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fracture mechanics 

Abstract This paper presents a brief review about the 
application of similarity methods to fracture mechanics. 
This includes some dimensionless numbers and some 
scaling laws in fracture mechanics, discrete scale invari- 
ance (DSI) and log-periodic corrections to scaling, the 
analogy between multiple fracture of solids and fully de- 
veloped turbulence, and the property of self-organized 
criticality of some fracture process. An example is given to cs 
show the application of similarity method for the solution Ca 
of a stationary semi-infinite mode III crack subjected to dT 
step dynamic loading. As a self-similar problem, the gov- E 
erning equation can be reduced to Riemann's equation by E(k) 
a simple similarity transformation, and Riemann's equa- f 
tion can be reduced to Gauss' hypergeometric equation by f(~,  0) 
a certain transformation, thus this problem is solved by F(a, b; c; z) 
using the hypergeometric series. 

Grc 
Uber die Verwendung von AhnlichkeitsgriiBen in der G(k) 
Bruchmechanik 

Zusammenfassung In diesem Artikel wird zun/ichst ein H(t) 
kurzer Einblick in die Verwendung yon Ahnlichkeitsgr6- i 
flen in der Bruchmechanik ge.geben. Hierzu werden einige Ir 
dimensionslose Gr6flen und Ahnlichkeitsgesetz der JIc 
Bruchmechanik, diskrete ~.hnlichkeitsinvarianten und k 
logarithmisch-periodische Korrekturen, die Analogie zwi- KBj 
schen Mehrfachbruch in Festk6rpern und der ausgebil- 
deten, turbulenten Str6mung sowie die Eigenschaft der Kic 
Selbstorganisation bei einigen Bruchvorg~ingen vorgestellt. AK 
Am Beispiel eines station/iren Bruchvorgangs eines halb- l 
unendlichen Risses unter stufenartiger, dynamischer Be- 
lastung (Mode III) wird der Einsatz von I, I, 
Ahnlichkeitsgr6flen aufgezeigt. Die beschreibenden Glei- m 
chungen K6nnen durch eine einfache ~.hnlichkeitstrans- 
formation in die Riemannsche Gleichung fiberffihrt 
werden, die ihrerseits auf die Gaussche, hypergeometri- 
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sche Gleichung reduziert werden kann. Das Problem kann 
somit unter Verwendung yon hypergeometrischen Reihen 
gel6st werden. 
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equation 
X/~/P, shear stress wave speed 
pV2/E, Cauchy number 
spacing of the second phase particles 
Young's elastic modulus 
power density spectrum 
frequency 
dimensionless function 
hypergeometric series or hypergeometric 
function 
energy release rate 
power spectral density for various fracture 
surfaces 
Heaviside unit step function 
pure imaginary number 
Irwin number 
material J-integral fracture toughness 
wavenumber 
crack-branching 
stress intensity factor 
material fracture toughness 
stress-intensity factor amplitude 
characteristic dimension of a cracked 
structure 
defect size, mean defect size 
exponent of the scaling law; a2+l 
in the example 
integer 
defect frequency, maximum frequency 
concentrated force 
displacement from the crack-tip 
Carpinteri's stress brittleness number 
Carpinteri's energy brittleness number 
tension 
time 
dimensionless functions in (49) 
crack speed 
displacement in the z-direction 
singular points, n = 1,2, 3 

E~ll/Kic, dimensionless number 
exponents 
exponents belonging to zn, n = 1.2.3 
surface energy 
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Gamma function 
crack opening displacement 
delta function 
displacement 
strain; radius of a very small hole 
at the crack-tip in (99) 

2r 
r  
angle 
wavelength 

/ exponent differences ~n - -  ~ n '  
elastic shear modulus 
Poisson's ratio 

r 
Cst 
mass density 
stress 
ultimate stress of material 
material yield stress 
exponent 
applied shear traction magnitude 
on the crack surfaces 
Cherepanov's brittleness number 
homogeneous function 

Superscripts 
m model 
p prototype 

1 
Introduction 
The concept of similarity has permitted essential and basic 
simplifications in the analysis of many engineering-phy- 
sical phenomena. The application of similarity methods in 
fracture mechanics has a long established tradition. It is 
not very surprising that Leonardo da Vinci (1452 ~ 1519) 
was already aware of the existence of model laws and 
mathematical relationships for the modes of behavior of 
geometrical similar structures. On the basis of similarity, 
he established a "comparative" theory for a very simple 
constructional shape (Fig. 1) [1]. Although man has built 
various, often highly complex, structures since ancient 
times, our knowledge about the strength and fracture of 
materials was long empirical and largely unstructured, 
transmitted from generation to generation as an art. The 
trail leading us to the scientific approach to problems of 
strength and fracture has been blazed by such pioneers as 
da Vinci and Galileo [2]. 

Leonardo da Vinci first conduct experiments to deter- 
mine the load-bearing capacity of iron wires, he discovered 
the phenomenon called the scale effect, he stated that 
"Among cords of equal thickness the longest is the least 
strong". However, the achievements of da Vinci remained 
unknown by subsequent generations and therefore had no 
influence on the development of fracture mechanics, Galileo 
can rightfully be considered the founder of fracture me- 

Fig. 1. Leonardo da Vinci study of 
similarity relationship 
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chanics [2], due to his discovery that the fracture load of a 
bar in tension is directly proportional to its cross-sectional 
area and is independent of its length. Actually, the effect of 
the structure size on its nominal strength has long been a 
problem of central importance for both scientists and en- 
gineers. Galileo in 1638 pointed out "One cannot reason 
from the small to the large, because many mechanical de- 
vices succeed on a small scale that cannot exist in great size". 
He also pointed out "If  the size of a body be diminished, the 
strength of that body is not diminished in the same pro- 
portion; indeed the smaller the body the greater its relative 
strength. Thus, a small dog could probably carry on his back 
two or three dogs of his own size, but I believe that a horse 
could not carry even one of his own size". It has experi- 
mentally been proven that a flea could carry on his back 2000 
times his own weight. 

