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Abstract

The coupling of mass diffusion in a solution (or a melt) and the kinetic process on the solidification interface is

described by a linear diffusion equation with the appropriate linear boundary conditions (J. Crystal Growth 8 (1971)

79). In the present paper, the instability and the wave-like solution of the linear problem are discussed after obtaining a

full analytical solution to the governing equations and conditions. The solution is obtained by superposing a non-

steady-state solution on a steady-state solution, as given in (J. Crystal Growth 8 (1971) 79). Results from the completely

solved linear problem presented in this paper are different from those obtained by using only the conditions on the

interface (Phys. Rev. E 60 (1999) 1901).
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1. Introduction

As suggested by many geologists, the non-linear
models can be used to explain the oscillatory
zoning effect observed in naturally grown crystal
[1,2]. The structure variations such as the zoning,
banding and striation effects have also been well
observed under different laboratory conditions
[3–11]. This is the case even for the process of protein
crystal growth [12]. It is widely known that the
structure variations are related to a non-steady-
state process, which is excited by the coupling of

the transport process in the bulk fluid medium
with the kinetics on the solidification interface. In
most cases, the interfacial kinetics is a non-linear
process, which makes the coupling process also
non-linear.

Based on a linear solution of the steady coupling
process presented in Ref. [14], an intrinsic in-
stability model was recently proposed to try to
explain the unsteady coupling process discussed
above [13]. In the model, the non-steady-state
solutions were obtained by using only the linear
boundary conditions without considering the
transport process in the bulk fluid. In the present
paper, the same physical model is re-examined,*Corresponding author.
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and the complete problem with full analytical
solutions is discussed.

2. Mathematical description of the linear problem

A two-dimensional model in a Cartesian co-
ordinate system, with the interface at y ¼ 0; is
presented here. The equations and conditions
governing the concentration in the bulk fluid
Cðx; y; tÞ and the adsorption concentration on the
interface nðx; tÞ can be written as follows [13,14]:
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C ¼ Cmðx; tÞ; y ¼ d; ð2:4Þ

C ¼ Ciðx; yÞ; t ¼ 0: ð2:5Þ

Here, Cmðx; 0Þ ¼ Ciðx; dÞ; D and Ds are respec-
tively the bulk diffusion coefficient and the surface
diffusion coefficient, D=L is the drift velocity of
the fluid molecules entering the absorbed layer
from the adjacent volume, and t stands for the
mean lifetime of an adsorbed molecule on the
interface. All coefficients D; Ds; L and t are
assumed as constants. Eqs. (2.2) and (2.3) describe
the kinetics process on the interface [14], whereas
Eq. (2.1), together with boundary conditions (2.4)
and (2.5), represent the diffusion process. Rela-
tionship (2.4) is the upper boundary condition of
the diffusion region, where d may be considered
either as the thickness of the diffusion boundary
layer [14] or a distance far from the interface [2].
Relationship (2.5) is the initial condition, which
may be omitted in certain cases, such as the
developed process. The boundary conditions at
x ¼ 7L should be available if a finite interface
region jxjpL is considered. In this case, 2L stands
for the typical scale of the step width or the scale
of solidification interface, which may be consid-
ered as infinite in some cases.

Diffusion equation (2.1) describes the transport
process in the fluid region where y > 0; and can be
solved with the boundary conditions of a closed
region, e.g. a region that is rounded within x ¼
7L; y ¼ 0 and y ¼ d: Considering all these, we
should not neglect boundary condition (2.4) when
trying to completely define the problem of the
coupling process. Furthermore, the transport
process should be coupled with the interfacial
kinetics, described by the conditions at boundary
y ¼ 0 in Eqs. (2.2) and (2.3). Thus, the physical
problem should be solved from the equation under
a complete set of boundary conditions, which
should include both the coupling conditions at y ¼
0 and the diffusion boundary condition at y ¼ d:

Both Eq. (2.1) and conditions (2.2)–(2.5) are
linear in this model, and the coupling problem of
the bulk concentration field Cðx; y; tÞ and inter-
facial concentration field nðx; tÞ can be de-coupled.
By using condition (2.2), condition (2.3) can be
reduced to a condition of bulk concentration
Cðx; y; tÞ as

�
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; y ¼ 0: ð2:6Þ

Diffusion equation of bulk concentration (2.1) can
be solved under the boundary conditions of bulk
concentration (2.6), (2.4) and initial condition
(2.5). With this solution, the interfacial concentra-
tion can be obtained by condition (2.2).

