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Abstract Delaminations in composite laminates may de-
velop from small cracks due to fabrication and impact load-
ing, or from places of high stress concentration. The locations
of the delaminations are not determinate. In this research, an
analytical solution for the free vibration of a composite beam
with two overlapping delaminations is presented. The dela-
minated beam is analyzed as seven interconnected beams
using the delaminations as their boundaries. The continuity
and equilibrium conditions are satisfied between the adjoin-
ing regions of the beams. Classical beam theory is applied to
each of the beams. Complex vibration behaviors emerge for
different sizes and locations of the delaminations. Compar-
ison with analytical results reported in the literature verifies
the validity of the present solution.

Keywords Vibration · Delaminations · Composite
beams · Natural frequency · Mode shape

1 Introduction

Delamination is probably the most frequently occurring dam-
age in composite laminates due to its weak interlaminar
strength. Delaminations may arise as a result of either imper-
fect fabrication processes or impact during service. The pres-
ence of the delaminations is known to cause strength and
stiffness degradation, as well as changes of the vibration
characteristics of the laminates. In particular, delaminations
reduce the natural frequency, which may cause resonance if
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the reduced frequency is close to the working frequency. It
is imperative that we should be able to predict the changes
in the frequency, as well as the mode shape, in a dynamic
environment.

To study the free vibration of an isotropic beam with a
through-width delamination, Wang et al. [1] presented an
analytical solution by treating the delaminated beam as four
Euler-Bernoulli beams that are joined together. By apply-
ing appropriate boundary and continuity conditions, the re-
sponse of the beam was obtained as a whole. However, the
vibration modes are physically inadmissible for off-midplane
delaminations because the delaminated layers were assumed
to deform ‘freely’ without touching each other and thus have
different transverse deformations (‘free mode’). Mujumdar
and Suryanarayan [2] then proposed a model based on the
assumption that the delaminated layers are ‘constrained’ to
have identical transverse deformations (‘constrained mode’).
This ‘constrained mode’ approach was extended by Shu and
Fan [3] on a bimaterial beam and Hu and Hwu [4] on a sand-
wich beam to include the effects of the rotary inertia and
transverse shear deformation. A similar ‘constrained mode’
approach was proposed by Tracy and Pardoen [5] on a com-
posite beam. Valoor and Chandrashekhara [6] extended this
model for thick composites to include the effects of the trans-
verse shear deformation and the rotary inertia. In addition,
the Poisson effect was included due to its significance in the
analysis of angle-ply laminated beams. However, the ‘con-
strained mode’ analysis failed to predict the opening in the
mode shapes found in the experiments by Shen and Grady
[7]. To simulate the ‘open’ and ‘closed’ behavior between
the delaminated surfaces, Luo and Hanagud [8] presented
an analytical model based on the Timoshenko beam the-
ory, which uses piecewise-linear springs. The spring stiff-
ness is then set to be equal to zero (0) for the ‘free mode’
and infinity (∞) for the ‘constrained mode’. Saravanos and
Hopkins [9] developed an analytical solution for predicting
natural frequencies, mode shapes and modal damping of a
delaminated composite beam based on a general laminate
theory which involves kinematic assumptions representing
the discontinuities in the in-plane and through-the-thickness
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Fig. 1 (a) A model of a beam with two overlapping delaminations; (b) The delaminated beam is modeled by seven interconnected beams

displacements across each delamination crack. Chakraborty
et al. [10] presented a finite element method to study the
free vibration of delaminated asymmetric composite beams
using refined locking free first-order shear deformable ele-
ments.

The above studies are on one-dimensional beam-plates
with a single delamination. Two-dimensional plates with a
single delamination have been numerically investigated. Zak
et al. [11,12] presented a finite element method using the
first-order shear deformation theory. They modeled the del-
aminated region by using additional boundary conditions at
the delamination fronts. Finite element methods using the
higher-order deformation theory were presented by Chatto-
padhyay et al. [13], Radu and Chattopadhyay [14] and Hu
et al. [15].

