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Abstract : The analysis o the dynamic stress on the particle matrix interface in particle
reinforced composite for the reason that this stress may lead to the microvoids’ nucleation
due to the interfacial debonding were studied. For simplification, a sphere containing a
concentric rigid spherical particle was taken as the representative volume eement ( RVE) .
The Laplace trandformation was used to derive the basic equations, and the analytical
sol utions were obtained by means of Hankel transformation. Moreover , the irfluences o the
inertia and viscosity on the debonding damage were also discussed.

Key words: rheological materia ; dynamic stress; interface debonding; microvoids’
nucleation
CLC numbers: 0347.4; TE332 Document code: A

Introduction

The interfacial debonding may cause the microvoids’ nucleation in a particle reinforced
compasite. The interfacial debonding is usually governed by the tension stress criterion* 2! or
energy criterion® . In the recent research works, the present authors pointed out that the
anaysis of interfacial stress is the key procedure in the nucleation analysis, no matter which
criterion is used as the critical condition of nucleation'® . If the applied load is static, the
interfacial stress can be obtained by means of Eshelby’ s equivalent inclusion method and Mori-
Tanaka' s theory. But it is extremely difficult to obtain the exact solution in the case of dynamic
loading due to the propagation o the stress wave in the composite. As a preliminary discussion ,
the average method is used and a sphere containing a concentric rigid spherical particle is taken as
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the Representative Volume Hement (RVE). The governing equation of a linear viscoelastic
matrix is written in terms of a linear elastic form by taking L aplace transformation. The solution
of the problem is divided into two parts: one is a quasi-static solution which satisfies the
inhomogeneous mixed boundary conditions, and it can be easily obtained by using the method in
elagticity; the other is a dynamic solution which satisfies homogeneous mixed boundary
conditions, and can be obtained by using Hankel transformation. The fina solution is the
superposition of the above two parts. Fnaly, a numerica example is given to show the
fluctuating effect of the interfacial stress, from which influences of the inertia and viscosity on the
interfacia debonding are discussed.

1 Basic Equations and Their Laplace Transformation

A spherical cell model is used as a representative volume element (RVE) in the analysis of
dynamic nucleation of microvoids. The RV E with outside radius b contains a concentric spherical
particle with radius a. The particle volume concentration is f = a/ b®. A uniform forceZ (t) is
gpplied on the outer boundary of the RV E. For a composite materia filled with hard particles, the
particles may be approximately considered as rigid ones because their stiff ness is much higher than
that of the matrix. For example in PP/ CaCO3; composite systems , the elastic modulus of CaCO3
particles is about 50 times the initial relaxation modulus of PP matrix. Suppose that the Poisson’ s
ratio of the matrix is a constant, and the constitutive relation of the matrix material can be
expressed in a linear viscoelastic form as followst®! :

o (x,t) :J‘fm{ E(t-T)[(l+V)V(1_ 2V)z»:‘kk(x,r) | +1—ivs‘(x,r)]}ot , (1

where E(t) is relaxation moduli. The bulk and shear moduli of the matrix and their Laplace
transf ormation are

_ B - —E(
2 (g - —E(8) _ _E(

Because the problem is spherical symmetry , the equation of motion in Laplace space can be
written as
@ _ _
a—r'+_(0 - 0g) =psu. 3

In Laplace space, the constitutive relation of the matrix can be expressed in a stress displacement
form as follows:

- 4=|0u = 4=|u
Gr—{Km*’ GFJ a Km 3 J r ] (4a)
0_9:0_4,:{&-% J%-FS[ZR’“*—%@J%' (4b)

Substituting Eg. (4) into Eg. (3) , we obtain
D(0) = 5%, (5a)
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where
_F() 200) 2
D( ) =+ 55 - 50, (5b)
C= Ko+ 26, (50)
The boundary conditions are
r=a, u=o0, (6a)
f=b, G =9 Kn+2G du, 2R-Aé£:2‘ (6b)
) r m 3 m ar m 3 m r .

