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Abstract

An elastoplastic constitutive relation of whisker-reinforced composite was derived in Part I of this work [H.Q. Liu,

N.G. Liang, An elastoplastic constitutive relation of whisker-reinforces composite for meso damage: Part I ± formu-

lation, J. Theoret. Appl. Fracture Mech. 33 (2000) 191±198]. Speci®c applications of this constitutive equation will be

made to address mesoscale damage. Analyzed particularly is the relation between failure surface and dominant

mechanism of brittle composites. The damage-induced anisotropy is exhibited using the damage distribution of

whiskers in the orientation space. Qualitative agreement is obtained between the prediction and experimental results of

carbon/epoxy laminates [S.R. Swanson, Introduction to Design and Analysis with Advanced Composite Materials,

Prentice-Hall, Upper Saddle River, New Jersey, 1997]. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The elastoplastic damage constitutive relation
presented in Part I [1] can be applied to assess the
overall elastoplastic damage behavior of whisker-
reinforced composites. Aside from making some
applications, emphasis will be placed on the failure
behavior of brittle ®ber-reinforced composite.

A failure surface of brittle composites being
similar to the yield surface [3,4], could give a
global description of the failure behavior. It can be
used to analyze multi-axial failure criteria [5].
Failure modes of composites involve multiple
mechanisms. Failure mode transition could de-
pend on external loading [6] because of anisotropy.
This is why failure mechanism independent of
strength criteria may not be appropriate for high

performance composites under a wide variety of
external loading conditions although convenient
to use [7]. The relation between the governing
failure mechanisms and failure surfaces may lead
to a better understanding of failure modes and
criteria.

An initial anisotropy can be described accord-
ing to microstructure of composites. However, it is
most di�cult to include the anisotropy associated
with the internal stress redistribution due to
damage [8] and damage rate [9]. The anisotropy
induced by damage and damage rate has been
embodied in the e�ective sti�ness tensor of the
constitutive equation derived in Part I [1]. It is also
re¯ected in the damage distributions of slip sys-
tems and ®ber-bundles.

Part II of this work is concerned with applying
the constitutive relation to speci®c cases. The
analysis will be focused on the relation between
failure surfaces and dominant failure mecha-
nisms as well as damage-induced anisotropy. The
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predicted results are compared well with the ex-
periment results of failure surfaces for carbon/ep-
oxy laminates [2,7].

2. Constitutive equations in speci®c cases

The elastoplastic damage constitutive relation
includes constructing three types of elements that
are assembled to represent the material model.
Each type of elements may be a composite that has
a speci®c constitutive equation.

2.1. Metal±matrix composites

The present model is composed of the elastic
medium, equivalent slip systems and ®ber-bundles.
It is suitable for describing whisker-reinforced
metal±matrix composites with meso-structures
described by qs and qf . Moreover, It is suited for
analyzing ®ber reinforcing/breaking, interface
sliding/debonding and crystal sliding mechanisms.
From [1], it can be stated that
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where C�ef�
me is the e�ective compliance tensor of the

elastic medium, C�ef�
ms and K

�ef�
f , the e�ective com-

pliance and sti�ness tensors related with orienta-
tion distributions of equivalent slip systems and
®ber-bundles. Note that
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Pf � l
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are orientation tensors of the slip system and ®ber-
bundle, m, a unit slip vector, n, a unit normal
vector of the sliding plane, and l, a unit vector
along the ®ber-bundle. Volume fractions of the
matrix and ®ber-bundles satisfy the condition
Vm � Vf � 1.

Damage process of the composite depends on
K�ef�

me , qs=h�ef�
s and qfE

�ef�
f which include the damage

rate e�ect as well as their damage state.
Ignoring irreversibility due to the decrease of

sliding strain jcsj and ®ber strain jef j, the e�ective
moduli h�ef�

s and E�ef�
f of slip system and ®ber-

bundle can be expressed as
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respectively. In Eqs. (7) and (8), Ds and ss are
the damage variable and resolved shear stress of
the slip system, ccr, the critical failure strain of the
weakest sliding system, and cm

s , the maximum
sliding strain. The damage variable and stress of
the ®ber-bundle are given by Df and rf . The
smaller critical strain of the weakest ®bers or the
weakest-linking interface is ecr and the maximum
strain of the ®ber-bundle is em

f .
Without consideration of damage, i.e. D � 0

and _D � 0, the material model still contains three
types of elements but limited to the elastoplasticity
of whisker-reinforced metal±matrix composites.
Thus, Eq. (1) becomes the elastoplastic constitu-
tive equation

