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Abstract. Self-organizing maps (SOM) have been recognized as a polvted
in data exploratoration, especially for the tasks of cltisgeon high dimensional
data. However, clustering on categorical data is still dlehge for SOM. This
paper aims to extend standard SOM to handle feature valwasegforical type. A
batch SOM algorithm (NCSOM) is presented concerning theimigarity mea-
sure and update method of map evolution for both numeric atetjorical fea-
tures simultaneously.

1 Introduction

Clustering is an unsupervised process to partition a seataf idto homogeneous clus-
ters. Without the supervision of classes, data segmentaticlustering is performed
based on intrinsic similarity of data.

Data can be described by categorical features and numeiticrés [1]. Nominal
features, e.g. post code, gender, transportation moddene® choice, are typically
categorical taking on values from a limited and predeteealiset of categories with-
out natural ordering. Another type of categorical featsrertinal, e.g. education level,
social status, which has particular order but unknown deaNumeric features have
numerical distance between values. Numeric features céurtier categorized to dis-
crete type with relatively few values, e.g. age, number of ,c@nd continuous type with
a large number of values, e.g. price, salary, temperature.

Self-organizing maps (SOMs) have broad applications itepatecognition, engi-
neering system, medical diagnosis and image segmentdtignThe appeal of SOM
as a model exploration method in clustering is its uniqueaathge on data visualiza-
tion and summarization. From the visualizations, the modélphenomena could be
generalized and the patterns could be recognized inteehcti

Generally, standard SOMs are applied to feature values mienic type. Usually,
an Euclidean function is used to calculate the distancegdsat input vectors and ref-
erence vectors. During the learning, the update of refereectors is performed by



incremental or arithmetic operations. Unfortunatelysthealculations are not practical
on categorical values. Although categorical data has beseassed in some clustering
algorithms (please see [4], [5] or [6]), it is not directlydadssed in SOMs due to the
limitation of learning laws. A traditional approach is tamislate categories to numeric
numbers in data preprocess and then perform standard SO dransformed data
[19]. Despite its feasibility on ordinal features by cortirgg the categories into integers
and preserving the natural order, an extra order is posedoninal values. Also, this
approach is not adapted to binary data as reported in [LI12Jpan overview is made
on several methods to encode categorical data for SOM, airdtiplications are ana-
lyzed in terms of the influence on the calculus of the besthiag) unit(BMU). In this
paper we work on the same direction, however the categariapping of our method
is now done directly inside the SOM.

In order to operate categorical data, two issues should bsidered: the dissimi-
larity measure of categorical features and the update rdethonap neurons. In this
paper, a batch SOM algorithm is proposed based on new déstaaasurement and up-
date rules in order to extend the usage of standard SOMsegaratal data. Different
from the prior work [12] which mainly talks about the usagéufary-based similarity
measures in SOMs, the proposed work focuses on the updat@adnet neurons for
both numeric and categorical features simultaneously.

The remaining of this paper is organized as follows. Secttedgnts a NCSOM
learning algorithm for numeric and categorical data. Sorpeements and results are
shown in Sect. 3. Lastly, the contributions and future inveroents are given in Sect.
4,

2 NCSOM: abatch SOM algorithm for numeric and categorical
data

Self-organizing maps (SOMSs) are artificial neural netwdpkBIN) used to visualize
and interpret high-dimensional data in a low-dimensiopake. SOMs are able to re-
duce the amount of data and simultaneously project datdneamly onto a lower di-
mensional array. The neurons (units) are organized on daregtid of usually one
or two dimensions. Each neuron is associated with a refergactor, reflecting the
strength of association to input vectors. The topologielaltron of neurons is described
by a neighborhood kernel function. The reference vectadratialized at the begin-
ning and updated iteratively in the training process. Assaltethe neurons become
topologically ordered on the grid, where neurons close th edher in the grid space
have similar features in the input space.

Batch SOM algorithms [9] update the reference vectors attiteof each iteration
of whole data set. In each epoch, the data vectors are ingutyone and listed under
the BMUSs. Then the reference vectors are calculated as tighted mean of input vec-
tors that are similar either to themselves or to their togigial neighbors. Batch SOMs
are order-insensitive, facilitate the development of fi@rprocessing, and eliminate the
influence of learning rate as a coefficient [2]. In this settebatch SOM algorithm for
numeric and categorical data will be studied based on thardie measure introduced
in [6].