About 500 years have past since da Vinci's famous expe- 
riments about the size effect of the cords. Fortunately, much 
progress has been achieved on the understanding about the 
scale effect of structure and material failure. Ref. [3] gave an 
extensive review about the scaling property of structural 
failure, interesting readers are referred there for details. 

This article consists of two parts. In the first part, the 
application of similarity methods to fracture mechanics 
will be briefly reviewed. In the second part, an example 
will be given to show the application of similarity method 
to the solution of a stationary semi-infinite mode III crack 
problem subjected to step dynamic loading. 

2 
Brief review of application of similarity methods 
to fracture mechanics 

2.1 
Some dimensionless numbers in fracture mechanics 
For the application of dimensional analysis to fracture 
mechanics, and particularly in setting up experiments, it is 
very important to select the dimensionless parameters 
correctly. As a matter of fact, dimensionless numbers have 
played a prominent role in fluid mechanics more than a 
hundred years ago. There should be as few parameters as 
possible in analyzing a practical problem, and they must 
reflect the fundamental effects in the most convenient way 
[4, 5], so it is important to derive the dimensionless pro- 
ducts of variables that govern the fracture behavior of 
materials. 

Cherepanov's brittleness number is defined by [2] 

E?' 
Z = ~ /  , (1) 

where E and ~ry are, respectively, Young's elastic modulus 
and yield strength of material, 7 is the surface energy, and 1 
the characteristic length of the cracked body. For plane 
stress problem K2c = 2E7, then the Cherepanov's britt- 
leness number is 

1K?c 
Z -- , (2) 

2@I 

where Ktc is the fracture toughness of the material. Since 
the size of the plastic zone near the crack tip is of the order 

rp , . - o  (KIc/O'y) 2, then 7. in (2) can be considered the order 
of the ratio of the plastic zone size to the characteristic 
length of the cracked body. 

Carpinteri's stress brittleness number is expressed by 
[61 

KIc 
s -- (3) 

O-u k/~ ' 

where a ,  is the ultimate stress of the material. If we sub- 
stitute ay for a ,  in (3), then Carpinteri's stress brittleness 
number can be considered the order of the square root of 
the ratio of the crack-tip plastic zone size to the charac- 
teristic dimension of the structure [7]. Carpinteri's energy 
brittleness number for linear elastic material is defined by 
[8] 

Gxc 
s~ ~ l  ' (4) 

where Gic is the energy release rate, for plane stress pro- 
blems we have K2c = EGIr then (4) is changed into 

K?c 
s~ = Eaul (5) 

If we substitute ay for a,, in (5), since the order of crack 
opening displacement (COD) can be expressed by 
6 ~ K2c/Eay, then s~ can be interpreted as the order of the 
ratio of COD to the characteristic dimension of the 
cracked structure. The energy brittleness number in the 
case of Ramberg-Osgood material is then given by 

hc 
s E = ~ , (6) 

where/Tic is the J-integral fracture toughness. 
The Irwin number defined by Barenblatt is [9, 10] 

Ir -- ayVqI (7) 
K~c 

The Irwin number can be interpreted as the order of the 
square of the ratio of the crack-tip plastic zone size to the 
characteristic dimension of the cracked structure. The 
relationship among Irwin number, Cherepanov's brittlen- 
ess number and Carpinteri's stress brittleness number is 

1 
I r , v / ~ =  1, I r = -  . (8) 

S 

It has been proved by [11], that Irwin number can be used 
to predict ductile-brittle fracture transition, this conclu- 
sion was reached by dimensional analysis. 

Zhao suggested a dimensionless number as [7] 

Z -  Ktc ' (9) 

where l is the characteristic dimension of the material's 
internal constraints (microstructures, defects, etc.) or ex- 
ternal constraints (load or displacement boundary condi- 
tions, size of the structure or of the crack). If displacement 
boundary condition is given, then the general functional 
relationship can be expressed by 

k = f ( l . E  Kic, v) , (10) 
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where A and I are, respectively, the applied displacement 
boundary condition and the characteristic dimension of 
the cracked body, v is the Poisson's ratio. By Buckingham's 
~z theorem, (10) becomes 

\-~-ic, v (11) 

It is obvious that Z = Evql/Kic is a similarity parameter at 
this case. Some examples will be given below to show the 
usage of this dimensionless number in various cases. If we 
use the following Hollomon formula for alloy 

cr = Ag n , (12) 

and the Krafft's model 

K , c = E n  2 ~ T  , (13) 

where dr is the spacing of the second phase particles, and 
if it is chosen to be the characteristic dimension of the 
internal constraint of the material, then we have 

EV~T 1 
Z -- - -  -- (14) 

KIC n v " ~  

For stainless steel n = 0.45 ,,~ 0.55, then the values of the 
dimensionless number in (14) are approximately 
Z = 0.73 ,-~ 0.89; for brass n = 0.35 ,-~ 0.4, then from (14) 
we have Z = 1.0 ,-~ 1.14. In studying the fractal characte- 
ristics of the ceramic fracture surface, Mecholsky and 
Freimann suggested the following empirical formula [12] 

(~-~/C) 2 :  a0D* , (15) 

where D* is the fractional part of the fractal dimension and 
represents the amount of tortuosity out of the plane, a0 is a 
parameter having the units of length. (15) can be changed 
into the following form 

E x / ~  1 (16) 
KIC 

A similar empirical formula has also been suggested 

E V ~ ~  , (17) 

where KBj is the crack-branching stress-intensity factor, b0 
is also a parameter with the units of length. In studying the 
influence of finite deformation on the stress and strain 
fields near the crack tip, Cherepanov suggested the follo- 
wing relationship [2] 

K 2 
~k = ~2  fi.(Vl,V2,...) ; (18) 

where A is the characteristic length of the finite defor- 
mation zone near the crack tip, and 2(vl, v2 . . . .  ) is a di- 
mensionless function. Equation (18) can be recast into the 
following form 

EX/~ _ 21/2(i,i ' v2 . . . .  ) . 
KI 

Cauchy number Ca = pV2/E is one of the important di- 
mensionless numbers in impact dynamics. The physical 
meaning of this dimensionless number in crack dynamics 
is the square of the ratio of crack speed to the character- 
istic speed of the elastic stress wave, or the square of the 
Mach number [7]. This dimensionless number is also a 
basic similarity parameter for elastic impact dynamics. 