The solution of the above dynamic problem may be obtained by solving Egs. (5) , (6) and by
taking the inverse transformation of u.

2 Solution of the Problem

Supposing that u can be divided into two parts

u(r,s) = u(r,s) + zan(s) Un (1), (7)

where U, satisfies quasi-static equation and inhomogeneous boundary condition (6) ,i.e. ,
D(Jl) =0, (8a)
r=a, u =0, (8b)

4 4= |u _
N P - Pt

By solving Eqg. (8) , we obtain

—_ _ 1—
up(r,s) = cl(S)r+?Cz(S), (9a)
_ > — >
= = =, =- = =, 9b
T SBKn +41Gn) T 2T S(3 Ko + 4f Gn) (%)
According to Christensen’ s method!”] , let U, (r) be the solution of the following eigenvalue
problem
D(U,) + KU, =0, (10a)
r=a, U,=0, (10b)
U, Uy _
r=ono, ar+hr =0, (10c)
where kis to be determined , and
_2K-4G3 _ E(0) _ _E©@
h="+ag3’ K73a-2)" ®720+v) (10d)
Taking
Un(n) = r'’2a.(n , (12)

and substituting Eq. (11) into Eg. (10a) , we have

2

dr? T, (122)
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A.(a) =0, (12b)
oA, _ _ ;/
[5rJ,:b+hlAn(b) =0, hl—[h- ZJ b. (12¢)
Eq. (12a) is Bessel’ s equation , its solution is
An(r) = Adgo(kr) + AxYao(kr) , (13)

where Jg 2 (kr) , Yg2(kr) are 3/2-th Bessel’' s functions of the first and second kind,
respectively. From the boundary conditions of Eq. (12b) we obtain
An(1) = A1[ Y2 (ka)Jyo (k) - Jz2(ka) Yao (k) ], (14)
where A; is a constant. Because A; can be included in D, (t) , we take Ay = 1. k may be
determined by using the boundary conditions of Eqg. (12¢) ,i.e. ,
hi[ Yy2(ka)Jy2(kb) - Jy2(ka) Ya2(kb) ] +

K[ Ya2 (ka)Jy2 (kb) - Jy»(ka) Ya2(kb)] = 0, (15)
k = kn(n =1,2, ). Hence, we obtain
Un(r) = r"Y2[ Yy2 (ko) Jzz (Kal) - Jz2(ked) Yarz (Kar) 1. (16)

It can be seen that the solution u = uy + Zanun satisfies all boundary conditions. Now we try

to determine d, , and let it satisfy Eq. (5a) . Substituting uinto Eq. (5) yields

D(I) + F&D(U,) = (0 + Faun). (17)
Making use o the results of Egs. (8a) , (10a) and (17) , and taking
w(r) = 2. ar¥2, (18)
we obtain
z Os + K3L) dA, = - P W. (19)

In order to determine d, (s) , the followi ng definition of the finite Hankel’ s transformation is
introduced

W’ (ky) = H[W(r)] :J'brW(r) An(r)dr. (20a)
Its inverse transf ormation ist®
Wi = HTW ()] = 3 A, (20b)
where
2
5 Jyz(kna)[ hi + k%(l- (ﬂ H - [ knJuz (knb) + huduz (knb) 1°
Flla) = 1 K& [ kndz2 (Kb) + hidaz (Kqb) ]2 '
(20c)
Substituting Eg. (20) into Eq. (19) yields
309 = T T (9 = 2T, 2y



The Interface in a Particle- Reirnforced Gonmposte 757

If the inverse transformation of c1 (s) , dn(s) are c1(t) , dn(t) , respectively , the displacement
of the matrix is

3
u(r,t) = cl(t)[r - ?_zJ + Zdn(t) r Y2 Yoz (ke@)Jz2 (Kar) - Jz2(kna) Yaz (Kar) ].

