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Abstract. Self-organizing maps (SOM) have been recognized as a powerful tool
in data exploratoration, especially for the tasks of clustering on high dimensional
data. However, clustering on categorical data is still a challenge for SOM. This
paper aims to extend standard SOM to handle feature values ofcategorical type. A
batch SOM algorithm (NCSOM) is presented concerning the dissimilarity mea-
sure and update method of map evolution for both numeric and categorical fea-
tures simultaneously.

1 Introduction

Clustering is an unsupervised process to partition a set of data into homogeneous clus-
ters. Without the supervision of classes, data segmentation in clustering is performed
based on intrinsic similarity of data.

Data can be described by categorical features and numeric features [1]. Nominal
features, e.g. post code, gender, transportation mode, residence choice, are typically
categorical taking on values from a limited and predetermined set of categories with-
out natural ordering. Another type of categorical feature is ordinal, e.g. education level,
social status, which has particular order but unknown distance. Numeric features have
numerical distance between values. Numeric features can befurther categorized to dis-
crete type with relatively few values, e.g. age, number of cars, and continuous type with
a large number of values, e.g. price, salary, temperature.

Self-organizing maps (SOMs) have broad applications in pattern recognition, engi-
neering system, medical diagnosis and image segmentation [15]. The appeal of SOM
as a model exploration method in clustering is its unique advantage on data visualiza-
tion and summarization. From the visualizations, the models of phenomena could be
generalized and the patterns could be recognized interactively.

Generally, standard SOMs are applied to feature values of numeric type. Usually,
an Euclidean function is used to calculate the distances between input vectors and ref-
erence vectors. During the learning, the update of reference vectors is performed by



incremental or arithmetic operations. Unfortunately, these calculations are not practical
on categorical values. Although categorical data has been discussed in some clustering
algorithms (please see [4], [5] or [6]), it is not directly addressed in SOMs due to the
limitation of learning laws. A traditional approach is to translate categories to numeric
numbers in data preprocess and then perform standard SOMs onthe transformed data
[19]. Despite its feasibility on ordinal features by converting the categories into integers
and preserving the natural order, an extra order is posed on nominal values. Also, this
approach is not adapted to binary data as reported in [11]. In[12], an overview is made
on several methods to encode categorical data for SOM, and their implications are ana-
lyzed in terms of the influence on the calculus of the best-matching unit(BMU). In this
paper we work on the same direction, however the categoricalmapping of our method
is now done directly inside the SOM.

In order to operate categorical data, two issues should be considered: the dissimi-
larity measure of categorical features and the update method of map neurons. In this
paper, a batch SOM algorithm is proposed based on new distance measurement and up-
date rules in order to extend the usage of standard SOMs to categorical data. Different
from the prior work [12] which mainly talks about the usage ofbinary-based similarity
measures in SOMs, the proposed work focuses on the update method of neurons for
both numeric and categorical features simultaneously.

The remaining of this paper is organized as follows. Sect. 2 presents a NCSOM
learning algorithm for numeric and categorical data. Some experiments and results are
shown in Sect. 3. Lastly, the contributions and future improvements are given in Sect.
4.

2 NCSOM: a batch SOM algorithm for numeric and categorical
data

Self-organizing maps (SOMs) are artificial neural networks(ANN) used to visualize
and interpret high-dimensional data in a low-dimensional space. SOMs are able to re-
duce the amount of data and simultaneously project data nonlinearly onto a lower di-
mensional array. The neurons (units) are organized on a regular grid of usually one
or two dimensions. Each neuron is associated with a reference vector, reflecting the
strength of association to input vectors. The topological relation of neurons is described
by a neighborhood kernel function. The reference vectors are initialized at the begin-
ning and updated iteratively in the training process. As a result, the neurons become
topologically ordered on the grid, where neurons close to each other in the grid space
have similar features in the input space.