2.2 
Some scaling laws in fracture mechanics 
The fracture phenomena with which we shall be concerned 
all exhibit scaling. In its simplest form, this just means that 
two measurable quantities depend upon each other in a 
power-law fashion. In fact, the hallmark of scale invariance 
is the existence of power laws. Let us first recall what is the 
concept of scale invariance. Scale invariance means re- 
producing itself on different time or space scales. More 
precisely, an observable ~ which depends on a "control" 
parameter x is scale-invariant under the arbitrary change 
x -* fix, if there is a number/~(fi) such that 

n(x) =  ,n(2x) , (19) 

(19) defines a homogeneous function. Its solution is 
simply a power law f2(x) = Cx =, with ~ = - l o g  p~ log 2, 
which can be verified directly by insertion. Power laws are 
the hallmark of scale invariance as the ratio 
f2(2x)/f2(x) = 2 ~ does not depend on x, i.e., the relative 
value of the observable at two different scales only depend 
on the ratio of the two scales. This is the fundamental 
property that associates power laws to scale invariance, 
self-similarity and criticality [13]. 

A remarkable example of the scaling law related to 
fracture mechanics, is the Benbow (1960) conical crack 
formed when a punch of small diameter is penetrating 
under a load P into a block of fused silica having a large 
length-scale size D, the scaling law is 

P ~ D~ , (20) 

which was quite satisfactorily confirmed by experiments. 
The loads acting on the cracked structure are either 

forces, tensions (forces distributed along a line), or stres- 
ses depending on the way in which they are applied. Thus, 
the problem consists of determining the values of the force 
Pf, tension sf, or stress af corresponding to the fracture of 
a structure on a geometrically similar model. These 
quantities are determined by a characteristic length of the 
structure l, by the fracture toughness Kio and by the di- 
mensionless Poisson's ratio v. The general functional re- 
lationship is 

P/, sf, a s = g(l, K,c, v) . (21) 

when the loads (not displacements) are given, the Young's 
modulus does not enter the set of governing parameters [9, 
10]. By Buckingham's ~ theorem, we have 

Pf sf af _ g'(v) . (22) 
KIc I~-' KICI�89 ' Klcl-�89 

In the case of brittle fracture, equation (22) means that the 
only similarity parameter is the Poisson's ratio, so the si- 
milarity rules have the simple form 
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pP 

P? ,st 
1 p 1 

= KPc fip_._)~- aj. _ KP~c {Ip)-~. (23) 
K~C ~I m) ' ~ :  Krlc \ lm i  ] ' 

by index m we denote the model, by p the prototype. If 
K~c = K~c, then from (23) we have 

oyf ( I, ~-�89 (24) 
~? k, lml I ' 

which means that the intensity of the stress at corre- 
sponding points varies inversely as the square root of the 
scale IP/l m, this is called "scale effect". 

If the plastic deformations incident to fracture are not 
confined to the narrow region around the crack, but oc- 
cupy a significant part of the structure (this is called 
ductile fracture), the general functional relationship is gi- 
ven by 

PS, sf, a S = eft,  KIC , Gy, V) , (25) 

where ay is the yield stress. By Buckingham's rr theorem, 
we have 

PS ss aS - -  g'(Ir, v) . (26) 
gsc~'  Xscl�89 ' Xscl-�89 
In this case, we have two similarity parameters, the first one 
is the Poisson's ratio, and the second one is the Irwin 
number. If the similarity condition v m = vP and Ir m = Ir p 
are satisfied, the scaling of fracturing loads from model to 
prototype maybe carried out using the same equations (23). 

A classical result in the fatigue fracture is the scaling law 
by P. C. Paris and F. Erdogan (1963) for the crack pro- 
pagation under multi-cycle fatigue 

da 
d--n = A(AK)m ' (27) 

where damn is the fatigue crack velocity per cycle avera- 
ged over the cycle and AK is the stress-intensity factor 
amplitude. The average velocity damn can depend on the 
following quantities: AK, l - the characteristic specimen 
size, ay - yield stress, f - frequency, Kic - fracture tou- 
ghness, t - time, R = Kmin/Kmax - the asymmetry of loa- 
ding. Dimensional analysis gives 

d a _  (AK~go(AK R I r , f x t )  . (28) 
dn k cry J \Ksc 

In fact, the parameter AK/KIc is small, let us assume that 
the incomplete similarity takes place at the intermediate 
asymptotic stage of fatigue crack extension, then 

(AK~ ~ (I)'(R, Ir) (29) 
r = \ K ~ c )  ' 

and a, in principle, should also depend on the similarity 
parameter Ir. The values of A and m in (27) are 

m = 2 + ,~,A = (~yXlc)-(2+'x)O'(R,  Ir) . (30) 

Brown and Scholz [14] and Power et al. [15] computed the 
power spectral density, G(k), for various rock fracture 
surfaces, natural joint surfaces in crystalline and sedi- 
mentary rocks, a bedding-plane surface, and frictional 
wear surfaces. Their results show that there is remarkable 
similarity among these surfaces. Profiles of these widely 
different surfaces yield power law of the form 

G(k) = Bk-:' , (31) 

where k is the wavenumber related to the wavelength 2 of 
surface roughness according to k = 27r/2. The exponent ,s 
has a fairly limited range (typically between 2 and 3). This 
power law form of the power spectrum indicates that 
fracture surface topography can be represented in terms of 
fractal geometry where the fractal dimension of the sur- 
face, D, is related to the power spectrum exponent as 

7 -0~  
D -- (32) 

2 

For natural fracture surfaces, D falls in the range of 2 to 3, 
with small values representing smoother surfaces. 

