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Trans-scale Coupling in Multiscale Simulations
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ABSTRACT

Trans-scale coupling plays a significant role in multiscale problems. Since the mech-
anisms governing the trans-scale coupling vary from case to case, to identify and
characterize the governing mechanisms of trans-scale coupling are the most crucial
points in multiscale simulations. The failure of solid media is a typical multiscale
process. This paper chooses two model problems, i.e., damage localization in spalla-
tion of an Al alloy and the catastrophe transition in a rock under quasi-static loading,
to illustrate the trans-scale coupling in different phases of material failure. In the
spallation process the governing mechanism of trans-scale effects is the coupling and
competition between dynamics at different levels, which can be effectively character-
ized by two imposed Deborah numbers. In the catastrophe failure of heterogeneous
media the governing mechanism of trans-scale coupling is the strong and sensitive
coupling between the nonlinear dynamics and the disordered heterogeneity. In addi-
tion, the inverse cascade of damage evolution magnifies the effects of microstructures
on failure and induces trans-scale sensitivity. Although the concept of critical sensi-
tivity seems to be promising in catastrophe prediction, novel concepts and numerical
schemes are still badly needed.
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1. INTRODUCTION

In the past several decades, there has been an
explosive growth of interest in problems in-
volving multiple space and time scales [1–4]
Generally speaking, multiscale problems are
very ubiquitous in nature. These problems can
be categorized into three classes related to equi-
librium, near-equilibrium, and far from equilib-
rium cases, respectively. Among them, prob-
lems in far from equilibrium cases are the great-
est challenges.

For multiscale problems in far from equilib-
rium cases the physical mechanisms or the dy-
namics may differ on different scales [5], and
the interaction between different scales is usu-
ally strong and/or sensitive [6]. As a result, the
similar solutions in mechanics, which root in
identical physics at various scales, are question-
able in these problems. In addition, it is inap-
propriate to deal with an isolated scale of inter-
est, ignoring all other scales. The perturbation
method suitable for the weak coupling condi-
tion also fails in dealing with strong coupling
effects. Therefore what is a suitable method for
these problems?

The advances in computer technology have
enabled us to exploit multiscale problems with
numerical simulation [7]. Many numerical
tools focus primarily on the simulation of the
global or macroscopic response and are there-
fore unable to reproduce critical small-scale fea-
tures and processes that influence the over-
all structural behavior. On the other hand,
direct numerical simulation on a small scale,
e.g., molecular dynamics, are most often be-
yond current capacities and are prohibitive in
real applications. Hence many novel numeri-
cal schemes, which combine atomistic and con-
tinuum simulation, have been proposed to deal
with the multiple scales in the problems [8–
10]. However, the computation is governed
basically by the smallest time scale in the sys-
tem, i.e., atomic vibration on the order of fem-

toseconds (10−15s). Even if the spatial cou-
pling is truly seamless, difficulties caused by
such a small time scale remain unresolved.
For more realistic simulations, multiscale algo-
rithms have yet to be developed for both length
and time scales in balance.

The failure of solid materials is such a typical
process, involving trans-scale coupling of many
space and time scales. Our previous studies
show that the failure of solids has three phases
on different scales: (i) globally stable accumula-
tion of microdamage; (ii) damage localization;
and (iii) catastrophic rupture [11,12] In this pa-
per we use two model problems, i.e., damage
localization in an Al alloy under impact load-
ing and the catastrophe transition in a rock un-
der quasi-static loading, to illustrate the trans-
scale coupling in the second and third phases,
respectively. Although the mechanism and
characterization of trans-scale coupling varies
in different cases, there exist some common
points, which are noticeable and valuable for
the development of new multiscale algorithms.

2. DAMAGE LOCALIZATION IN AN AL
ALLOY UNDER IMPACT LOADING

We consider a problem of damage evolution
owing to the impact of a flying plate of thick-
ness L with velocity νf striking on a target
plate, i.e., spallation. Spallation is a typical
process with coupled multiple space and time
scales [13]. For the time-dependent damage
process, which consists of microcrack nucle-
ation and growth, Table 1 lists all parameters
involved in the problem, with their correspond-
ing dimensions L, T , and M are the notations
of the dimensions of length, time, and mass,
respectively. Note that for simplicity the con-
stant ratio of flying and target plate is assumed
in this paper.