The multiple delaminations have been studied by a num-
ber of researchers. Shu [16] presented an analytical solu-
tion to study a sandwich beam with double delaminations.
His study emphasized on the influence of the contact mode,
‘free’ and ‘constrained’, between the delaminated layers and
the local deformations at the delamination fronts. Lestari
and Hanagud [17] studied a composite beam with multiple
delaminations using the Euler-Bernoulli beam theory with
piecewise-linear springs to simulate the ‘open’ and ‘closed’
behavior between the delaminated surfaces. Lee et al. [18]
studied a composite beam with arbitrary lateral and longitu-
dinal multiple delaminations using the ‘free mode’ analysis
and assumed a constant curvature at the multiple-delamina-
tion tip. Shu and Della [19, 20] used the ‘free mode’and ‘con-
strained mode’ analyses to study a composite beam with two
overlapping delaminations and two non-overlapping delam-
inations. Their study emphasized on the influence of a second
short delamination on the natural frequency and mode shape
of the delaminated beam. Finite element analyses were pre-
sented by Ju et al. [21] using the Timoshenko beam theory
and Lee [22] using the layerwise theory.

Similar to the single delamination case, two-dimensional
plates with multiple delaminations have been numerically
investigated. Finite element methods were developed by Ju
et al. [23] using the Mindlin plate theory, Cho and Kim [24]
using the higher-order zig-zag theory and Kim et al. [25,26]
using the layerwise theory.

In this research, an analytical solution for the free vibra-
tion of composite beams with two overlapping delaminations
is presented. The delaminated beam is analyzed as seven
interconnected Euler-Bernoulli beams using the delamina-
tions as their boundaries. The continuity and equilibrium con-
ditions are satisfied between adjoining regions of the beams.
Both the ‘free mode’ and ‘constrained mode’ analyses in the
delamination vibration are used. The influence of the differ-
ential-stretching is included in the analysis. Results show
that the sizes and locations of the delaminations significantly
influence the frequency and the mode shape of the beam. The
results of the present solution agree well with the analytical
results presented in the literature.

2 Formulation

In this section the analytical solution for the vibration of
beams with two overlapping delamination is formulated.
Figure 1 (a) shows a beam with length L and thickness H1
with two overlapping delaminations. The upper and lower
delaminations are of lengths a1 and a2, respectively, and lo-
cated at distances d1 and d2 away from the center of the beam,
respectively. The beam is considered as seven beams con-
nected at the delamination boundaries (Fig.1 (b)). The two
delaminations divide the beam into three layers with thick-
ness H3, H4 and H5.

Two assumptions were made in the literature on delam-
ination buckling and vibrations. The first concerns the com-
plicated changing contact between the delaminated layers.
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Fig. 2 Illustration of the ‘rigid’ and ‘soft’ connectors on the deformed
beam with an exaggerated deformation

Wang et al. [1] assumed that the delaminated layers deformed
‘freely’ without touching each other, which was shown to be
physically inadmissible [2]. Mujumdar and Suryanarayan [2]
then proposed a ‘constrained’ mode where the delaminated
layers are assumed to be in touch along their whole length
all the time, but are allowed to slide over each other. The sec-
ond assumption concerns the deformation of the delamina-
tion fronts. Two possibilities were examined by Shu and Mai
[27, 28, 29], that is, the ‘rigid’ and the ‘soft’ connectors. The
cross–section in a ‘rigid connector’ remains perpendicular to
the deformed midplane of the beam, and thus the differential
stretching between the delaminated beams is taken account
of. The cross–section of a ‘soft connector’ remains perpen-
dicular to the undeformed beam, and thus the differential
stretching is neglected. Studies by Shu and Mai [28] show
that the real delamination fronts lie between the two connec-
tors but are closer to the ‘rigid connector’ (Fig. 2). In this
research, the ‘free’ and ‘constrained’ modes and the ‘rigid
connector’ are considered in the analysis of the composite
beam.

2.1 ‘Free mode’

For the ‘free mode’, the governing equations for the free
vibration of a delaminated beam are

EIi

∂4wi

∂x4
+ ρiAi

∂2wi

∂t2
= 0 (i = 1 − 7) (1)

where EIi is the bending stiffness of the i-th beam, ρi is the
mass density and Ai is the cross sectional area. For plane-
stress problems, E is the Young’s modulus. For plane strain
problems, E should be replaced by an equivalent Young’s
modulus E = E/(1 − υ2), where υ is the Poisson’s ratio.