By using the critical point concept for rupture stress 
prediction from acoustic emissions, Anifrani et al. [16] 
suggested the following scaling law 

dE 
d t =  E0(Pr - p)-~ , (33) 

where dEIdt is the instantaneous AE energy rate, p and Pr 
are the applied internal pressure and the rupture thres- 
hold, respectively, cr is a so-called critical exponent, its 
range is ~ = 1.5 + 0.2. The nature of intermittency of the 
rupture would be involved in the log-periodic corrections 
to the leading scaling behavior 

dE Eo(Pr p ) - ~ ( l + C c o s [ O + 2 ~ z l ~  
dt 

(34) 

where log 2 is the period, and 0 is the phase. 
If a great earthquake can be viewed as a critical point, 

precursors of earthquakes should follow characteristic 
scaling laws. In general, the scaling law should only be 
observable very near the critical point, in the so-called 
"critical region", and take the form [17] 

d~  
~ = k l ~ -  tl -~ , (35) 

where e represents regional strain, tf is the time of failure. 
Integration of (35) yields 

~= a + s l t : -  t :  

where m = 1 - ~. Corrections of logarithmic periodicities 
lead to 

e ( t ) = A + B ( t f _ t ) m { l + C c o s [ ~ + ~  log(tf - zrc 1 -og~t ! ]}  . 

(36) 
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2.3 
Discrete scale invariance and log-periodic 
corrections to scaling 
Both equations (34) and (36) are two examples of log- 
periodic corrections to scaling. As a theoretical analysis, 
[18] predicted logarithmic oscillations in quasi-static crack 
growth. To our knowledge, Novikov has been the first to 
point in 1966 that structure factors in turbulence should 
contain log-periodic oscillations [19]. Loosely speaking, if 
an unstable eddy in turbulent flow typically breaks up into 
two or three smaller eddies, but not into 10 or 20 eddies, 
then one can suspect the existence of a preferable scale 
factor, hence the log-periodic oscillations. 

It should be noted that the concept of discrete-scale 
invariance (DSI) leads to complex critical exponents (or 
dimensions), i.e. to the log-periodic corrections to scaling. 
Thus, the signature of DSI is the presence of power laws 
with complex exponents which manifests itself in data by 
log-periodic corrections to scaling [13]. 

Fr9m (19) we get the equation 1 =/12 ~, but 1 is nothing 
but e 12~n, where n is an arbitrary integer, and i is the pure 
imaginary number. We then get 

log/~ .2rcn 
-- log~ + '1-@2 (37) 

The special case n = 0 gives the usual real power law so- 
lution corresponding to fully continuous scale invariance. 
In contrast, the more general complex solution corres- 
ponds to a possible DSI with the preferred scaling factor 2. 
The reason why equation (19) has solution in terms of 
complex exponents stems from the fact that a finite re- 
scaling has been done by the finite factor 2. In critical 
phenomena presenting scale invariance, equation (19) 
corresponds to the linearization, close to the fixed point. 

For the scaling property of the fully developed turbul- 
ence, Frisch [20] pointed out "An alternative way to 
improve the accuracy on scaling exponents (of turbulence) 
would be to fit the structure functions to power-laws with 
log-periodic corrections as was done by Sornette and 
Sammis [17] to improve the prediction of the time of oc- 
currence of large earthquakes". 

2.4 
Analogy between multiple fracture 
and developed turbulence 
In some conceptual aspect an analogy of multiple fracture 
with developed turbulence studies was found fruitful [9, 
10]. In the turbulence phenomenon we have the fluid in- 
stead of the deformable solid, the vortices instead of cracks 
and flows. The turbulence flow contains a cascade of in- 
teracting vortices of various length scales. We assume, 
therefore, the physical scheme of multiple fracture in the 
following way. There exists in a deformable solid a cascade 
of crack-like defects, pores, vacancies, dislocations etc. 
being in interaction. 

Two independent processes exist simultaneously in the 
development of turbulence: the first one is the cascade 
process, in which large-scale forcing set up a cascade of 
energy transfers to smaller and smaller scales through 
nonlinearities of fluid motion. Eventually, at the smallest 

scales, viscosity caused the energy to be dissipated as heat; 
Another independent process is that small-scale vortices 
periodically pair so that larger fluid structures are created. 
The interactions of the defects could be, in principle, of 
two kinds: defects can either strengthen or weaken each 
other. Furthermore, the stress concentration near the tips 
of large defects stimulates the generation of new small 
defects. On the other side, the small defects stimulate the 
extension and coalescence of large ones. 

Dislocation is the most important two-dimensional, or 
line, defect in solid, it is responsible for nearly all aspects 
of the plastic deformation of metals. The existence of a 
dislocationlike defect is necessary to explain the low values 
of yield stress observed in real crystals. Recent results 
indeed suggest that the fine scales of turbulent flow include 
a tangle of very intense and slender vortex filaments [20]. 
The filaments are actually tubes with an approximately 
circular cross-section, their diameter is of the order of the 
Kolmogorov dissipation scale. Moffatt et al. suggested that 
vortex filaments are the "sinews" of turbulence. Zhao [21] 
explained in detail the analogy of dislocation line in crystal 
with vortex filament in fluid. It is pointed out by [21] that 
the Burgers vector for screw dislocation corresponds to the 
circulation of a vortex filament, the shear strain round the 
screw dislocation to the flow velocity around the vortex 
filament. 