_S � Vm��Cme

n
� �Cms�ÿ1 � Vf

�Kf

o
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where the e�ective compliance and sti�ness tensors
are degenerated into

�Cms �
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Z
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�hs

Ps 
 Ps dU dW �10�

in which

�hs � 1 when sÿcr < ss < s�cr;
�hs when ss6 sÿcr or ss P s�cr

�
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Note that

�Ef �
�Ef when eÿcr < ef < e�cr;
�Efs when ef 6 eÿcr or ef P e�cr:

�
The interface sliding is treated as pseudoplas-

ticity ®ber-bundle [10,11], that depends on the
sliding modulus �Efs. The variation of s�cr and e�cr

can be determined from the sliding criteria of
crystal and interface proposed in [1]. Eq. (9) was
applied to predict the e�ect of constituents, ori-
entation, and the coupling of crystal and interface
sliding mechanisms on yield surfaces of the
composites [4].

2.2. Polymer composites

Neglecting the crystal sliding mechanism, i.e.
hs � 1, ®ber breaking and interface debonding
become the major physical mechanisms. The ma-
terial model consisting of the elastic matrix and
®ber-bundles would be suitable for ®ber-reinforced
polymer composites. Thus, Eq. (1) becomes

_S � vmK�ef�
me

n
� vf K

�ef�
f

o
: _E: �12�

Eq. (12) is the elastic damage constitutive
equation that was applied to predict the e�ect of
damage rate and ®ber orientation distribution on
the e�ective sti�ness tensor and macro response.
The predicted results of tensile modulus, strength,
and failure strain of glass ®ber-reinforced poly-
propylene laminates are in good agreement with
the experimental data [12].

With D � 0 and _D � 0, Eq. (12) degenerates
into the elastic constitutive equation, i.e.

_S � Vm
�Kme

n
� Vf

�Kf

o
: _E: �13�

Eq. (13) was used to analyze the e�ect of the
®ber orientation distribution and the mis-orienta-
tion on the sti�ness tensor [13,14].

2.3. Polycrystalline metals

In the case of Vf � 0, the model material de-
generates into polycrystalline metals composed of
the elastic medium and slip systems. Crystal sliding
becomes the only physical mechanism. Therefore,
Eq. (1) degenerates into the elastoplastic damage
constitutive equation for metals, i.e.

_E � C�ef�
me

� � C�ef�
ms

	
: _S: �14�

Moreover, for D � 0 and _D � 0, Eq. (14) is
reduces to that for the elastoplastic constitutive
equation of metals

_E � �Cme

n
� �Cms

o
: _S: �15�

Based on Eq. (15), the evolution of yield sur-
faces [3], the elastoplastic response under out-of-
phase cyclic deformation [15], and the deformation
induced anisotropy [16] for polycrystalline metals
could be predicted and the results tend to agree
with experiments.

3. Failure surface of brittle composites

Experimental results show that the nonlinear
behavior of brittle composites is not due to plas-
ticity but due to the degradation of the elastic
property [17]. Based on the present constitutive
relation, the failure of brittle composites can be
predicted only if the crystal and interface sliding
criteria are replaced by failure criteria of slip sys-
tems and ®ber-bundles.

Let sb
s denote the strength of slip systems and eb

f ,
the ®ber-breaking strain. The failure surface of the
composites can be determined by the internal
envelope of all hyperplanes determined by
Ps : Sm � sb

s and concomitant hyperplanes in the
stress space with those determined by Pf : E � eb

f .
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Fig. 1 shows the predicted failure surfaces and
dominant regions related to di�erent mechanisms.
External boundaries of the shadow region are
failure surfaces dominated by the crystal sliding
mechanism, which corresponds to an ellipsoid in
the �S11; S12� space and a hexagon in the �S11; S22�
space. Internal boundaries of the shadow region
are those dominated by the ®ber breaking mech-
anism. They are the boundary of the overlap re-
gion of two ellipsoids in the �S11; S12� space and a
parallelogram in the �S11; S22� space.