Batch SOM algorithms [9] update the reference vectors at theend of each iteration
of whole data set. In each epoch, the data vectors are input one by one and listed under
the BMUs. Then the reference vectors are calculated as the weighted mean of input vec-
tors that are similar either to themselves or to their topological neighbors. Batch SOMs
are order-insensitive, facilitate the development of parallel processing, and eliminate the
influence of learning rate as a coefficient [2]. In this section, a batch SOM algorithm for
numeric and categorical data will be studied based on the distance measure introduced
in [6].



2.1 Dissimilarity measure

Data projection is based on the distance or dissimilarity between input vectors and ref-
erence vectors. Due to the unknown distance between values of categorical features, a
simple mismatch measurement [7] is used here. The dissimilarity between two values
of single categorical feature is zero if and only if they belong to the same category, oth-
erwise the dissimilarity is one. For a data set with mixed type features, the dissimilarity
of two instances is measured on numeric and categorical features separately. Let n be
the number of input vectors, m the number of map units, and d the number of features.
Suppose the input vectors consist ofp numeric features andd − p categorical features,
{α1

k, α2
k . . . αnk

k } is the set of variant values of thekth categorical feature. We denote
xi = [xi1, . . . , xid] as theith input vector andmj = [mj1, . . . , mjd] as the reference
vector of thejth neuron. The dissimilarity betweenxi andmj is defined as the combi-
nation of squared Euclidean distance on numeric features and number of mismatches on
categorical features [6]. To ensure all features have equalinfluence on distance, numeric
features are usually normalized before distance calculation.

d(xi, mj) =

p
∑

l=1

(xil, mjl)
2 +

d
∑

l=p+1

δ(xil, mjl), δ(xil, mjl) =

{

0 xil = mjl

1 xil 6= mjl
(1)

2.2 Update rules

In the training process, an input vector is mapped to the best-matching unit, namely,
the winner with the closest reference vector. Then a Voronoiset can be generated for
each unit:Vi = {xk | d(xk, mi) ≤ d(xk, mj), 1 ≤ k ≤ n, 1 ≤ j ≤ m, i 6= j}. As a
result, the input space is divided into a number of Voronoi sets: {Vi, 1 ≤ i ≤ m}. At
the end of each epoch, the map is updated by different strategies depending on the type
of features.

The update rule of reference vectors on numeric features is same to that of standard
batch SOMs [9]. Assumempk(t) is the value of thepth unit on thekth numeric feature
at time t. The incremental value onmpk is ∆mpk(t) =

∑n
i=1 hcip(xik − mpk(t)),

whereci = arg minj d(xi, mj(t)) is the BMU of xi and hcij is a non-increasing
neighborhood function centered at the best-matching unit.At time t + 1,mpk(t + 1) =
mpk(t)+ 1

P

n
i=1

hcip
∆mpk(t). If

∑n
i=1 hcip = 0 for some p, that meansmp is neither the

winner of any input vector nor the neighbor of other winners,thenmpk(t+1) = mpk(t).
Update rule on numeric features:

mpk(t + 1) =

n
∑

i=1

hcipxik

n
∑

i=1

hcip

(2)

Due to the unknown distance between categorical values, they can not be updated
incrementally as numeric values. Intuitively, the category occurring most frequently in
the Voronoi sets of a neuron and its neighbors should be chosen as the new value for the



next epoch. To determine the new category of a neuron, the frequency of each category
is calculated as the average weight of all input vectors having the same value on this
feature. For this purpose, a set of counters is used to store the frequencies of variant
values for each categorical feature.

F (αr
k, mpk(t)) =

∑n

i=1(hcip | xik = αr
k)

∑n

i=1 hcip

, r = 1, 2, . . . , nk (3)

For nominal features, the best categoryc, i.e., the value having maximal frequency,
is accepted at once if its frequency is more than the total frequency of other categories
or accepted randomly with a thresholdθ. (The smaller value ofθ implies the higher
possibility to acceptc. If θ = 0, c is always accepted. In the experiments of section 3,θ

is set as 50%.) This random acceptance strategy works profitable to avoid local minima
of optimization.

