs(ti, z) + . . .  

T,o = O,(t ,  z) + . . .  

~,o = r  ~ ) l ( ~ % )  + . . .  

Here, z = ~/v/~ ". Substituting these expansions in Eqs.(4.1), we obtain the following problem 

r Of O~ , d2f  _ wO~_ 1 d f  dO r  ~z 1+  
ulg Ot~ ~ d--z d-~ + - z r  - g 

A~oO~(f - afs) es  = 0 
" z r g s  

~l  Ot~ - ZT;z - 7 -  

1 0 ( r  ) ~ z  2Jaf,r ul Ot~ - cz + ~ + e (r  - 1 ) r  = 0 
gs 

1 r O0 0 ~ d20 w _ l ( d ~ 2  2A~o ,sOuOs - O  
Ul g Oti Pr  dz 2 wO \ d z ]  - 3Pr v2 g ~ r  

a Of, dd~ 
Ul Oti aczgs + (aft)  2 - roo~( f  - af t )  = 0 

c Og, ~ z  
Ul' Oti c2zg, + ~oO"(cg, - g) - (cg,) 2 = 0 

1 0 0 s  dO, 2 ~ ~o0 ~ (0 - 0,) = 0 
ul Oti czgs dz 3 cs Pr  " 

1 _ 0r A = ad(O)Ul/2 us1 v,l  
I~, g Crl/2 a --" '~1 C = ----Ul 

z = 0 :  1 = r  O = T w  

z = o o :  f = f , = g , = O = O , = l  

z -r oo, ti ~ - o o  (~ = const) : r  -+ n , l (~ )  

z r  d ~  = 0 
dz 

(4.2) 

Since the parameters r, a and c are functions of ro [rl 

r 1 2~ a ro ro 
= - - a =  + + r i o  c =  2 V 4  c - - f  - -  - - 2 J &  

for a fixed gas (fixed Pr ,  7, and w) the problem (4.2) depends on the function nsI(~) and 
the following similarity criteria: A, rio, cs/cp and Tw. 

We consider two types of the nonuniformities, the first one described by the formulas 

t < O :  n s f : l  t > O :  n s l ( t ) = 2 - c o s ( 2 r r / 2 t )  

and the second, described by the same formulas at t < 1/412 and for t _> 1 /4~  : nsf=2. 
Here, /2 characterizes the ratio of the body scale L and the nonuniformity period. 
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Equations (4.2) were calculated numerically by a finite-difference method. For conve- 

nience, the integration domain with respect to z coordinate was transformed into the interval 
[0, 1] using the change of the variable: Zl = (2/~)arctgQrz/2). In the calculations, it was 

assumed: V = 1.4, Pr = 0.7 and w = 0.5. 
In the first stage, we calculated the steady-state distributions of the parameters cor- 

responding to the uniform (nsl(~) = 1) particle concentration on the outer edge of the 
boundary layer. We used the same finite-difference method with iterations with respect 
to the terms describing the momentum and energy exchange as in Osiptsov and Shapiro 
(1986)[ s]. This solution gives the distributions of the parameters in the initial section of the 
calculation domain. Since the problem (4.2) is parabolic with respect to coordinate ti, we 

used a cruise implicit method with respect to ti and the sweep method at each time step. 
In the calculations the boundary conditions at infinity were in fact brought down to a very 

large but  finite value of z, and the negative value of ti at which the nonuniformity front 

reaches this point was taken as the origin of a drifted inner time and this section was taken 
as the initial section of the calculation domain ti = 0. The possibility of the drift of the 

inner time origin is connected with the presence of an arbitrary constant in the definition of 

In Fig.6, fo r  different values of f~0 and 1.5 

cp/cs= I we present the relative steady-state 

(nsf ---- 1) thermal flux (Q/Qo) and friction 
coefficient (Cf/Cfo) vs. the parameter  A 

characterizing the magnitude of the particle 
effect on the carrier-phase parameters, h e r e  r 1.3 