(22)
3 The Normal Stress on the Interface

From Egs. (2) and (4) , the interfacial stress in the Laplace space is obtained as

_ 1- 0
(a9 = sB T a2 o L. (23)

The inverse transformation of Eq. (23) may be written by

o,(a.1) :J’fm B ) T ) ;[aﬂ a (24)

In the following, the matrix is taken as a standard viscodastic solid (E(t) = E + E;
exp(- t/ tm)) ,and the outer boundary is subjected to a step uniform stress

2 (1) =2, H(Y, (25)

where 2 , is a constant ; H(t) is an unit step function.
In the calculation , parameters are taken to be t, = 55,V =0.3,f =0.1, i = 1.0 %
10°Pa, E, = 5.0 % 10°Pa. The normal stress variations with time are shown in Fig.1 (a) (i) .

4 Discussion and Conclusions

Fg. 1 shows the interface stress fluttering at the different time with the particle radius a =

2m, mand 1Q m, respectively. According to the numerica results, the following conclusions
can be drawn:

‘\lhmlu wllln m .i 1|
|I [Il‘\L‘IH il ”HI

a‘,(a,l)/zn
g la. )2y

1 " L _j n il L I
4F - 007 S -007 1 2k-006 | SE-00b v aE-DUT - §F - N T } oF - 006
£ by 1 by
() a=2m (b) a=@m

Fg.1 The relation between interfacial stress and time

1) Under the action of step loading, the interfacial stress shows acute fluctuating effect.
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Both the frequency and the peak value of the stress are very high, and the maximun peak value is
much higher than that of quasi-static solution. From the computational example shown in
Fg.1 (a) , the quasi-static solution isOs(a) = 1.521% o , while the maximun peak value of the
solution in dynamic case is O0,(a,t)) = 5.62, this means that the value of the dynamic
solution considering inertia effect is 3. 6 times that of the quasi-static solution in which the inertia
dfect is neglected. Therefore, if the interface strength is used as a microvoids’ nucleation
criterion , the interfacial debonding is prone to occur when the compasite is subjected to a dynamic
loading. It is obvious that according to the quasi-static solution, the number of the particles
debonded will be less, and the elastic modulus of the compasite will be overestimated.
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Fg.1 The reation between interfacial stress and time

2) Because of the viscous effect of the matrix material , the stress in the matrix will attenuate
during its propagation course, so the peak value of the interfacial stress will go downhill. Fg.1
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(8 (c) give the attenuation curves of the stress with a = 24 m. The maximun peak value of
the stress is5.62 g in Fig.1 (a) (at the beginning of loading) , but in Fg.1 (b) (at the instant
ot = 4t,) and Fg.1 (c) (at the instant of t = 12ty) , it equals to 3.2Z and 2. 02,
respectively. This is one of characteristics in viscoelastic materials which is quite different from
those in elastic ones. It also indicates that the debonding is prone to occur at the beginning of
loading. As time goes on, the debonding damage is not easier to occur than it does at the
beginning of loading, because the stress relaxation leads to the peak values falling gradually.
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3) If the particle volume concentration f is 6
given, the influence of particle radius on the
interfacial stress is not obvious. Fig.1 (a) , (d) and 4
(g) show the stress fluttering at the beginning of the £]3
deformation with a = 2m, §¢m and 1@ m. The
peak values of them are almost the same (about
5.620) ,while a the instant of t = 4tnand t =
12t , the peak vaues are aso amost identical.
They are about 3.5 and 2.0, in Fg.1 (b) ,

(e) , (h) ,and (c) , (f), (i) , respectively.
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It should be noted that the interfacia stress for i
different particle radius can not be the same, and it
is very difficult to seek the exact solution if there are (i) a=1um, t'/ty, = t/tn, - 12
a great number of particles in the matrix. The above Fg.1 The relaion between interfacial
conclusions are obtained by means of the concept of stress and time

average field, however , they are very helpful for
understanding the effects of inertia and viscosity on the interface debonding in the composite
under high triaxiality stress.
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