3. ‘‘Perturbation’’ expansion

The perturbation theory is generally used to
investigate the linear instability of a non-linear
problem. All the solutions of a linear problem can
be superposed, and there is no limitation on each
of the solution to be a perturbed one. As a result,
the solution of the linear problem presented in this
paper may be formed by superpose a non-steady-
state solution on a steady-state solution shown as
follows

Cðx; y; tÞ ¼ C0ðx; yÞ þ C1ðx; y; tÞ: ð3:1Þ

The non-steady-state concentration C1 could be
either a perturbed solution when jC1j is smaller
than jC0j by at least an orders of magnitude, or an
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ordinary solution when jC1j is comparable or even
larger than jC0j:

Substituting (3.1) into the equation and condi-
tions list in Section 2, the steady-state solution
reduces into the linear steady-state problem as
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¼ 0; ð3:2Þ

C0 ¼ Cm; y ¼ d; ð3:3Þ
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The function Cmðx; tÞ is considered as a constant as
usual and a solution of steady-state linear problem
(3.2)–(3.4) was presented in Ref. [14]. For the non-
steady-state concentration, the linear problem is
described as
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C1 ¼ 0; y ¼ d; ð3:7Þ

C1 ¼ Ciðx; yÞ � C0ðx; yÞ; t ¼ 0: ð3:8Þ

In Eq. (3.7), the bulk concentration is zero at the
boundary y ¼ d: This comes from the assumption
that the final solution is the superposition of a
steady-state solution and a non-steady-state solu-
tion as shown in Eq. (3.1). Linear equations (3.2)–
(3.4) implies that the non-steady-state solution
C1ðx; y; tÞ is independent of the steady-state solu-
tion from Eqs. (3.5)–(3.8) when initial condition
(3.8) is not considered. It is noted that, boundary
condition (3.7) is suitable only for a fixed
boundary y ¼ d such as a solid boundary or to
infinite. However, boundary will be changed for a
free surface as y ¼ dþ d1; where d1 is smaller than
d in order of magnitude, and boundary condition
of a perturbation problem is given into

C1ðx; dþ d1Þ ¼ C1ðx; dÞ þ d1qC0ðx; dÞ=qy ð3:9Þ

for the free surface problem to replace boundary
condition (3.7) for a solid boundary problem.

Instead of the perturbation problem, we con-
sider a problem of only a non-steady-state, where
C0ðx; yÞ ¼ 0: In this case, boundary conditions
(3.7) and (3.8) can be replaced by condition (2.4)
and condition (2.5), respectively. The transforma-
tion may be introduced as follows

Cðx; y; tÞ ¼ C1ðx; y; tÞ � Cm;

nðx; tÞ ¼ n1ðx; tÞ �DtCm=L: ð3:10Þ

The concentrations C1 satisfy Eq. (3.5) and
boundary conditions (3.6)–(3.8) if Cm is a constant
as usual, and the similar conclusion may be
obtained.

4. Non-steady-state solution of the complete

problem

Usually, the structure variations such as the
striation and oscillatory zoning are related to the
non-steady-state variation of the fields in the bulk
fluid medium during the crystal growth, and the
onset of non-steady-state variation of the field
depends on the process parameters. This has
generated great interests in the physics world.

If the perturbation theory is used to analyze the
present problem, the steady-state solution and
the non-steady-state solution can be mapped to the
basic state and the perturbed state. In this case, the
initial perturbation should be zero, and the initial
condition (3.8) reduces to

C1ðx; y; 0Þ ¼ 0:

With this assumption, the non-steady-state linear
problem described by Eqs. (3.5)–(3.8) gives a zero
solution to the bulk concentration C1ðx; y; tÞ ¼ 0
and the interfacial concentration n1ðx; tÞ ¼ 0 for
the perturbation problem. Here, there exists only a
basic state of steady-state solution as discussed in
Ref. [14]. In this case, there is a unique steady-
solution to the linear problem of the diffusion
process that is described by a parabolic partial
differential equation with linear boundary condi-
tions.

To study the case of the non-steady-state pro-
blem in Eqs. (3.5)–(3.8), the developed process will
be considered where initial condition (3.8) can be
omitted. Similar to Ref. [13], the non-steady-state
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solution can be written as

C1ðx; y; tÞ ¼ cðyÞ expðotþ ikxÞ: ð4:1Þ

Here, k is a real number and o may be a complex
number. Substituting (4.1) into (3.5)–(3.7), we can
have a linear problem of function cðyÞ as

d2c
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c; ð4:2Þ
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The general solution of Eq. (4.2) is
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where a1 and a2 are constants to be determined by
boundary condition (4.3) and (4.5). By using
condition (4.4), solution (4.5) becomes

cðyÞ ¼ a3 sh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with o being a complex number in constant a3

a3 ¼ �2a2 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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However, the non-steady-state solution can have a
constant multiply factor because that the equation
and boundary conditions are linear and uniform.

By using solution (4.6), we can get, from
relationship (4.1) and (4.2), the bulk concentration
field and the interfacial concentration field as
shown here
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The non-steady-state problem can be completely
solved once the relationship between o and k is

given. Consequently, full analytical solutions for
both the bulk concentration Cðx; y; tÞ ¼ C0ðx; yÞ
þC1ðx; y; tÞ and the interfacial concentration
nðx; tÞ ¼ n0ðx; yÞ þ n1ðx; y; tÞ are achieved for the
linear problem.

Similar approach can be applied to the problem
with a free surface, and boundary condition (3.7)
will be replaced by (3.9). In this case, the perturbed
boundary d1 is written as

d1 ¼ d � expðotþ ikxÞ; ð4:10Þ

where d� is a constant to be determined. Submit-
ting (4.1) and (4.10) into the equation and
boundary conditions, the problem can then be
solved.