In light of π theorem in dimensional anal-
ysis, these meso- and macroscopic parameters
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TABLE 1. Parameters and their dimensions

Entity Notation Dimension
Macroparameters

sample size L L
material density ρ M L–3

sound speed a L T–1

constitutive stress (like yield strength) σY M L–1T–2

impact velocity νf L T–1

Mesoparameters
nucleation rate of microcrack density n∗N L–4T–1

growth rate of microcrack V * L T–1

microcrack size c* L

in Table 1 form five independent dimensionless
numbers. They are as follows:

Mach number

M =
νf

a
(1)

Damage number

S =
σY

ρaνf
(2)

Imposed Deborah number

De∗ =
ac∗

LV ∗ (3)

Intrinsic Deborah number

D∗ =
n∗Nc∗5

V ∗ (4)

Length ratio

R =
c∗

L
(5)

Of course, the ratio of De∗ to D∗ forms
the other imposed Deborah number De =
De∗/D∗ = a

/
Ln∗Nc∗4. Of the three Deborah

numbers, only two are independent. In addi-
tion, the damage numbers [14] include no pa-
rameters related to damage and indicate the

significance of wave loading (ρaνf ) in compar-
ison with solid yielding strength (σY ).

Roughly speaking, the six numbers can be
cataloged into three groups. The Mach num-
ber M and damage number S are the represen-
tation of macroscopic material properties and
imposed loading. The intrinsic Deborah num-
ber D∗ represents the mesoscopic kinetic of mi-
crodamage evolution. The length ratio R and
the two imposed Deborah numbers De and De∗

are all trans-scale dimensionless parameters In
particular, the trans-scale Deborah numbers De
and De∗ are closely related to mesoscopic kinet-
ics of microdamage evolution and macroscopic
external loading.

In order to understand the role of these di-
mensional numbers in spallation more accu-
rately, we should turn to governing equations
of the damage evolution [15]. For the spallation
process, four equations, the continuum equa-
tion, the momentum equation, the constitutive
equation, and the damage evolution equation,
should be associated as

∂ε

∂T̄
= M

∂ν̄

∂X̄
(6)

∂ν̄

∂T̄
= S

∂σ̄

∂X̄
(7)
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SMdσ̄ = [(1−D)dε− εdD] (8)

∂D

∂T̄
+ M

D

1 + ε

∂ν̄

∂X̄
= f̄

=
1

De

[
f̄N (σ̄) + f̄V

(
σ̄,

T̄

De∗

)]
(9)

where ε is the strain, T̄ = aT/L and X̄ = X/L
are dimensionless temporal and spatial inde-
pendent variables, respectively, ν̄ = ν/νf and
σ̄ = σ/σ∗ are dimensionless velocity and stress,
respectively, D is continuum damage, and f̄
is the dimensionless dynamic function of dam-
age (DFD), which is the agent bridging macro-
scopic mechanics and mesoscopic kinetics of
damage. Depending on mesoscopic kinetics of
microdamage and numerical facility, f̄ can be
expressed in various forms, such as shown in
Eq. (9). For more details of DFD, one can refer
to Bai et al. [13] and Davison and Stevens [15].
M , S, De, and De∗ are four dimensionless pa-
rameters, as introduced above.

Contrary to common sense, the ratio of
length scales on meso- and macrolevels R =
c∗/L does not appear in the governing equa-
tions. This looks very abnormal at first sight.
Actually, the length ratio R has been com-
bined with time scales to form the dimension-
less numbers De and De∗, owing to the na-
ture of the damage evolution problem. The
imposed Deborah number De∗ is a combina-
tion of two ratios: the size-scale ratio c∗/L
and the ratio of two velocities V ∗/a. In ad-
dition, De∗ = tV /tim refers to the ratio of
microdamage growth time scale tV = c∗/V ∗

over the macroscopically imposed time scale
tim = L/a. Hence it represents the competi-
tion and coupling between the macroscopically
imposed wave loading and the intrinsic micro-
damage growth Similarly, De =tN /tim refers to
the ratio of microdamage nucleation time scale
tN =

(
n∗Nc∗4

)−1 over the macroscopically im-
posed time scale tim = L/a. Hence De repre-
sents the competition and coupling between the

macroscopically imposed wave loading and the
intrinsic microdamage nucleation.