In particular, there exists for a cascade the distribution 
curve of the defects size. Barenblatt and Botvina assumed 
the similarity principle: In multiple fracture the process of 
the development of the cascade of defects is statistically 
self-similar. Self-similarity means that when the damage 
accumulation is going on, the form of this curve remains 
fixed, only the maximum frequency N. and corresponding 
mean defect size I. are varying. Therefore the size distri- 
bution can be represented in the following universal form 

~-, = �9 , (38) 

which is called Barenblatt-Botvina distribution. The dis- 
tribution (38) is not a power law. The function �9 can be 
fitted by a curve [22] 

In ( ~ , ) = -  ln2 (~ , )  , (39) 

which was shown in Fig. 2. It should be noted [22] that not 
all self-similar and scaling properties of fracture can be 
described by methods of fractal geometry (e.g. the Ba- 
renblatt-Botvina distribution, log-periodicity). 

2.5 
Self-organized criticality (SOC) 
It is interesting that many natural phenomena must be 
described by power law statistics. As pointed out pre- 
viously, the hallmark of scale invariance is the existence of 
power laws. Correspondingly, an intense activity has de- 
veloped in order to understand the origin of these ubi- 
quitous power law tails. This has led in particular to the 
concept of "self-organized criticality" (SOC) [23], accor- 
ding to which certain dynamically driven spatially exten- 
ded system evolve spontaneously towards a critical 
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Fig. 2. The universal defect size distribution for various materials 
under various types of loading. 1. Polycrystalline copper, fatigue; 
2. Brass, elastic tension; 3. Iron, creep; 4. Steel 347, creep; 5. Steel 
304, creep; 6. Rocks 

globally stationary dynamical state with no characteristic 
time or length scales. 

Criticality refers to the state of a system which has scale- 
invariant properties. 

Several authors [24, 25] have argued that the earthquake 
phenomenology in geology is the signature of SOC. The 
Gutenberg-Richter law connecting the frequency distri- 
bution function with the energy release E is 

dN 
a T  ~ m-~'  (40) 

with 1.25 < r < 1.5, here m is the earthquake size. Equa- 
tion (40) is very similar to (27) since (27) can be simply 
rewritten as d n / d a  ~ (AK) -m. 

There are several kinds of scale invariance in the 
earthquake process, which are given in a power (scaling) 
law form in several empirical formulae [25]. For example, 
the size distribution of earthquakes in described by 
N(s > S) ~ S -b, where S is the area of the fracture zone of 
the earthquake, and the number of aftershocks decays as 
n(t) ~ t-P. 

In fact (31) is very similar with the Kolmogorov-Obu- 
khov scaling law for fully developed turbulence 

E(k)  ~ k -f~, (41) 

where E(k) is the power density spectrum, and k is the 
wavenumber,/~ = 5/3. 

The scale invariance that determines these scaling ex- 
ponents is a signature of SOC. Since long-range interac- 
tions are required to yield power laws, the experimental 
results suggest that both temporal and spatial interactions 
among the microcracks in the rock samples increased as 
the fracturing process progressed. Thereby, a self-similar 
fractal structure became self-organized during the fracture 
process [25]. 

3 
An example of application of self-similar method 
to dynamic fracture mechanics 
Self-similar method has long been used in wave propaga- 
tion and crack dynamics. A novel method is given herein 
for a semi-infinite stationary anti-plane crack problem 
under step dynamic loading by using hypergeometric 
functions. This solution is also instructive for Modes I and 
II crack problems under the same dynamic loading. 

3.1 
Formulation of  the  problem 
Consider a body of elastic material that contains a half- 
plane crack, but that is otherwise unbounded. The oppo- 
site faces of the crack are subjected to opposite, suddenly 
applied uniform traction in the z-direction, say 
cryz(x, z, t) = 4-z~H(t) on y = i 0 ,  where z* is a constant 
traction magnitude and H(t)  is the Heaviside unit step 
function. Here we only consider the case of stationary 
crack, which means that the crack does not propagate 
under the action of dynamic loading. This problem is 
apparently a mode III (antiplane shear) one. 

The wavefronts generated by the sudden application of 
the loading is shown in Fig. 3. For points near a crack face 
compared to the distance to the crack edge, the transient 
field consists only of a plane wave parallel to the crack face 
and traveling away from it at speed of shear stress wave 
c, = .v/~/p,  where ff and p are elastic shear modulus and 
material mass density, respectively. As this wavefront 
passes a material point, the component of stress crzy 
changes discontinuously from zero to - r* ,  this can be 
expressed mathematically cr w = - z * H ( c s t -  lyl). 

The particle velocity changes discontinuously from zero 
to +z*/pcs for •  > 0, so the displacement field can be 
expressed by w(x ,y ,  t) = +':  (y :F Cst)H(c,t +y) .  

Near the crack edge, on the other hand, the field is more 
complex and some nonuniform field exists behind a cy- 
lindrical wavefront of radius cst that is centered on the 
crack edge. This is the region in which the stress con- 
centration develops. 