Update rule on nominal features:

mpk(t + 1) =







c if F (c, mpk(t)) >
∑nk

r=1,r 6=c F (αr
k, mpk(t))

c elseif random(0, 1) > θ

mpk(t) otherwise
(4)

where
c = arg max

r
F (αr

k, mpk(t))

For ordinal features, the category closest to the weighted sum of frequencies on all
possible categories is chosen as the new value concerning about the natural ordering of
values.

Update rule on ordinal features:

mpk(t + 1) = round(

nk
∑

r=1

r ∗ F (αr
k, mpk(t))) (5)

Some neighborhood kernel functions are used for describingthe topological struc-

ture of SOMs. The bubble function,hrirj
=

{

1 if ‖ ri − rj ‖2≤ δ(t)
0 otherwise

, defines a

neighbor set within a neighborhood region of radiusδ(t) , whereδ(t) monotonically
decreases with regression steps in order to stabilize the effect of the input vectors on
the maps. In this case, the frequency could be determined by the percent of the category

occurring in the union of Voronoi sets. Gaussian functionhrirj
= exp

(

−
‖ri−rj‖

2

2δ2(t)

)

is

another popular neighborhood function. Compared to bubblefunction, it is more effec-
tive but computationally heavier [9].

2.3 Algorithm description

In summary, NCSOM algorithm can be described as follows.

Step 1: Initialize the reference vectors of map units.



Step 2: Input the instances one at a time. Calculate the distances between the input
vector and reference vectors using Equation(1). Project the input to the best-
matching unit.

Step 3: Update the reference vectors on each feature separately at the end of each epoch
over the training process. The values on numeric features are the average values
of all input vectors weighted by the neighborhood function values according to
Equation(2). The values on nominal features and ordinal features are updated
according to Equation(4) and Equation(5) respectively. Replace old reference
vectors with new ones.

Step 4: Repeat from Step 2 a few times until the solution can beregarded as steady.

3 Experiments and Discussion

The NCSOM algorithm has been implemented in an adapted version of SOM soft-
ware [10], [16]. Also, the initial center selection, partitive clustering algorithms, and
cluster assignment are developed. The experiments are performed on a few data sets in
a machine with 256M memory and intel celeron 1.03 GHz processor running windows
XP professional operating system.

3.1 Experimental results

Empirical studies have been conducted on three pure categorical data sets: soybean,
mushroom, tic-tac-toe and two mixed numeric/categorical data sets: credit approval,
cleveland heart disease in UCI Machine Learning Repository[13]. All features are
made to contribute to distance calculation equally, by normalizing the numeric features
to unity range. Figure 1 represents the results of NCSOM on five data sets. For easy
visualization, these data are shown in a 2-dimensional space through principal compo-
nent projection (PCA), that is a linear transformation of high dimensional data to a low
dimensional space3.

The first well-known soybean data set consists of 47 instances with 35 nominal fea-
tures. The instances are divided into four classes of 10,10,10,17 members respectively.
This data set is used to classify soybean plants according tothe diseases. In the bottom
right of Figure 1(a), soybean data is visualized in a 2-dimensional space spanned by
the eigenvectors of two maximum eigenvalues of data throughPCA. Each dot repre-
sents one instance, showing in different color according toclass labels. The neurons of
trained map are also displayed in the same space, and adjacent neurons are connected
by lines presenting the neighborhood relations between units. As it was shown, the in-
stances of ’D0’ and ’D1’ form two clusters individually. It seems that the other cluster is
composed of instances in ’D2’ and ’D3’. On the top left graph,neurons are covered by
hexagons of size proportional to hit values (the absolute number of instance histogram
matching to map neurons ) and marked by the hit values. Intuitively, neurons in clusters
get more hits than those between clusters [21]. In fact, the four clusters are separated
from each other by the zero-hit neurons. Each Voronoi set forms a subcluster of data.

3 All components are handled as numeric in data transformation.



By looking at the top right graph, the dominating classes of subclusters are known im-
mediately. If the members of a subcluster belong to more thanone class, we can detect
the constitution of subclusters from the hit values of diverse classes. In the bottom left
graph, a pie chart is displayed in the place of each neuron with nonzero hit, showing
the percent of classes contained in the corresponding subcluster. It can be observed that
NCSOM performs on soybean data perfectly, generating a number of subclusters of
individual class.