We solved Eqs. (6)–(9) numerically with the
finite difference method and studied the effects
of dimensionless parameters on damage evolu-
tion in the target plate. Now that the effects
of the macroscopic numbers M and S on dam-
age evolution are very trivial and have been
well documented in literature, emphasis is put
on the effects of two trans-scale parameters, De
and De∗.

At a fixed time, along the axis X̄ in the tar-
get, there is a damage profile D(X̄). In order
to depict damage evolution simply and clearly,
the effect of imposed Deborah number De on
the evolution of maximum damage in the tar-
get plate, Dmax = max{D(X̄), for a given T̄},
is shown in Fig. 1. In these calculations, Mach
number M , damage number S, and the im-
posed Deborah number De∗ are identical for all
curves. Obviously, the maximum damage in
the target plate increases with decreasing De.
According to the definition, De = tN/tim, the
decrease of De speeding up the process of dam-
age evolution implies that a shorter microdam-
age nucleation time scale leads to higher dam-

FIGURE 1. Effects of De on the evolution of maxi-
mum damage in target plate (M = 0.0305, S = 0.153,
De∗= 0.415)
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age. The nearly linear relation of D versus T̄ is
mainly owing to the time-independent nucle-
ation rate of microdamage, f̄N (σ̄).

Figure 2 illustrates the effects of imposed
Deborah number De∗on the evolution of max-
imum damage in the target plate. Similarly to
the effect of De, the maximum damage in the
target plate increases with De∗ decreasing. Ac-
cording to the definition, De∗ = tV /tim, the
decrease of De∗ accelerating the damage evolu-
tion process implies that a shorter microdam-
age growth time scale leads to higher damage.
The “explosive” increase of D for smaller De∗

results from the time-dependent growth rate of
microdamage, f̄V (σ̄, T̄

/
De∗). This is a reflec-

tion of the compound damage noted by Davi-
son and Stevens [16].

Then, what is the crucial difference between
the effects of the two imposed Deborah num-
bers De and De∗? Our further simulations show
that De∗ affects damage localization behavior
significantly Fig. 3 shows the normalized ac-
cumulated damage distribution at a fixed time.
The damage is normalized by its corresponding
maximum damage in the target plate. It is ev-
ident that damage distributes heterogeneously
in the plate. In particular, when the imposed
Deborah number De∗ decreases, the damage

FIGURE 2. Effect of De∗ on the maximum damage
evolution in the target plate (M= 0.0305, S= 0.167,
De = 65.9)

FIGURE 3. Effects of De∗ on damage localization
(M= 0.0305, S= 0.153, De = 65.9, T̄ = 2.33)

gets more localized in the plate. However, in
contrast to the marked difference in Fig. 3, the
simulations show that the mere variation of De,
namely the mere variation of the microdamage
nucleation rate, does not affect damage local-
ization behavior at all, as shown in Fig. 4.

Obviously, the damage evolution and local-
ization in spallation result from the trans-scale
coupling. Physically speaking, there are three
kinetic processes at two levels involved in spal-
lation: the macroscopic impact loading, the nu-

FIGURE 4. Effects of De on damage localization
(M= 0.0305, S= 0.153, De = 65.9, T̄ = 2.33)
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cleation of microdamage, and the growth of
microdamage. The imposed Deborah num-
bers De = a

/
n∗Nc∗4L = tN/tim and De∗ =

ac∗/LV ∗ = tV /tim essentially root in the trans-
scale nature of spallation. Moreover, they are
related to the competition and coupling be-
tween damage evolution processes at different
scales. As mentioned before, De and De∗ are
related to the coupling between the process of
macroscopic loading and the process of micro-
damage nucleation and the coupling between
the process of macroscopic loading and micro-
damage growth, respectively. For a given im-
pact loading time, smaller De means a higher
microdamage nucleation rate, and smaller De∗

physically means faster microdamage growth.
Therefore either smaller De or De∗ results in
more damage in the plate. This is qualitatively
consistent with numerical results (Figs. 1 and
2). Alternatively, the thicker the sample size L,
the smaller De and De∗, and then the more dam-
age. This demonstrates the well-known size ef-
fect in spallation.