For free vibrations

wi(x, t) = Wi(x) sin(ωt) (2)

where ω is the natural frequency and Wi(x) is the mode shape.
Substituting Eq. (2) in Eq. (1), one can obtain the generalized
solutions of the differential equation in Eq. (1) as
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x

L

)
+ Si sin

(
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x

L

)

+CHi cosh
(
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L

)
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(
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)
(3)

where

λ4
i = ω2ρiAi

EIi

L4 (4)

and where λi is the non-dimensional frequency. By apply-
ing the boundary conditions and continuity conditions to the
beams, the 28 unknown coefficients Ci, Si, CHi and SHi

i = 1–7) can be determined.
The appropriate boundary conditions that can be applied

at the supports, x = x1 and x = x4, are Wi = 0 and W ′
i = 0,

if the end of the beam is clamped; Wi = 0 and W ′′
i = 0, if it

is simply supported; W ′′
i = 0 and W ′′′

i = 0, if it is free, where
i = 1 to 7 and prime ′ denotes differentiation with respect to
the x-coordinate.

The continuity conditions for deflection and slope at the
delamination boundary x = x2 are

W1 = W2 (5)

W1 = W3 (6)

W ′
1 = W ′

2 (7)

W ′
1 = W ′

3 (8)

From Fig.3, the continuity for shear force and bending mo-
ment at the delamination boundary x = x2 are

V1 = V2 + V3 (9)

M1 = M2 + M3 + P3

(
H1

2
− H3

2

)
− P2

(
H1

2
− H2

2

)
(10)

where

Vi = −EIiW
′′′
i (11)

Mi = −EIiW
′′
i (i = 1 − 3) (12)

The third and fourth terms on the right side of Eq.(10)
represent the contribution to the bending moment from the
differential stretching between beam 2 and beam 3 for a ‘rigid
connector’, which is neglected for a ‘soft connector’ [28].
Each of the delamination boundaries x = x3, x = x4 and
x = x5 provides 6 equations and a total of 24 equations can
be set up for all the delamination boundaries.

The five axial forces P2, P3, P4, P5 and P6 that appear in
the moment continuity condition are still unknown, so five
additional equations are needed. At x = x2 and x = x5, from
the axial force balance, we have

P1 = P2 + P3 = 0; P3 = −P2 (13)

P7 = P4 + P6 = 0; P4 = −P6 (14)

At x = x3 and x = x4, from the axial force balance, we have

Fig. 3 Continuity of shear force and bending moment at the delamina-
tion boundary x = x2
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Fig. 4 The vibration configuration between x = x2 and x = x5. The lengths of the central lines remain unchanged

P2 = P4 + P5 (15)

P6 = P3 + P5 (16)

If the beam does not vibrate, P2, P3, P4, P5 and P6 are all
zero, because they are defined as the axial forces present dur-
ing the vibration of the beam. The axial length of the beam
between x = x2 and x = x5 remains equal before and during
vibration (Fig. 4). This leads to the following equations.
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where Lio represents the length of the ith beam segment
before vibration, Hi is the thickness of the ith beam segment.
If Li represents the length of the ith beam segment,

Li − Lio = PiLio

EAi

(i = 2 − 6) (20)

Substituting Eq. (20) into Eqs. (17) through (19) leads to
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Thus we have the number of equations to solve the simulta-
neous equations.

2.2 ‘Constrained mode’

The delaminated beam is analyzed as five beam segments I–V
(Fig. 1). The governing equations for beam segments I–V are

EIi

∂4wi

∂x4
+ ρiAi

∂2wi

∂t2
= 0 (i = I and V ) (25)

(EI2 + EI3)
∂4wII

∂x4
+ (ρ2A2 + ρ3A3)

∂2wII

∂t2
= 0 (26)

(EI3 + EI4 + EI5)
∂4wIII

∂x4

+ (ρ3A3 + ρ4A4 + ρ5A5)
∂2wIII

∂t2
= 0 (27)

(EI4 + EI6)
∂4wIV

∂x4
+ (ρ4A4 + ρ6A6)

∂2wIV

∂t2
= 0 (28)

The generalized solutions for the ‘constrained mode’ are
identical in form to the ‘free mode’.The unknown coefficients
Ci , Si , CHi and SHi (i = I–V), however, are reduced to 20
coefficients, which can be determined from the 4 boundary
conditions and 16 continuity conditions.

The boundary conditions for the ‘constrained mode’ are
identical to the boundary conditions of the ‘free mode’. The
continuity conditions for deflection, slope, shear force and
bending moment at x = x2 are,
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WI = WII (29)

W ′
I = W ′

II (30)
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Similarly, we can derive the continuity conditions at x =
x3, x = x4 and x = x5. For the ‘constrained mode’, the
boundary conditions and continuity conditions provide 20
homogeneous equations for 20 unknown coefficients Ci , Si ,
CHi and SHi .