2.1 Dissimilarity measure

Data projection is based on the distance or dissimilaritwben input vectors and ref-
erence vectors. Due to the unknown distance between valuwadegorical features, a
simple mismatch measurement [7] is used here. The dissitpitzetween two values
of single categorical feature is zero if and only if they lmgJdo the same category, oth-
erwise the dissimilarity is one. For a data set with mixectigatures, the dissimilarity
of two instances is measured on numeric and categoricalrfesaseparately. Let n be
the number of input vectors, m the number of map units, ane echtimber of features.
Suppose the input vectors consistpafumeric features andl — p categorical features,
{al,a?...a}*} is the set of variant values of thé" categorical feature. We denote
z; = |21, .., 7] as theit™ input vector andn; = [m;1,...,m;q] as the reference
vector of thej* neuron. The dissimilarity between andm; is defined as the combi-
nation of squared Euclidean distance on numeric featuika@mber of mismatches on
categorical features [6]. To ensure all features have eqfhaénce on distance, numeric
features are usually normalized before distance calomati
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2.2 Updaterules

In the training process, an input vector is mapped to the-fpa@sthing unit, namely,
the winner with the closest reference vector. Then a Vorsabican be generated for
each unitV; = {zy | d(zg, m;) < d(zg,m;),1 <k <n,1 <j<m,i#j}.Asa
result, the input space is divided into a number of Voronts:sg/;,1 < i < m}. At
the end of each epoch, the map is updated by different steatdgpending on the type
of features.

The update rule of reference vectors on numeric featuresiig $o that of standard
batch SOMs [9]. Assume, (t) is the value of the'" unit on thek!” numeric feature
at timet. The incremental value o,y is Amy,(t) = >0 hep(@in — mpr(t)),
wherec; = arg min; d(z;,m;(t)) is the BMU of z; and h.,; is a non-increasing
neighborhood function centered at the best-matching Antime ¢ + 1,m,(t + 1) =
Mg () + ~—7— s Am,,k( ) 132" | he,p = 0for some p, that means,, is neither the
winner of any mput vector nor the neighbor of other winnérenm,,, (t-+1) = mp(t).

Update rule on numeric features:
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Due to the unknown distance between categorical valueg,ddue not be updated
incrementally as numeric values. Intuitively, the catggmecurring most frequently in
the Voronoi sets of a neuron and its neighbors should be chaxsthe new value for the



next epoch. To determine the new category of a neuron, thedrecy of each category
is calculated as the average weight of all input vectorsrattie same value on this
feature. For this purpose, a set of counters is used to dter&équencies of variant
values for each categorical feature.
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For nominal features, the best categori.e., the value having maximal frequency,
is accepted at once if its frequency is more than the totglieacy of other categories
or accepted randomly with a thresha@ld(The smaller value of implies the higher
possibility to accept. If 8 = 0, c is always accepted. In the experiments of sectiaoh 3,
is set as 50%.) This random acceptance strategy works flefitmaavoid local minima
of optimization.

Update rule on nominal features:

¢ if F'(c, mpr(t)) > E:’il’#c F(of, mpk(t))
mpp(t+1) =< ¢ elseif random(0,1) > 60 (4)
mypi(t) otherwise

Cos Mk 3)

where
¢ = arg max F (o, mpk(t))
p

For ordinal features, the category closest to the weightedaf frequencies on all
possible categories is chosen as the new value concerning tie natural ordering of
values.

Update ruleon ordinal features:

Nk
mpp(t+1) = round(z r* Fag, mpk(t))) (5)
r=1
Some neighborhood kernel functions are used for describdgppological struc-
i |2
ture of SOMs. The bubble functio,.,.. = Lif || 7 T IP<o(t)
I 0 otherwise
neighbor set within a neighborhood region of radis) , whered(¢) monotonically
decreases with regression steps in order to stabilize theteff the input vectors on
the maps. In this case, the frequency could be determinguklyyercent of the category
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occurring in the union of Voronoi sets. Gaussian function, = exp (— 552(1) ) is

another popular neighborhood function. Compared to butoiletion, it is more effec-
tive but computationally heavier [9].

, defines a

2.3 Algorithm description
In summary, NCSOM algorithm can be described as follows.

Step 1. Initialize the reference vectors of map units.



Step 2: Input the instances one at a time. Calculate thendissabetween the input
vector and reference vectors using Equation(1). Projextrthut to the best-
matching unit.

Step 3: Update the reference vectors on each feature selyatthe end of each epoch
over the training process. The values on numeric featuestharaverage values
of all input vectors weighted by the neighborhood functiatues according to
Equation(2). The values on nominal features and ordinalifea are updated
according to Equation(4) and Equation(5) respectivelypl&=e old reference
vectors with new ones.

Step 4: Repeat from Step 2 a few times until the solution caregarded as steady.

3 Experiments and Discussion

The NCSOM algorithm has been implemented in an adaptedoverdi SOM soft-
ware [10], [16]. Also, the initial center selection, pavi clustering algorithms, and
cluster assignment are developed. The experiments amerpexd on a few data sets in
a machine with 256M memory and intel celeron 1.03 GHz prawassining windows
XP professional operating system.