C~ 
the subscript 0 refers to the corresponding 
values in the pure gas. As is clear, the maxi- ~ 3 
mal effect of particles on the boundary layer O ~ 

structure is attained for values ~0 near the ~)~', 
limit of the no-deposition regime (~o = 8.01). 1.1 
With increase in/3 (decrease in the particle 
inertia), the effect of heating augmentation 

by particles decreases. Over the range of pa- - . . . . . .  3 _ 

rameter A considered, the effect of particles . . . . .  - 
on the friction is fairly small. The reason 0.9 , ' , , , 
for the particle effect on the heat flux to the 0 1 2 

A 
stagnation point is that  inside the boundary Fig.6 Ratios of the heat fluxes (solid) and 
layer the particles, heated in the inviscid re- friction coefficients (dashed) in dusty 
gion of the shock layer, work as heat sources and pure gases at the stagnation point 
in the carrier phase, of an axisymmetric blunt body in by- 

The intensity of these sources is propor- personic flow. f~o =8.01, 8.1,12 (curves 
tional to the local mass concentrat'ion of the 1..~3), cp/c~ =1 

particles, which is sufficiently high in the boundary layer. The calculations demonstrated 

that  the greater cs/cp, the greater the effect of the particles on the hea t  flux. The variation 
of T~ over the range 0 < T~, _< 0.99 has almost no influence on the .results presented in Fig.6. 
The calculations demonstrated also that  the consideration of the boundary layer eliminates 
the particle concentration singularity on the wall. 
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The calculation results of the nonsta- 
1.4 tionary boundary layer are presented in Fig.7 

for ~0 = 8.1, %/% = 1. Curves 1,2 corre- 
spond to the second (step-shaped) type of 
the concentration nonuniformity. Clearly, 
the relative heat flux and friction coefficient 
vary monotonously from the steady-state val- 
ues corresponding to ns/ = 1 to the val- 
ues corresponding to ns/ = 2, therewith the 
width of the transition region depends on #2 ~h~ 1.2 

only slightly. Curves 3,~5 correspond to the O m 
harmonic nonuniformities of the free-stream 
particle concentration with f2 = 0.2,0.5,1, 
respectively. Clearly, with decrease in the 
nonuniformity period the amplitude of the 
pulsation of both the heat flux and the fric- 
tion coefficient also decreases and the heat 1.0 0 
flux and friction coefficient tend to the corre- 
sponding values for a steady-state flow with 
its constant free-stream particle concentra- 
tion equal to the mean concentration in the 
nonuniformity. As the nonuniformity period 
increases, the heat flux and the friction coeffi- 
cient tend to the corresponding quasi-steady- 
state values and hence the most "dangerous" 

1 3 

1 ~ = 1 0  1 step 
2 ~ = 0 . 2  
3 .0  =0.2 1 

4 ~=0.5[  harmonic 
J 5 ~ = 1  

. . . . .  3 4,5 

I l I I ~l~d~l -- ~-- --I-- -I - I 

2 4 6 8 10 
t 

Fig.7 Relative heat flux (solid) and friction 
coefficient (dashed) vs. time in the 
nonstationary axisymmetric boundary 
layer. Tw = 0.14, /90 = 8.1, A = 1, 
c,/cp= 1 

nonuniformities (resulting in the largest amplitudes of the heat flux pulsations) are the 
nonuniformitieswith f~ < 0.1. 

5 SUMMARY 

Numerical modeling of the nonstationary effects in the shock and boundary layers 
on a blunt body traveling at hypersonic speed in nonuniform dusty gas with small parti- 
cles demonstrated that the gradients of the particle concentration nonuniformity sharply 
increase with decrease in the distance from the body surface. For step-shaped nonuniformi- 
ties of the particle concentration, the nonstationary heat flux and the friction coefficient at 
the stagnation point vary monotonously between the initial and finite steady-state values 
corresponding to the initial and finite free-stream particle concentrations. For harmonic 
nonuniformities, it is found that as the nonuniformity period decreases the heat flux at the 
stagnation point tends to the steady-state value for uniform free-stream flow with the mean 
particle concentration. With increase in the nonuniformity period (beginning with f2 = 0.1), 
the heat flux tends to the corresponding quasi-steady-state value. 
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