3 Results and discussion

This section presents the results obtained using the analyti-
cal model described above to study a homogeneous clamped-
clamped beam with two overlapping delaminations. To verify
the accuracy of the present results, a comparison with pub-
lished results on a homogeneous beam with a single delam-
ination is made. The first three non-dimensional natural fre-
quencies of a clamped-clamped beam with a midplane and
central delamination having various lengths are compared
with the analytical results of Wang et al. [1] and FEM results
of Lee [22]. Tables 1–3 show good agreement between the
present results and the analytical and FEM results.

Figure 5 shows the influence of the overlapping length
ao and at on the frequency of the beam, where at is the dis-
tance between the opposite ends of the two delaminations
along the beam length (from the left end of the lower delam-
ination to the right end of the surface delamination). The
fundamental frequency, ω, is normalized with respect to the
frequency of an undelaminated beam, ωo. The lengths of the
two delaminations are equal, a1 = a2, and at +ao = a1 +a2.
The spanwise locations of the delaminations are determined
by d1 = d2 = (a1 − aoat )/2. The surface delamination is
at H4 = 0.2H1 and the other delamination is at midplane
(H3 = 0.5H1). The overlap ao lies symmetrically about the
center of the beam. ao = 0.0 represents two non-overlapping
delaminations, where the left end of the surface delamina-
tion and the right end of the midplane delamination are along
the midspan of the beam. Since the formulation is for two
overlapping delaminations, the frequency is approximated by
having d1 = d2 = a1/2−5×10−5L. ao = at represents two
fully overlapping delaminations and the frequency is approx-
imated by having d1 = d2 = 5×10−5L. For the ‘constrained
mode’,ω/ωo decreases rapidly after a threshold value of about
at/L = 0.4. The presence of an overlap, ao, further decreases
the frequency. However, the frequencies for ao/at = 0.2, 0.4,
0.6 are close to one another. This indicates that the influences
of two overlapping delaminations with ao/at = 0.2, 0.4, 0.6
are almost the same. Similarly, for the ‘free mode’, ω/ωo

decreases rapidly after a threshold value of about at/L = 0.4
and further decreases with increasing ao. However, a signifi-
cant decrease in the frequency is observed as ao increases.

Table 1 Non-dimensional primary frequency (λ2) of a clamped-
clamped isotropic beam with a midplane delamination

Delamination Present Analytical [1] FEM [22]
length, a/L Cons and Free

0.00 22.37 22.39 22.36
0.10 22.37 22.37 22.36
0.20 22.36 22.35 22.35
0.30 22.24 22.23 22.23
0.40 21.83 21.83 21.82
0.50 20.89 20.88 20.88
0.60 19.30 19.29 19.28
0.70 17.23 17.23 17.22
0.80 15.05 15.05 15.05
0.90 13.00 13.00 12.99

Table 2 Non-dimensional secondary frequency (λ2) of a clamped-
clamped isotropic beam with a midplane delamination

Delamination Present Analytical [1] FEM [22]
length, a/L Cons and Free

0.00 61.67 61.67 61.61
0.10 60.81 60.76 60.74
0.20 56.00 55.97 55.95
0.30 49.00 49.00 48.97
0.40 43.89 43.87 43.86
0.50 41.52 41.45 41.50
0.60 41.04 40.93 41.01
0.70 40.82 40.72 40.80
0.80 39.07 39.01 39.04
0.90 35.39 35.38 35.38

Table 3 Non-dimensional third frequency (λ2) of a clamped-clamped
isotropic beam with a midplane delamination

Delamination Present Analytical [1] FEM [22]
length, a/L Cons and Free

0.00 120.90 120.91 120.68
0.10 120.83 120.81 120.62
0.20 118.87 118.76 118.69
0.30 109.16 109.04 109.03
0.40 93.59 93.57 93.51
0.50 82.29 82.29 82.23
0.60 77.69 77.64 77.64
0.70 77.18 77.05 77.12
0.80 75.43 75.33 75.39
0.90 69.19 69.17 69.16