The second data set under consideration is mushroom data. Although it has 8124
instances, only 500 random samples are selected as experimental data. The goal is to
label the instances as ’edible’ or ’poisonous’ according to21 nominally valued fea-
tures. Figure 1(c) visualizes the results on mushroom data,with labels of map units on
the left and pie chart of hit values on the right. Although mushroom does not present
clear cluster structure (on the visualization in Figure 1(b), each of the two clusters con-
sists of mixed instances of two classes), it still reaches exceptionally high accuracy on
SOM clustering. It can be stated that mushroom is composed ofa number of small and
compact subclusters of instances almost coming from individual class.

Tic-tac-toe is the third data set of interest. It concerns the board configuration of
games with 958 instances and 2 classes. It is described by 9 nominal features, each
corresponding to one tic-tac-toe square. Also, a sample of 500 instances is randomly
generated for analysis. Figure 1(d) shows the labels and hits for tic-tac-toe. As reported
by other clustering algorithms [14], NCSOM also performs poorly on this data. We
speculate that the poor performance could be explained by the weak cluster models in
the data.

Next, we turn to mixed type data sets. Credit approval data set concerns credit card
applications, consisting of 9 nominal-valued and 6 numeric-valued features. The 690
samples are classified into two classes with 307 and 483 respectively. It contains 67
missing values on both numeric and categorical features, which are ignored in distance
calculation and neuron update. As given in Figure 1(e), the instances of class ’+’ are
projected mainly to the neurons on top of map and those of class ’-’ to neurons on
the bottom. The cluster structure can be detected from the histogram visualization. The
neurons labeled by single class usually locate in the inner of clusters, while neurons
labeled by multiple classes on the cluster boundary. For this data, it was observed that
the neurons of pure class are surrounded by those of mixed classes.

Finally, heart data set contains the records of heart disease diagnosis for 303 pa-
tients. The data is described by 5 numeric features: age, cholesterol, max heart rate, rest-
ing blood pressure, ST depression relative to rest, and 8 categorical features: sex (male,
female), chest pain type (typical angina, atypical angina,non-angina pain, asymptoma-
tic), fasting blood sugar (< 120 or≥ 120), resting electrocardiographic results (normal,
abnormality, hypertrophy), exercise induced angina (yes or no), slope of peak exercise
ST segment (up, flat, down), number of vessels colored (0,1,2,3), thalium scan (normal,
fixed, reversable). Due to the natural ordering of values, these features are handled as
ordinal except sex and exercise induced angina. The instances are classified to 2 classes
as ’healthy’ or ’sick’. The latter class can be further divided into 4 subspecies (S1, S2,
S3, S4). Figure 1(f) gives the composition of subclusters onthe same map labeled by 2



classes and 5 classes respectively. In comparison with the former, the pie of ’sick’ class
in most neurons is divided into several parts of diverse diseases in 5-classes case.

3.2 Effectiveness studies

To test the effectiveness on categorical data, NCSOM is compared with a standard batch
SOM algorithm. In the latter, the categorical values are transformed to continuous inte-
gers in random order for nominal features or in nature order for ordinal features.

Evaluation is a process to evaluate the quality of clustering algorithms. The quality
of SOMs is usually measured based on quantization precisionand topology preserva-
tion [18]. The former is typically estimated by the squared quantization error, namely,
average distance between input vectors and corresponding best-matching units. The
smaller quantization error is, the better the trained map matches to data. The latter is
estimated by topology error, namely the number of inputs to which the best-matching
unit and next-best-matching unit are not adjacent on the mapgrid. Distortion integrates
quantization and topology measures, defined as the weightedaverage of distances be-
tween input samples and map units.