3.1 Experimental results

Empirical studies have been conducted on three pure catafidata sets: soybean,
mushroom, tic-tac-toe and two mixed numeric/categorieah dsets: credit approval,
cleveland heart disease in UCI Machine Learning Repositb8y. All features are
made to contribute to distance calculation equally, by redizing the numeric features
to unity range. Figure 1 represents the results of NCSOM andata sets. For easy
visualization, these data are shown in a 2-dimensionaksghaough principal compo-
nent projection (PCA), that is a linear transformation gfthdimensional data to a low
dimensional spacé

The first well-known soybean data set consists of 47 insewith 35 nominal fea-
tures. The instances are divided into four classes of 100107 members respectively.
This data set is used to classify soybean plants accorditigtdiseases. In the bottom
right of Figure 1(a), soybean data is visualized in a 2-disimmal space spanned by
the eigenvectors of two maximum eigenvalues of data thrd@A. Each dot repre-
sents one instance, showing in different color accordingdss labels. The neurons of
trained map are also displayed in the same space, and atjeenns are connected
by lines presenting the neighborhood relations betweets.ufs it was shown, the in-
stances of 'DO’ and 'D1’ form two clusters individually. ikems that the other cluster is
composed of instances in 'D2’ and 'D3’. On the top left grapéyrons are covered by
hexagons of size proportional to hit values (the absoluteber of instance histogram
matching to map neurons) and marked by the hit values. ivelyit neurons in clusters
get more hits than those between clusters [21]. In fact, dloe ¢lusters are separated
from each other by the zero-hit neurons. Each Voronoi sebh$aa subcluster of data.

% All components are handled as numeric in data transformatio



By looking at the top right graph, the dominating classesubictusters are known im-
mediately. If the members of a subcluster belong to more timenclass, we can detect
the constitution of subclusters from the hit values of déeetlasses. In the bottom left
graph, a pie chart is displayed in the place of each neurdmmghzero hit, showing
the percent of classes contained in the correspondingussticl It can be observed that
NCSOM performs on soybean data perfectly, generating a rumfsubclusters of
individual class.

The second data set under consideration is mushroom ddteuggh it has 8124
instances, only 500 random samples are selected as expéirdata. The goal is to
label the instances as 'edible’ or 'poisonous’ accordin@ionominally valued fea-
tures. Figure 1(c) visualizes the results on mushroom eath labels of map units on
the left and pie chart of hit values on the right. Although hma®m does not present
clear cluster structure (on the visualization in Figure) 1¢lach of the two clusters con-
sists of mixed instances of two classes), it still reachegptionally high accuracy on
SOM clustering. It can be stated that mushroom is composadafmber of small and
compact subclusters of instances almost coming from iddadiclass.

Tic-tac-toe is the third data set of interest. It concermstibard configuration of
games with 958 instances and 2 classes. It is described bynthabfeatures, each
corresponding to one tic-tac-toe square. Also, a sampl@0fidstances is randomly
generated for analysis. Figure 1(d) shows the labels aaddritic-tac-toe. As reported
by other clustering algorithms [14], NCSOM also perform®ihp on this data. We
speculate that the poor performance could be explainedéowéak cluster models in
the data.

Next, we turn to mixed type data sets. Credit approval ddtes®erns credit card
applications, consisting of 9 nominal-valued and 6 numeaicied features. The 690
samples are classified into two classes with 307 and 483 ¢taggly. It contains 67
missing values on both numeric and categorical featureishadre ignored in distance
calculation and neuron update. As given in Figure 1(e), tiséances of class '+ are
projected mainly to the neurons on top of map and those ofc¢taso neurons on
the bottom. The cluster structure can be detected from #tedram visualization. The
neurons labeled by single class usually locate in the inhetusters, while neurons
labeled by multiple classes on the cluster boundary. Ferdata, it was observed that
the neurons of pure class are surrounded by those of mixeseda

Finally, heart data set contains the records of heart disdeagynosis for 303 pa-
tients. The data is described by 5 numeric features: agéstieool, max heart rate, rest-
ing blood pressure, ST depression relative to rest, and#gcdtal features: sex (male,
female), chest pain type (typical angina, atypical angima-angina pain, asymptoma-
tic), fasting blood sugar{ 120 or> 120), resting electrocardiographic results (normal,
abnormality, hypertrophy), exercise induced angina (ye®9, slope of peak exercise
ST segment (up, flat, down), number of vessels colored (@) thalium scan (normal,
fixed, reversable). Due to the natural ordering of valuessehfeatures are handled as
ordinal except sex and exercise induced angina. The iretaare classified to 2 classes
as 'healthy’ or 'sick’. The latter class can be further ditiinto 4 subspecies (S1, S2,
S3, S4). Figure 1(f) gives the composition of subclusterhersame map labeled by 2



classes and 5 classes respectively. In comparison witlotheef, the pie of 'sick’ class
in most neurons is divided into several parts of diverseadige in 5-classes case.