The difference between the ‘constrained mode’ and the
‘free mode’frequencies increases as at increases (Fig. 5). The
difference between the two frequencies further increases as
ao increases. This can be explained by the opening in the ‘free
mode’mode shapes. The ‘free mode’mode shapes for at/L =
0.3, 0.5, 0.8 at ao/at = 0.6 are computed and shown in Fig. 6.
Three types of vibration modes are observed, local, mixed and
global vibration modes. In a global vibration mode, the ampli-
tudes of beams 2–6 are almost equal (Fig. 6(a)), in a mixed
vibration mode, the amplitudes of beams 2–6 are comparable
(Fig. 6(b)), and in a local vibration mode, beam 4 will have
much higher amplitude than beams 2, 3, 5 and 6 (Fig. 6(c)).
The opening in the mode shape increases as at increases,
which corresponds to the increasing difference between the
‘constrained mode’ and the ‘free mode’ frequencies (Fig. 5).
For very long delaminations (at/L > 0.8), local vibration
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Fig. 5 Influence of the overlapping length, ao, and at on the fundamen-
tal frequency of a clamped-clamped beam

modes (e.g. Fig. 6(c)) and relatively low frequencies (Fig. 5)
are observed.

Figure 7 shows the influence of the length of the sur-
face delamination, a2, on the fundamental frequency of the
beam, ω/ωo. Delamination a1 is at midplane (H3 = 0.5 H1)
and midspan (d1/L = 0.0). The surface delamination is at
H4 = 0.2 H1 and spanwisely located at the right end of the
midplane delamination (d2 = 0.5 a1). For the ‘constrained
mode’, the influence of a2 on ω/ωo is negligible for very
short delaminations (a2 < 0.2L) and remains to be small for
up to about a2 = 0.3L. The influence of a2 on ω/ωo becomes
significant for longer delaminations (a2 > 0.3L). For the
‘free mode’, the influence of the overlapping delamination
becomes significant for a2 > 0.2L.

The variation of the frequency ω/ωo with respect to the
surface layer thickness H4 is examined in Fig. 8 for
various surface delamination length a2. The spanwise loca-
tion of the surface delamination is d2 = 0.25L, while the
other delamination with length a1 = 0.5L is at midplane
(H3 = 0.5H1) and midspan (d1 = 0.0). For the ‘constrained
mode’, ω/ωo decreases as H4 increases. This is because the
bending stiffness of the beam decreases as the delamination
moves towards the midplane [2,3]. However, the decrease is
less significant for very short delaminations (a2 < 0.2L).
For the ‘free mode’, ω/ωo increases rapidly until it reaches a
kink (e.g. (b)). ω/ωo decreases as H4 further increases up to
about H4 = 0.35H1, after which ω/ωo increases slightly and
finally decreases.

To investigate the variation of the ‘free mode’ frequency,
the mode shapes for the circled geometries in Fig. 8 are com-
puted and shown in Fig. 9. For a thin surface layer (H4 =
0.1H1), beam 4 dominates the fundamental frequency ω/ωo.
Beam 4 deforms more as compared with the lower beams
5 and 6 (Fig. 9(a)), which results in a local vibration mode
and a low frequency. As H4 increases, beam 4 thickens and
ω/ωo increases. In Fig. 8, the frequency decreases from (b)
to (c). Figures 9(b,c) show a change in the boundary condi-
tions of beam 4 due to the deformations of beams 2 and 5. The
boundary conditions of beam 4 shifts from clamped-clamped

Fig. 6 ‘Free mode’mode shape of a beam with two overlapping delam-
inations at ao = 0.6at and H4 = 0.2H1: (a) at = 0.3L; (b) at = 0.5L;
(c) at = 0.8L

Fig. 7 Influence of the overlapping delamination length, a2, on the
fundamental frequency of a clamped-clamped beam

(λ = 4.73) to simply-supported–clamped (λ = 3.93). This
weakens beam 4 and makes ω/ωo decrease. ω/ωo increases
after about H4 = 0.35H1 (Fig. 8). Figures 9(c,d) show a
slight change in the mode shape, which indicates that the
increase in ω/ωo is due to the thickening of beam 4. Finally,
ω/ωo decreases (Fig. 8), while thin beam 5 dominates the
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Fig. 8 Variation of the fundamental frequency ω/ωo with respect to the
surface delamination depth H4

fundamental frequency. Figure 9(e) shows a local vibration
mode where beam 5 deforms more than the other beams,
resulting in a low frequency. It should be noted that overlap-
ping in the mode shape occurs due to the assumption of the
‘free mode’ that the delaminated beams deform ‘freely’ and
have different transverse deformations.