Evidently, two failure surfaces dominated by
®ber breaking and crystal sliding mechanisms di-

vide the stress subspace into three parts. Each part
is dominated by di�erent mechanisms. The dis-
crimination condition of di�erent dominant re-
gions can be derived.

Before failure, the composite is elastic, and the
matrix and ®ber-bundles share stress together.

According to Eq. (13), the matrix and ®ber-
bundles satisfy

Sm11
� EmE11 and Sf11

� Ef

6
E11 �16�

in tension and

Sm12
� Em

1� mm

E12 and Sf12
� 2Ef

15
E12 �17�

in torsion. By use of the compatible condition of
deformation, the stresses carried by the matrix and
®ber-bundles satisfy

Sm � Kme : Kÿ1
f : Sf and Sf � Kf : Kÿ1

me : Sm:

�18�
First, consider the failure surface dominated by

the crystal sliding mechanism in the �S11; S12�
space, Fig. 1(a). This implies that the stress in the
matrix would ®rst reach its strength. For tension
and torsion, the respective values

Sm11
� rb

s and Sm12
� rb

s =2; �19�
where rb

s � 2sb
s is the tensile strength of the matrix.

From Eqs. (16)±(18), the total stresses of the
composite at the long and short axes of the failure
surface are

S11 � Vm

�
� Vf

Ef

6Em

�
rb

s ; �20�

S12 � Vm

�
� Vf

2�1� mm�Ef

15Em

�
rb

s

2
: �21�

Note that �S11; 0� and �0; S12� correspond to
points A and B in Fig. 1(a), respectively.

For failure dominated by ®ber breaking, the
stress in the ®ber-bundles would ®rst reach its
strength. For tension and torsion, the respective
values

Sf11
� rb

f

6
and Sf12

� 2

15
rb

f �22�
Fig. 1. Failure surfaces and dominant regions related with

di�erent mechanisms. (a) in �S11; S12� space; (b) in �S11; S22�
space.
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are obtained. The tensile strength of ®ber-bundles
is rb

f at the corresponding strain eb
f . From

Eqs. (16)±(18), the total stresses of the composite
at the long and short axes become

S11 � Vm

6Em

Ef

�
� Vf

�
rb

f

6
; �23�

S12 � Vm

15Em

2�1� mm�Ef

�
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�
2

15
rb

f : �24�

Let the long axes of the two failure surfaces
equal. Equating Eqs. (20) and (23), there results

rb
f Em

rb
s Ef

� 1: �25�

Eq. (25) gives the minimum upper bound of the
region completely dominated by the crystal sliding
mechanism. Let the short axes of two failure sur-
faces equal. Eq. (21) can thus be equated to
Eq. (24) to give

rb
f Em

rb
s Ef

� �1� mm�
2

: �26�

Eq. (26) corresponds to the maximum lower
bound of the region completely dominated by ®ber
breaking. De®ne a dimensionless quantity as

b � rb
f Em

rb
s Ef

; �27�

where

�1� mm�
2

6 b6 1: �28�

That is to say, for b6 �1� mm�=2, the failure is
dominated by ®ber breaking. Outside the region
for bP 1, the crystal sliding mechanism dominates
failure. However, for b satisfying the inequality of
Eq. (28), the failure depends on the coupling of
both mechanisms. The inequality of Eq. (28) still
holds in other sub-space, Fig. 1(b). It is coincident
with the fact that most metal±matrix composites
have a larger b and their failure is dominated by
the crystal sliding mechanism, while most polymer
composites have a small b where the failure is
dominated by ®ber-breaking. Certainly, debond-
ing or delaminating will in¯uence rb

s and rb
f , and

hence b. This may change the failure modes of the
composite [18].

Take the carbon/epoxy laminating as an ex-
ample [2]. Material constants are Ef=Em � 66,
mm � 0:35, rb

f =r
b
s � 38:5, and Vf � 0:5. They are

taken from Ref. [2]. Also b � 0:583 and bl � 0:675
are taken.