5. Dispersion relation

Substituting solution (4.6) into boundary con-
dition (4.3), the dispersion condition can be
written as followsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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D
þ k2
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To simplify the analysis, the case of infinite
extension in the y direction is discussed in detail.
Translating into mathematical term, this means
that d is set to approach infinite. Under this
condition, term th½ðk2 þ o=DÞ1=2d�-1; and dis-
persion relation (5.1) may be reduced to a third-
order algebraic equation of o shown here,

o3 þ f2o2 þ f1oþ f0 ¼ 0: ð5:2Þ

Coefficient f2; f1 and f0 are real numbers and can
be expressed as

f2 ¼ k2ðDþ 2DsÞ �
D
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D

t2
: ð5:3Þ
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The dispersion relation is given by the solution of
Eq. (5.2), and can be analytically written as

o1 ¼ aþ bþ f2=3;

o2 ¼ aeþ be2 þ f2=3;

o3 ¼ ae2 þ beþ f2=3: ð5:4Þ

Here, e is the cubic root of 1 and is given as
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The fundamental solutions of a and b are
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with p and q are defined as

p ¼ f1 � 1
3
f 22 ; q ¼ f0 � 1

3
f1f2 þ 2

27
f 32 : ð5:7Þ

The criterion forum of Eq. (5.2) is

D ¼ �4p3 � 27q2: ð5:8Þ

The three roots o1; o2 and o3 are all real numbers
if DX0: If Do0; we get one real number and two
conjugate complex numbers for solutions.

The oscillatory zoning is related to the wave
solution of the concentration fields, which requires
a solution of complex o under the condition of
Do0: It requires

2
27
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27
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: ð5:9Þ

By using definition (5.3), we can conclude that the
right-hand side of (5.9) is usually positive, specially
for the case of larger wave number ðkLÞ2b1:
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4D

tL2

� �
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In general, the bulk diffusion coefficient D is
three orders of magnitude larger than the inter-
facial diffusion coefficient Ds; making terms
associated with Ds in formula (5.3) negligible.

Obviously, requirement (5.9) is not easily explain-
able under general condition. A special case was
examined in Ref. [13] where the parameters were
given as

D ¼ 5:5� 10�6 cm2=s; Ds ¼ 1:0� 10�9 cm2=s;

t ¼ 0:25 s; L ¼ 1:0� 10�3 cm:

In the long wavelength approximation ðkLÞ251;
requirement (5.9) can be reduced to

ðkLÞ2o0: ð5:11Þ

In the short wavelength approximation ðkLÞ2b1;
requirement (5.9) can be reduced to

ðkLÞ2 > 0: ð5:12Þ

Results of (5.11) and (5.12) indicate no wave-like
solution of exp½iðkx� oitÞ� in the case of long
wavelength approximation. However, there may
have a wave-like solution in short wavelength
approximation.

Based on the theory of linear parabolic differ-
ential equation with linear boundary conditions,
the wave-like solution may exist for the linear
problem of infinite extension, but does not exist
for the linear problem of finite extension [15],
which is the case related to the crystal growth.

6. Discussions

Coupling of the diffusion process in the fluid
medium with the kinetic process on the interface is
studied in the present paper. A complete analytical
solution to this coupling process can be reached by
solving a parabolic differential equation of linear
diffusion process with linear boundary conditions,
which model the process. Limiting the problem to
a half-infinite space, the solution may be expressed
as the superposition of a steady-state solution and
a non-steady-state solution of the developed
process, where there exists a wave-like solution
with short wave length approximation. Features in
the complete solution to the problem discussed in
the present paper are different from those given by
using only the conditions on the interface. How-
ever, it is still not physically clear how to relate
the initial deviation from the steady-state process
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to the developed state of the non-steady-state
process.

Based on the conclusion in the present paper,
the wave-like solution of a non-steady-state
process may exist under certain conditions, such
as the infinite extension in the x direction with the
short wavelength approximation. The so-called
intrinsic instability was described by a linear
model, which gave a wave-like solution and the
dispersion relation only from the boundary con-
ditions at the interface but not coupled with the
diffusion process in the liquid medium [13].
Therefore, the model [13] may be considered as
an incomplete problem, and its conclusion is not
quite clear in physics and needs to be studied
further in the future.

It should be pointed out that by analyzing the
linear problem, it is not easy to get the wave-like
solution to the coupling process of diffusion in a
solution (or a melt) with the kinetics on the
interface for the general cases. Thus, certain non-
linear factors should be introduced when trying to
explain the oscillatory zoning effect [1,2]. The
solution of the non-steady-state process described
by Eqs (3.5)–(3.8) is not related to the physical
concept of the instability on a steady-state process,
and is independent of the solution of steady-state
process in the linear problem for a developed
process. It is believed that, the non-linear problem
should be introduced to study the coupling
process, and more factors influencing the instabil-

ity of a basic state could be analyzed in greater
details.
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