The only nonzero component of displacement in the z- 
direction w(x ,y ,  t) satisfies the following wave equation 
[261 
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Fig. 3. Illustration of the wave propagation of a semi-infinite 
mode III crack problem under step dynamic loading 
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~2W ~2W 1 ~2w 
- -  + - -  - -  ( 4 2 )  ~X 2 ~y2 C 2 ~t2 

The solution of the wave equation (42) is subjected to the 
boundary and initial conditions 

. 8w(x,O' , t )  r,H(t~ - j ,  x ( - o o , o )  

w(x, 0 +, t) = 0, x E (0, oo) (43) 
�9 ~ ^~ 8w(x.y.o) w~x,y,u) = ~ = 0 

The process being described involves neither a charac- 
teristic length nor a characteristic time with respect to 
which the independent variables may be scaled. Thus, this 
problem is self-similar. The similarity transformation are 
introduced as follows 

r w(r, 0, t) _ f(~, 0), ~ = - - .  (44) 
r Cst 

Due to the symmetry of the problem, only the upper half 
plane is necessary to be considered. By using similarity 
transformation (44), the displacement field for the particle 
near the upper face of the crack can be rewritten into 

f ( ~ , O ) = ~ - -  sinO-- g - s i n O  , 

> 1 , 0 E  ,x . (45) 

From (45) we have 

f(1,O) = ~ - ( s i n O -  1), OE , (46) 

and 

0 rc . f ( 1 , O ) = O ,  OE [ ,5)  (47) 

(46) and (47) are the boundary conditions that f(~, O) 
should satisfy, these two equations are illustrated by Fig. 4. 

By substituting (44) into (42), we have 

~2 (1 -- ~2) ~2f+~2 ~(3-- 2~2) ~ + f + ~ = 0 . ~  ~0 (48) 

Separation of variables as 

f (~ ,  O) = u({)v(O), (49) 

gives 

2 

t 
1j 7* F'~ f(1,  8) 

[_, 
0 

Fig. 4. Relation ship between dimensionless function f(1, 0) with 0 

{ ~2(1 - ~2) d"u + ~(3 - 2~2) du (1 m2)u 0 
. . d ~  - _ ~ + - = 

dZv ~ m2v = O 
dr -- 

(50) 

where the eigenvalue m is to be determined by the boun- 
dary conditions. The general solution of second equation 
of (50) is 

v(O) = C1 cosm0 + C 2 sin rn0 . (51) 

From the second equation of (43) we know that w = 0 for 
0 = 0, then v(0) = 0 gives C1 ~ 0, from (51) we obtain 

v ( O )  = C 2 sin mO. (51) 

From (44), (49) and (51) we have the displacement in the 
z-direction as follows 

w(r, 0, t) = ru sin rnO, r E (0, c,t) . (52) 

The stress distribution is 

O w ( O w  l~w ) 
~-r sin 0 + r~--~cos 0 , (53) f f zy  = t ~ F  = lA 

i.e., 

azy = p u + r sin rnO sin 0 + urn cos rnO cos 0 

(54) 

The restriction for the cylindrical wave on the surface of 
the crack is 

~zr(r, re, t) = 0 , (55) 

we have from (54) 

cos mx = 0 , (56) 

from which the eigenvalue is determined to be 

2 n + l  
r n - - -  ( n = 0 , 1 ; 2 , 3 . . . )  . (57) 

2 
The first equation in (50) is an ordinary differential 
equation with three singular points, these three singular 
points are 

~1 ~-0, ~2 = - - 1 ,  ~3 = 1, (58) 

which are all regular singular points (appendix A), thus 
this equation is called Riemann's equation [27], it is also 
called Papperitz equation. The general form of Riemann's 
equation is [27] 

d2u (s 
dz--T + - _ n=l Z - -  Z n d z  

+ z n + l ) ( z .  

n=l Z - -  Z n 

ld 
x = 0 , (59) 

( z  - z , ) ( z  - z , _ ) ( z  - z 3 )  
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where z = Zn (=  1,2, 3) are the three singular points, ~,, 
! and ~ are the exponents belonging to z = z~, and it 

should be noted z4 = zt and z5 = z2 are used in (59). The 
exponents satisfy 

n 

Z( ') 0;n+0;n = 1 . (60) 
n = l  

The constants 2, = 2, - :~'~ are called the exponent dif- 
ferences. If none of them is an integer, (59) has two line- 
arly independent  solutions, if one or several of the 
exponent  differences are integers, then the solution may  
involve logarithmic terms. Riemann's  equation can be 
reduced to the Gauss'  hypergeometric equation [27] 

z(1 - z) d2u du 
~izZ + [ c -  (a + b + 1)z]-~z - abu = 0  , 

(61) 

where a, b and c are independent of z, and they are called 
the parameters  of  the equation. The three singularities of 
the hypergeometric  equation are 0, oc, and 1, they are all 
regular singular points. 

By the symbol 

P 0;1 0;2 0;3 Z , (62) 
/ ! ! 

0;1 0;2 0;3 

we shall denote the complete set of  solutions of (59). By 
noticing (A1) , we have the relations for the first equation 
in (50) as follows 

3 -- 2~ 2 3 1 1 

~ ( 1  - -  ~ 2 )  ~ 2 ( ~  - 1 )  2 ( { + 1 ) '  

1 - -  / T / 2  1 1 - -  m 2 

~2(1 _ ~2) ~ ( ~ - - 1 ) ( ~ + 1 )  

then @om (59) we have the equations 

t =  3 1 - ~1 - 2 1  
1 - 0;~, - 0;~ - -  1 

1 - 0;3 - 0;~ - -  1 

0;10(' 1 ---- 1 - - m  2 

0;20;I = 0 

0;30;; =- 0 

, (63) 

(64) 

3 
.:q = 2 n +  1. 22 = 2 3  2 ' (67) 

since the first exponent difference is an integer, then we 
know that logarithmic terms are involved in the solutions. 

The complete set of solutions of hypergeometric equa- 
tion (61) are given by the symbol 

0 oc 1 } 
P 0 a 0 z . 