3.2 Effectiveness studies

To test the effectiveness on categorical data, NCSOM is eoetpwith a standard batch
SOM algorithm. In the latter, the categorical values aredfarmed to continuous inte-
gers in random order for nominal features or in nature ordeofdinal features.

Evaluation is a process to evaluate the quality of clusgeaigorithms. The quality
of SOMs is usually measured based on quantization precasidrtopology preserva-
tion [18]. The former is typically estimated by the square@ustization error, namely,
average distance between input vectors and corresponéstgnmatching units. The
smaller quantization error is, the better the trained matches to data. The latter is
estimated by topology error, namely the number of inputshatvthe best-matching
unit and next-best-matching unit are not adjacent on thegndpDistortion integrates
gquantization and topology measures, defined as the weightadge of distances be-
tween input samples and map units.

When the true clusters are known, confusion matrix and raddx are appropri-
ate and commonly used measures for clustering evaluatiomfuSion matrix detects
how closely the composition of obtained clusters matchesu partition structure.
Based on pairwise comparison, rand index [3] is defined apé¢heent of pairs of in-
stances that locate in either the same or different clugteboth true and obtained
clustering. The rand index reaches one if the obtainederisisind true clusters match
to each other perfectly. Both confusion matrix and rand xnae appropriate for the
one-class/one-cluster case [20]. Because the neuronsumtemore than real clusters,
a set of subclusters are obtained as the result of SOM. Incasds, the purity of sub-
clusters is important to final clusters (the instances ofglsister always belong to the
same cluster in future summarization), so SOM clusterimgheaevaluated by the per-
cent of majority vote [17]. Each unit is identified as the doating class label (major
vote) of its Voronoi set, and instances having differenssés are identified as errors.
Finally, the purity of subclusters is calculated as the getage of instances clustered
correctly.

In this experiment, the full data set is divided into 10 foéd=l only 90% data are
used for map training and labeling in each run. The qualitderived map is evalu-
ated in terms of the purity of subclusters. For the sake ofrmahinitialization effect,
we conduct 10 trials for each subset, starting from randdnitialized map and then
learning through two phases. In rough training, the magiséd for a small number of
epoches with large neighborhood radius. In fine-tuningingj, the map is trained for
a big number of epoches with small radius. The results oéddfiit data sets are sum-
marized in Table 1. As expected, NCSOM performs better othedil sets than standard
SOM treating categorical features as numeric. TypicallySOM reports more than 5%
improvement on credit data, which confirms the effectiverefsour methodology on
categorical data. For heart data, treating some featu@siaml produces better results
than pure nominal features. Compared to the accuracy of lagses, the separation of
'sick’ class into four subspecies results in significantrdase of accuracy.
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data sets |#instanc@#featuregtclassegNCSOM Standard SON
soybean |47 35 0.9988 (0.9770
mushroom500 22 0.9648 [0.9558
tic-tac-toe|500 9 0.7896 (0.7732
credit 690 15 0.8529 (0.7958
heart 303 13 0.8728 |0.8659
heart 303 13 5 0.7152 |0.7047
Table 1. Comparison of two approaches
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SOMs can be used as classifiers after labeled with class#iegbles. To test the
performance of NCSOM on classification tasks, experimergsanducted using the
same arguments as COBWEB, a well-known concept clustelgagithm for categori-
cal data described in [20]. In each trial, the map is traine@@% of data, then neurons
are labeled by the majority vote of projected instancesemfards, the evaluation is
only performed on the remaining data by calculating the iaddx between real labels
and obtained labels. Table 2 shows the performance achimvedo algorithms, NC-
SOM and COBWEB (the results of COBWEB were reported in [28}) we observed,
NCSOM outperforms COBWEB on soybean and tic-tac-toe. NCS&@kaves some-
what worse than Cobweb on mushroom, possibly due to the maredfect of subset
generation. A small subset of only 50 instances fails toieitlyl capture the character-
istic of data distribution. It was reported that NCSOM géeddistically higher accuracy
to 72.4% when a subset of 200 samples was used.

data # instances # attributes NCSOM COBWEB
soybean 47 35 0.946 0.849
tic-tac-toe 100 9 0.54 0.475
mushroom 50 22 0.619 0.667

Table 2. Comparison of NCSOM and COBWEB

4 Conclusions

SOMs have been widely used in data clustering as valuable the to the unique

properties on data summarization and visualization. Ntyyrstandard SOMs are ap-
plicable to numeric features through arithmetic operation distance calculation and
map evolution. In this paper, we present an approach to baadkgorical data in batch
SOM algorithms. The performance of proposed algorithmsimahstrated on some
real data sets. In future work, we expect to deploy the pregasgorithm for data ex-

ploring on some real world problems which have been studiesugh previous and

current funded research projects.
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