However, the damage localization behavior
should be attributed to the imposed Deborah
number De∗ only. For a given real stress the
DFD in the right-hand side of the damage evo-
lution equation (Eq. (9)) are controlled by De
and De∗, respectively. On the basis of the
above discussion on De and De∗, these two
terms, f̄N and f̄V , correspond to the contri-
bution of microdamage nucleation and growth
to macroscopic damage evolution, respectively.
We name the accumulated damage contributed
by nucleation and growth of microdamage as
nucleated damage and grown damage. This
is in accord with the concept of simple and
compound damage proposed by Davison and
Stevens [16]. Therefore the mesoscopic basis
of simple and compound damage is nucleated
damage and grown damage, respectively.

Figures 5(a) and 5(b) illustrate nucleated
damage and grown damage in the target plate,
respectively. Figure 5(a) shows that microdam-
age nucleation results in relatively inhomoge-
neous distribution of damage, which is caused

(a) Nucleated Damage v.s. De∗ (b) Grown Damage v.s. De∗

M=0.0305, S=0.153, De=65.9, T̄=2.33

FIGURE 5. Variation of nucleated damage, grown damage, and flowed damage with De∗
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by the heterogeneous distribution of stress in
the target plate. Since D << 1, the history
of stress distribution is almost the same for all
cases with the same Mach number M and dam-
age number S. Therefore the nucleated damage
is the same for cases with the same De but dif-
ferent De∗ (Fig. 5(a)). However, the grown dam-
age varies significantly for cases with different
De∗, as shown in Fig. 5(b). Generally, when
De∗ decreases, the grown damage increases and
gets more localized in the target plate. Com-
paring Fig. 5(a) and Fig. 5(b), we can see that
for cases with smaller De∗, grown damage is
much more localized than nucleated damage.
Actually, the term of grown damage serves as a
positive feedback in Eq. (9). The heterogene-
ity of nucleated damage will be amplified by
the microdamage growing. The amplification
gets stronger with De∗ decreasing. Therefore
it can be seen that the damage localization is
caused by the growth of microdamage. Since
the growth of microdamage is controlled by
De∗, De∗ is closely related to damage localiza-
tion, and damage is prone to localize in materi-
als with smaller De∗.

In one word, in the concerned problems with
both macro- and meso- length scales, L and
c∗, the governing mechanism is the trans-scale
coupling of three corresponding time scales,
which are characterized by two Deborah num-
bers. To deal with this kind of multiscale prob-
lem, much more attention should be paid to
time scales, apart from various length scales.

3. CATASTROPHE TRANSITION IN A ROCK
UNDER QUASI-STATIC LOADING

Damage evolution in heterogeneous media like
rocks is a key problem in science. The catas-
trophe transition from damage accumulation
to rupture is the most important feature in
the problem. Recent works suggest that the
catastrophe transition in rocks can be regarded
as a trans-scale process from mesoscopic scale

to macroscopic scale, and eventually to global
scale, spanning a wide range of space and time
scales. Although the formulation in Section 2
can help us deal with damage evolution to
localization, it does not provide insight into
the very catastrophic rupture of solid media.
Hence we turn to numerical simulation to in-
vestigate the catastrophic rupture process.

In order to effectively consider the multiscale
coupling effects, we established a multiscale fi-
nite element model (MFEM). It is actually a
multilevel, self-adaptive finite element model
In this paper we just give a brief description of
the model. More details can be found in Rong
et al. [17].

In MFEM, the 4–8 nodes serendipity ele-
ments and the linear elastic brittle constitutive
relation are adopted. In addition, it is assumed
that the damage criterion of a mesoscopic ele-
ment follows the Coulomb criterion:

F = |τ|+ µσ− τS > 0 (10)

where µ is the frictional coefficient and τS is the
inherent shear strength. In the simulation, if the
stress state of an element satisfies this inequal-
ity, it will be adaptively refined to four smaller
elements, and when an elementary element,
i.e., the finest element, does satisfy this inequal-
ity, it is assumed to be damaged. In accordance
with Eq. (10), the damage of elements may ap-
pear at three different directions (Fig. 6(b)) so
that the elements can be distinguished as intact,
partially damaged, and entirely damaged. Both
the initial elastic modulus and the friction coef-
ficient µ are assumed to be identical for all ele-
mentary elements. However, the material het-
erogeneity is described by varying τS of ele-
mentary elements, according to a Weibull dis-
tribution h(τS) = m(τm−1

S

/
ηm) exp[−(τS/η)m].