1 - c  b c - a - b  
(68) 

Riemann's  equation (59) for the present problem can be 
reduced to the hypergeometric equation (60) by the fol- 
lowing transformation 

P CZl 0;2 0;3 z = z - -  Z 1 zq Z - -  Z3  

, t ! \ Z  - -  Z 2 /  \ Z  - -  Z 2 /  
~1 0;2 0;3 

p 0 0;1 -t- 0;2 + 0;3 0 ( z - z t ) ( z 3 - z z )  
(z-z~)(z~-zl) , 

t ~ i  t 
0;1 - -  0;1 0;1 "Jr- -~ ~3 0;3 - -  0;3 

(69) 

from (66) we have {0 / 
P - l + m  0 0 

3 3 - 1 - m  ~ 

_(choir/ o 1 
- -  \ ~ - - ~ /  p 0 m -  1 0 

" 3 - -2m m + 1 

letting ~ = 2; ~-/.1, then (70) is changed into {0 11} 
P - l + m  0 0 

3 3 1 - m  _~ 5 

: \_/(!) P 0 m - 1  0 ~ 

- -2m m + � 8 9  3_ 

the solutions to (64) are from (68) and (71) we obtain 

21 = - l + m ,  2 l = - 1  - m ,  2 2 : 0 ~  

, 3 , 3 (65) / 0 oc 1 
~2 ~--2' ~3 = 0 .  23 = 2  P 0 a 0 

It is easy to prove that (65) satisfies (60). The symbol t 1 - c b c - a 
expressed as (62) for the first equation in (50) is given by ( 0 .~c 

0 - 1  1 ] = P  0 r a -  

P - l + m  0 0 ~ /  (66) 
3 3 - 2 m  m +  - - 1 - m  ~ 

From (57) and (65) we have the three exponent differences 
as  

! (7o) 

(71) 

- b  

1 

1 0 

1 3 
(72) 

therefore the parameters of the hypergeometric equation 
a r e  
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1 3 
a = m -  l , b =  m + ~ , c =  2m+ l , c - a - b = - ~ .  

(73) 

Substituting (57) into (73) yields 

2 n -  1 3 
a -  , b =  n+ l,c = 2(n + l ) , c - a - b = -  , 

2 2 
(74) 

since the hypergeometric equation is symmetric with res- 
pect to a and b. Therefore we have 

2 n - 1  3 
a = n +  l , b - - - , c = 2 ( n +  l ) , c - a - b = -  . 

2 2 
(75) 

Since a and c are integers greater than 1, b and c - a - b 
are not integers (n.i.), therefore the two linearly indepen- 
dent solution expressed by hypergeometric series are 

(~)'~2zn-I ( ~ )  2~,,1-1 (__~)__(nq_l) F ( 5 ~--1) 
u3 = n + 1, - n ;  z ; ' 

(76) 

and 

U 6 = ~-(2n+l)(1 __ ff)~ 

x F  - n , - n + ~ ; ~ ; l - ~  , (77) 

i,e,~ 
. . . . .  9 '5 '  ..... 25 

u 3 =  n +  1 , - n ; ~ ; r  , 

(78) 

and 
~,,-, 2 n -  1 

U 6 = l -- -~ 

x F  - n , - n + ~ ; ~ ; l - (  . (79) 

The two solutions of the first equation of (50) can be ex- 
pressed by 

1 ~ (1) = ( ~ )  - ( - -1)n+l  U n 

( 2 ~ )  -23- ( --n;~;5 ~ + l ) j  
x F n + 1. "2_c[ ' (80) 

and 
211 - I 

. ( 2 )=  -' ( _ l ) n + ' ( C + l ~ + ~ ( 1 - ~  ~ 
Vl-ZT/ 

( 35 (8,) 
x F  - n , - n + ~ ; ~ ; 1  + . 

The solution of the nonzero displacement in the z-direc- 
tion is 

w(r ,O. t )=r  Z Anu}, 1) 
n=0 (82) 

+ B u(2) (~srt) 1 , ,  n sin an + 1 0 , 2  

where An and B~ are two constants to be determined by 
boundary conditions. 

3.2 
Discussion 
For n = O, from equation (75) we obtain 

1 3 
a = l , b = - ~ , c = 2 ,  c - a = l , c - a - b = ~  , 

(83) 

then (71) reduces to l {0 1 / 
( ~ )  0 tl  0 ~ 3  " (84) 

- 1  - ~  

One solution to the first equation of (50) for n = 0 is 
expressed by 

( ~ ) - � 8 9  . (85) 

Considering (83), the following relations hold [25] 

F(p. 1 - q: p + 1; x) = px-l Bx(p, q) (86) 
Bx(p,q) =" fo tp-l(l _ t)q-l dt 

where p = 1, q = 3, since 

Bx(p,q)= , / 1 - t a t = - 2  1 - ( i - x )  ~ (87) 
3 

thus 

F ( 1 , - ~ ; 2 ; ~ ) - - 2 t - ( 1 - ~ ) ~ 3  ~ (88) 

The second linearly independent solution of 

( ( 1 - - ~ ) ~ - +  2 - ~ r  ~ - ~ + ~ f = 0  , (89) 

is | -~,2,1" .~),. 
tion we have 

o'(r = c 

substituting it into the above equa- 

ff4 
(90) 

- ( 1  - ~ ) ~ ] 2  
6 

3 

It is very difficult to obtain | by integrating (90). Ne- 
vertheless, when ~ is small, we know from (90) that 
O'(~) ~ ~, therefore | ~ ~2. The two linearly inde- 
pendent solutions for n = 0 are 

f0~l) = x/2~-'~ [1 --(1 -- ~)3]: fo(2/ __ ~�89 [1 - - ( 1 -  [)~] 

(91) 

2~ ~ r __, 0 we get since ( = ~ .  Then with c = c~t 
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f0~l)--+ - - ;  fo(2)--+ ~ . (92) 