Fig. 2 shows failure surfaces of laminates with
�0=� 45=90�n lay-up in �S11; S22� and �S11; S12�
spaces. Line-1 with b < bl in Fig. 2(a) is the failure
surface dominated by ®ber breaking. This is con-
sistent with the experimental result [2,7]. Line-1 in
Fig. 2(b) is di�erent from that for the isotropic
composite, Fig. 1(a). This is because only ®bers in
three directions play a part under combined axial-
torsion loads.

Fig. 2. Failure surfaces of laminates with �0=� 45=90�n lay-up.

(a) in �S11; S22� space; (b) in �S11; S12� space.
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Failure surfaces with b � 1 (dash lines) are
dominated by crystal sliding. Line-2 with b �
0:712 > bl is dominated by two mechanisms. Most
part of the failure surface is dominated by ®ber
breaking except for those close to a pure shear
stress state represented by dot lines. It can be seen
that coupling e�ect moves failure mode transition
close to a pure shear stress state for brittle com-
posites. That is the reason why experimental data
of failure surfaces of laminates are more scattered
near a pure shear stress [2].

Fig. 3 shows the failure surface of laminate with
�90�n lay-up in the �S11; S12� space. It is completely
controlled by the crystal sliding mechanism be-
cause the ®ber in the 90° direction has little con-
tribution under combined axial-torsion loads. The
predicted result is qualitatively in agreement with
experimental data [2,7] except for the unsymmetry
case that is not taken into account.

4. Damage induced anisotropy of polymer compos-

ites

The damage-induced anisotropy of polymer
composites exhibit not only the e�ect of damage
on sti�ness and macro response [12] but also the
variation of meso-structure. Analyzed is the
damage distribution of ®ber-bundles of isotropic
composites based on the elastic damage constitu-

tive equation. The damage evolution of ®ber-
bundle and matrix proposed in [12] are

Df �

0; efj j < ecrj j;

1ÿ exp ÿ kf
ef

e0

� �nf ÿ ecr

e0

� �nf
h in o

;

efj jP ecrj j;

8>>>><>>>>: �29�

Dm � kmvnm

f
�Df ; �30�

where �Df �
R

X qfDf dX
In Eqs. (29) and (30), kf and km are damage

coe�cients, nf and nm, damage exponents of the
®ber-bundle and matrix, respectively.

Fig. 4 shows the distribution of 1ÿ Df in the
orientation space undergoing tensile deformation
in the z-axis direction. When Df � 0, it corre-
sponds to a perfect unit hemisphere. The numeri-
cal result shows that damage begins from the
®ber-bundles oriented in the tensile direction, and
then spreads around.

Fig. 5 shows the distribution of 1ÿ Df in the
orientation space undergoing pure shear defor-
mation. The maximum damage of ®ber-bundles
occurs in the �45° directions in the yz-plane. It
then spreads around.

It can be seen that the damage distribution of
®ber-bundles is load-path dependent even for
proportional loading.

Fig. 3. Failure surface of laminate with �90�n lay-up in

fS11; S12g space.

Fig. 4. Distribution of 1ÿ Df in orientation space under

tension.
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5. Discussion and conclusion

The dominant mechanisms and failure surfaces
are related. Theoretically, they provide an evalu-
ation of the possible failure modes under complex
loading. The conventional failure criteria, such as
the maximum shear stress and the maximum
®ber-direction strain criteria, may be valid for
composites in a part of stress subspace, that is
®ber-architecture dependent.

The initial anisotropy of whisker-reinforced
composites can be described by the orientation
distributions, qf and qs. The damage-induced an-
isotropy is indicated by the distribution of 1ÿ Df

and 1ÿ Ds in the orientation space. Particularly,
the distribution of qs=h�ef�

s and qf E
�ef�
f exhibit the

character of induced anisotropy associated with
the evolution of microstructure, damage and
damage rate.

The predicted results show that the present
constitutive relation has the potential to be ex-
tended to other material models. In view of the
negligible heterogeneity of short ®bers with a large
aspect ratio and dense distribution, the short-®ber-
reinforced composites may have similar behavior
to the long-®ber-reinforced composites for stati-
cally-loaded deformation.
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