When the true clusters are known, confusion matrix and rand index are appropri-
ate and commonly used measures for clustering evaluation. Confusion matrix detects
how closely the composition of obtained clusters matches totrue partition structure.
Based on pairwise comparison, rand index [3] is defined as thepercent of pairs of in-
stances that locate in either the same or different clustersin both true and obtained
clustering. The rand index reaches one if the obtained clusters and true clusters match
to each other perfectly. Both confusion matrix and rand index are appropriate for the
one-class/one-cluster case [20]. Because the neurons are much more than real clusters,
a set of subclusters are obtained as the result of SOM. In suchcases, the purity of sub-
clusters is important to final clusters (the instances of a subcluster always belong to the
same cluster in future summarization), so SOM clustering can be evaluated by the per-
cent of majority vote [17]. Each unit is identified as the dominating class label (major
vote) of its Voronoi set, and instances having different classes are identified as errors.
Finally, the purity of subclusters is calculated as the percentage of instances clustered
correctly.

In this experiment, the full data set is divided into 10 foldsand only 90% data are
used for map training and labeling in each run. The quality ofderived map is evalu-
ated in terms of the purity of subclusters. For the sake of minimal initialization effect,
we conduct 10 trials for each subset, starting from randomlyinitialized map and then
learning through two phases. In rough training, the map is trained for a small number of
epoches with large neighborhood radius. In fine-tuning training, the map is trained for
a big number of epoches with small radius. The results of different data sets are sum-
marized in Table 1. As expected, NCSOM performs better on alldata sets than standard
SOM treating categorical features as numeric. Typically, NCSOM reports more than 5%
improvement on credit data, which confirms the effectiveness of our methodology on
categorical data. For heart data, treating some features asordinal produces better results
than pure nominal features. Compared to the accuracy of two classes, the separation of
’sick’ class into four subspecies results in significant decrease of accuracy.



 
(a) SOM results of soybean       (b) PCA visualization of data 

 

 
(c) SOM results of mushroom      (d) SOM results of tic-tac-toe 

 
(e) SOM results of credit       (f) SOM results of heart 

Fig. 1. Results of five data sets



data sets #instance#features#classesNCSOMStandard SOM
soybean 47 35 4 0.9988 0.9770
mushroom500 22 2 0.9648 0.9558
tic-tac-toe 500 9 2 0.7896 0.7732
credit 690 15 2 0.8529 0.7958
heart 303 13 2 0.8728 0.8659
heart 303 13 5 0.7152 0.7047

Table 1. Comparison of two approaches

SOMs can be used as classifiers after labeled with classified samples. To test the
performance of NCSOM on classification tasks, experiments are conducted using the
same arguments as COBWEB, a well-known concept clustering algorithm for categori-
cal data described in [20]. In each trial, the map is trained on 90% of data, then neurons
are labeled by the majority vote of projected instances. Afterwards, the evaluation is
only performed on the remaining data by calculating the randindex between real labels
and obtained labels. Table 2 shows the performance achievedby two algorithms, NC-
SOM and COBWEB (the results of COBWEB were reported in [20]).As we observed,
NCSOM outperforms COBWEB on soybean and tic-tac-toe. NCSOMbehaves some-
what worse than Cobweb on mushroom, possibly due to the random effect of subset
generation. A small subset of only 50 instances fails to explicitly capture the character-
istic of data distribution. It was reported that NCSOM gets statistically higher accuracy
to 72.4% when a subset of 200 samples was used.

data # instances # attributes NCSOM COBWEB
soybean 47 35 0.946 0.849
tic-tac-toe 100 9 0.54 0.475
mushroom 50 22 0.619 0.667

Table 2. Comparison of NCSOM and COBWEB

4 Conclusions

SOMs have been widely used in data clustering as valuable tools due to the unique
properties on data summarization and visualization. Normally, standard SOMs are ap-
plicable to numeric features through arithmetic operations on distance calculation and
map evolution. In this paper, we present an approach to handle categorical data in batch
SOM algorithms. The performance of proposed algorithms is demonstrated on some
real data sets. In future work, we expect to deploy the proposed algorithm for data ex-
ploring on some real world problems which have been studied through previous and
current funded research projects.
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