From (82) we know that the above ment ioned first solution 
corresponds to 

w~l) ,-~ V/Cstr ; (93) 

the corresponding stress is of  the order 

azy(r, O, t) ~ < ~  (94) 

The above relation is well-known for the stress having 
singularity of r -1/2. The second solution in (92) corres- 
ponds to the stress 

azy(r, O, t) ~ 7dst ' (95) 

which does not produce stress singularity. 
From appendix B we know that (82) contains the term 

as follows 

/i +• V~ r_L [ c, t l  ~ (96) 
Cst ~ 

The contribution of this term to the displacement is 

w(r ,O,  t) c/-~st . 0 r -+ 0 (97) 
Cst "~ V r s ' n 2  ' Cst 

Considering the propagation of the stress wave, the above 
equation can be rewritten as 

A 0 
w(r ,  O, t) ,.o ~ s i n = H ( c s t  - r) , (98) 

x /2nr  z 

where A is a function of time. This term corresponds to the 
stress having singularity of r -3/2. It is worthy to mention,  
that this term is similar to the relation suggested by Pra- 
kash et al. [28], when they studied the mechanism of dy- 
namic initiation of a crack under short-durat ion pulse. 
Their relation is 

2 e k o . O _ [  ~ )  
w(r ,  O. t) ,.~ ~ s i n - / - / / t  - , (99) 

/~x/2nr 2 \ 

where e is the radius of  a very small hole at the tip of the 
crack, and k0 is the initial stress intensity factor. The 
traction-free hole was supposed to be suddenly formed at 
the crack tip, and this is considered coincidence with the 
sudden initiation of the crack. The corresponding particle 
velocity jump (the spike) is ( A O 
~ , ~  Ilwll6 t -  , ]lwII = 2x/~77sm~ , 

which means that the jump has singularity of order r-V2, 
the arrival time of the spike is t = r/cs, and the familiar 
relation 6(t  - r /c ,)  = d H ( t  - r /c~) /d t  is used here. 

4 
Conclusion 
A brief  review is given in the first part  of  this paper on the 
application of similarity methods to fracture mechanics. 

This includes some dimensionless numbers,  scale invari- 
ance and some scaling laws in fracture mechanics, the 
emphasis  is placed on the DSI and log-periodic corrections 
to the scaling exponents. The analogy between multiple 
fracture and fully developed turbulence, and the SOC 
property of the fracture process are also included in this 
part. 

A novel method is given in the second part  of this paper 
for the problem of semi-infinite mode III stationary crack 
under step dynamic loading, this problem is solved by 
similarity transformations,  and the analytical solutions are 
expressed by hypergeometric  functions. This method can 
also be used to solve the semi-infinite mode I and mode II 
stationary crack problems under the same step dynamic 
loading. 

Appendix A 
On the property of the singular points 
of the first equation in (50) 
The first equation in (50) can be rewritten as 

d2u 3 -- 2~ 2 du m 2 
d~ 2 q- {(1 - -  ~2)  d~ + ~2(1 - ~2) u = 0 . (A1) 

It has three singular points with c." = 0, 1, - 1 .  For ~ = 0, 
since the two limits 

3 - 2~ 2 ~2 m2 
l i m ~ x  - - 3 ;  l im x - - m  2 , 
~--0 ~ ( 1  - -  ~2)  ~--0 ~ 2 ( 1  __ ~2)  

(a2)  

exist, then the singular point ~ = 0 is a regular one [29]. 
For the singular point ~ = 1, the two limits 

3 -- 2~ 2 1 
l i m ( ~ -  1) x = - - -  : 
r  ~(1 - ~2) 2 '  

m 2 
lim(er - - 1)2 x ~2(1 _ ~2) 0 , (a3)  

exist, thus the singular point { = 1 is a regular one. In 
quite the same manner,  for the singular point { = - 1 ,  the 
two limits 

3 - 2~ 2 1 
l im ({ + 1) • = - - :  

~ - l  ~(1 - {2) 2 '  

m 2 
l im(e.  + 1) 2 )< ~2(1 ~2)  - -  0 , ( a4)  

exist, then the singular point { = - 1  is also a regular one. 

Appendix B 
The definition of the hypergeometric series F (a, b; c; z) 
The hypergeometric series F(a, b; c: z), also called hyper- 
geometric function, is defined by 

zFl(a,  b: c; z) = ~ (a)n(b)n (A5) n=o n!(c),, z n '  

where the subscript 2 indicates the two expressions 
(a)n(b),  , are in the numera tor  while the subscript 1 in- 
dicates the single expression (c),, in the denominator  [29]. 
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For most cases, the two subscripts can be omitted. (a), is 
known as a Pochhammer symbol defined by 

F(a  + n) (A6) 
(a)n-- r(a) 
The hypergeometric series F(a, b; c; z) can be represented 
in integral form as follows 

F(c) [ 1  tb-l(1 _ t)c-b-I 
F(a,b;c;z) -- r ( b ) r ( c -  b) a0 -(i - z - - ~  a t  , 

(A7) 

provided c > b > 0. For example, the hypergeometric se- 
ries in (80) for n = 1 can be expressed by elementary 
function as 

5 -1 5 
F ( 2 , - 1 ; ~ ; ~  ) = F ( - 1 , 2 ; ~ ; ~  - 1 )  

F(-~) ~ 1  t(1 -- : - l t )  ~ - 1  (A8) 
= F(2)F(�89 ~/5 - - t  d t  = 1 - 

Similarly, the hypergeometric series in (82) for n = 1 can 
be expressed by elementary function as 

F ( - 1 , 1 ; 5 ;  1 - ~)  
\ 2 2  

F(_52) f l  (1 - t)[1 - (1 - ~)t] 

- r ( � 8 9  dt  

1 
= 1 - - - ( 1 - - ( )  . (A9) 

2O 
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