Figure 10 shows the influence of the spanwise distance
of the surface delamination, d2, on the frequency of the beam

Fig. 9 Vibration modes at various delamination depth for a clamped-clamped beam: (a) H4 = 0.1H1; (b) H4 = 0.16H1; (c) H4 = 0.32H1;
(d) H4 = 0.4H1; (e) H4 = 0.48H1

Fig. 10 Fundamental frequency versus the spanwise location of the
surface delamination (d2/L), H4 = 0.2H1, H5 = 0.3H1, H3 = 0.5H1

ω/ωo. The surface delamination is at H4 = 0.2H1. The length
of the midplane and midspan delamination is a1 = 0.6L. The
locations of the delamination boundaries satisfy the require-
ment x6 > x5 > x4 in Fig. 1. The range of d2 is therefore
limited by (a1–a2) < 2d2 < Min(L–a2, a1 +a2). For the ‘con-
strained mode’, for very short delaminations (a2 < 0.2L),
ω/ωo increases slightly as the delamination moves towards
the beam end. Frequency decreases as the delaminations move
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towards the beam end due to the decrease in the differential
stretching [16]. However, for very short delaminations (a2 <
0.2L), the decrease in the differential stretching is negligible,
and the increase in ω/ωo is due to the increase of the bend-
ing stiffness of the beam as the delaminations move towards
the beam end. When a2 = 0.3L, an almost constant ω/ωo is
observed. This is because the increase in the bending stiff-
ness is balanced by the decrease in the differential stretching
as the surface delamination moves towards the beam end.
When a2 = 0.4L, ω/ωo monotonically decreases because of
the significant decrease on the differential stretching. For the
‘free mode’, when a2 < 0.3L, ω/ωo increases as the delami-
nation moves towards the beam end; on the other hand, when
a2 = 0.4L, ω/ωo increases and then decreases. In addition,
for short delaminations (a2 < 0.3L), the largest difference
between the ‘constrained mode’and the ‘free mode’ frequen-
cies occurs when the shorter delamination is fully overlapped
by the longer delamination. The difference decreases as the
delamination moves towards the beam end.This indicates that
the mode shapes displays a large opening when the shorter
delamination is fully overlapped by the longer delamination
and a smaller opening when the shorter delamination is near
the beam end.

4 Conclusions

The free vibration of composite beams with two overlapping
delaminations is solved analytically without resorting to a
numerical approximation. The influence of the delamination
sizes and locations on the fundamental frequency as well
as the mode shapes is investigated. The results of the pres-
ent solution agree well with the analytical and experimental
data reported in the literature. Results show that the sizes
and the locations of the delaminations significantly influ-
ence the frequency of the beam. However, a short overlap-
ping delamination (a2 < 0.3L) does not significantly influ-
ence the frequency of the beam. The difference between the
‘constrained mode’ and ‘free mode’ frequencies largely de-
pend on the opening in ‘free mode’ mode shapes. When the
mode shape displays a large opening, the difference between
two frequencies is large. When the mode shape displays a
small opening, the difference between two frequencies is
small.

The results are only for a homogeneous beam. When the
laminates are of different materials, it is expected that the
results will be different quantitatively. However, the trends
observed with respect to the depth, the length and the span-
wise location of the delamination are expected to be the
same.

References

1. Wang, J.T.S., Liu, Y.Y., Gibby, J.A.: Vibration of split beams. J.
Sound Vib. 84(4), 491–502 (1982)

2. Mujumdar, P.M., Suryanarayan, S.: Flexural vibrations of beams
with delaminations. J. Sound Vib. 125(3), 441–461 (1988)

3. Shu, D., Fan, H.: Free vibration of a bimaterial split beam. Compos
Part B 27(1), 79–84 (1996)

4. Hu, J.S., Hwu, C.: Free vibration of delaminated composite sand-
wich beams. AIAA J. 33(10), 1911–1918 (1995)

5. Tracy, J.J., Pardoen, G.C.: Effect of delamination on the natural fre-
quencies of composite laminates. J. Compos Mater 23(12), 1200–
1215 (1989)

6. Valoor, M.T., Chandrashekhara, K.:A thick composite-beam model
for delamination prediction by using neural networks. Compos Sci
Tech 60(9), 1773–1779 (2000)

7. Shen, M.-H.H., Grady, J.E.: Free vibrations of delaminated beams.
AIAA J. 30(5), 1361–1370 (1992)

8. Luo, H., Hanagud, S.: Dynamics of delaminated beams. Int. J. Sol.
Strucs. 37(10), 1501–1519 (2000)

9. Saravanos, D.A., Hopkins, D.A.: Effects of delaminations on the
damped characteristics of composite laminates: analytical and
experiments. J. Sound Vib. 192(5), 977–993 (1996)

10. Chakraborty, A., Roy Mahapatra, D., Gopalakrishnan, S.: Finite
element analysis of free vibration and wave propagation in asym-
metric composite beams with structural discontinuities. Compos.
Struc. 55(1), 23–36 (2002)

11. Zak, A., Krawczuk, M., Ostachowicz, W.: Numerical and exper-
imental investigation of free vibration of multilayer delaminat-
ed composite beams and plates. Comput. Mech. 26(3), 309–315
(2000)

12. Zak, A., Krawczuk, M., Ostachowicz, W.: Vibration of a delami-
nated composite plate with closing delamination. J. Intell. Mater.
Sys. Struc. 12(8), 545–551 (2001)

13. Chattopadhyay, A., Radu, A.G., Dragomir-Daescu, D.: A higher
order theory for dynamic stability analysis of delaminated com-
posite plates. Comput. Mech. 26(3), 302–308 (2000)

14. Radu,A.G., Chattopadhyay,A.: Dynamic stability analysis of com-
posite plates including delaminations using a higher order theory
and transformation matrix approach. Int. J. Sol. Struc. 39(7), 1949–
1965 (2002)

15. Hu, N., Fukunaga, H., Kameyama, M., Aramaki, Y., Chang, F.K.:
Vibration analysis of delaminated composite beams and plates us-
ing higher-order finite element. Int. J. Mech. Sci. 44(7), 1479–1503
(2002)

16. Shu, D.: Vibration of sandwich beams with double delaminations.
Compos. Sci. Tech. 54(1), 101–109 (1995)

17. Lestari, W., Hanagud, S.: Health monitoring of structures: multi-
ple delamination dynamics in composite beams. In: Proceedings
of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference and Adaptive Structures Fo-
rum, St. Louis, MO, April 1999

18. Lee, S., Park, T., Voyiadjis, G.Z.: Vibration analysis of multiple-
delaminated beams. Compos. Part B 34(7), 647–659 (2003)

19. Shu, D., Della, C.N.: Vibrations of multiple delaminated beams.
Compos. Struc. 64(3–4), 467–477 (2004)

20. Shu, D., Della, C.N.: Free vibration analysis of composite beams
with two non-overlapping delaminations. Int. J. Mech. Sci. 46(4),
509–526 (2004)

21. Ju, F., Lee, H.P., Lee, K.H.: Free-vibration analysis of composite
beams with multiple delaminations. Compos. Eng. 4(7), 715–730
(1994)

22. Lee, J.: Free vibration analysis of delaminated composite beams.
Comput. Struct. 74(2), 121–129 (2000)

23. Ju, F., Lee, H.P., Lee, K.H.: Finite element analysis of free vibra-
tion of delaminated composite plates. Compos. Eng. 5(2), 195–209
(1995)

24. Cho, M., Kim, J.-S.: Higher-order zig-zag theory for laminated
composites with multiple delaminations. J. Appl. Mech. 68(6),
869–877 (2001)

25. Kim, S.H., Chattopadhyay, A., Ghoshal, A.; Characterization of
delamination effect on composite laminates using a new gener-
alized layerwise approach. Comput. Struc. 81(15), 1555–1566
(2003)



Vibration of Composite beams with two overlapping delaminations 55

26. Kim, S.H., Chattopadhyay, A., Ghoshal, A.: Dynamic analysis of
composite laminates with multiple delaminations using improved
layerwise theory. AIAA J. 41(9), 1771–1779 (2003)

27. Shu, D., Mai, Y.-W.: Delamination buckling with bridging.
Compos. Sci. Tech. 47(1), 25–33 (1993)

28. Shu, D., Mai, Y.-W.: Buckling of delaminated composites
re-examined. Compos. Sci. Tech. 47(1), 35–41 (1993)

29. Shu, D., Mai, Y.-W.: Effect of stitching on interlaminar delamina-
tion extension in composite laminates. Compos. Sci. Tech. 49(2),
165–71 (1993)