With this model we studied a rock sample
under in-plane pressure (Fig. 6(a)). Both the
height and width of the sample are 0.1 m. Its
upper surface is the loading surface, while the
lower surface is fixed. Although this is a plane
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(a)

(b)

FIGURE 6. (a) Schematic of the model. (b) Three-dimensional damage in elements

stress problem, three-dimensional damage can
also occur on three different orientations in one
element, as shown is Fig. 6(b). After an element
fails in one direction the elastic modulus in this
direction will be reduced.

Similar to the process of spallation, there
are several time scales in the failure process of
rocks, e.g., external loading time tex, the stress
relaxation time tP , and the damage relaxation
time tD. In the simulation the quasi-static load-
ing mode is used, which implies

tP << tD << tex (11)

Inequality (11) physically means that in one
loading step the external load remains un-
changed until the last damage happens, and
stress redistributes if only damage occurs. Ac-

tually, the latter condition can be automatically
achieved by solving the equilibrium equation
of stress. In our simulation the Young’s modu-
lus is E0 = 47.23 × 109 Pa, the Poisson’s ratio
is ν = 0.3, the friction coefficient is µ = 0.639,
and the parameters of Weibull distribution for
inherent shear strength τS are m = 3 and η =
3.10 × 107 Pa, as given by Jarger and Cook [18]
for marble. In order to check the mesh effect
we compared the results obtained by the self-
refined FE and the FE with the finest meshes
only. The error is characterized by the differ-
ence between the damages of the two simula-
tions after catastrophe. The damage of the self-
refined FE simulation is 7.15%, and that of the
FE simulation with the finest meshes only is
7.37%. The consistency of the two results sug-
gests an acceptable mesh effect.
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Figure 7 shows the nominal stress-strain
curve and damage pattern evolution in a sam-
ple [19]. At the initial stage (e.g., step 202),
damage is relatively uniform. As damage accu-
mulates, damage clusters are formed (e.g., step
502, step 531). At last, the catastrophic rupture
happens (step 531).

Let us make a detailed observation on the
damage pattern evolution in step 531. In fact,
step 531 can be divided into 33 substeps [19]. In
each substep the stress is in equilibrium, while
damage can still evolve and cause stress to re-
distribute in the next substep. Figure 8 shows
the damage pattern at various substeps in step
531. Obviously, in this step, damage coales-
cence expands to become the largest damage
cluster and causes an inverse cascade of dam-
age from a small scale to a large one, and even-
tually to a global scale. Hence the catastrophic
rupture can mainly be attributed to damage co-
alescence.

Then, what is the governing mechanism
causing the trans-scale damage coalescence and

the eventual catastrophic rupture? We sup-
posed that damage evolution leads to stress
redistribution, and then stress redistribution
can speed up damage coalescence. We define
the stress transfer distance as the distance be-
tween a newly damaged element in one sub-
step and the element where its Coulomb stress
increases in the same substep. Let us compare
the stress transfer distance and the stress incre-
ment at different phases in the loading process
(Fig. 9), in which the stress transfer distance is
normalized by d0, the dimension of the finest-
scale element. It is evident that comparing
with the damage accumulation phase, much
stronger damage-induced stress redistribution
occurs during catastrophe transition, which can
be characterized with much larger stress incre-
ments induced by a damage event within a fi-
nite stress transfer distance [19]. Owing to the
heterogeneity of the sample, the stress redis-
tribution is a strong nonlinear dynamical pro-
cess. During catastrophe transition the nonlin-
ear dynamics of stress redistribution interacts

FIGURE 7. The damage evolution patterns. The numbers (like 2, 202, 502, etc.) denote the quasi-static
loading steps. In the patterns, there are three kinds of darkness: black indicates entirely damaged; gray
indicates partially damaged; and white indicates still intact
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(a) Substep 1 (b) Substep 26

(c) Substep 27 (d) Substep 33

FIGURE 8. The damage coalescence during the catastrophic transition. In the pattern, there are three
kinds of elements with different chroma: black indicates the damaged elements forming the largest damage
cluster; gray indicates those damaged elements elsewhere; and white elements are still intact

FIGURE 9. Stress transfer distance distribution: (a) the early stage of damage accumulation; (b) the later
stage of damage accumulation; (c) the catastrophic rupture
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strongly with the heterogeneity of the sample.
The strong interaction causes a very high stress
increment in far field of the sample, which
leads to damage coalescence, and eventually to
catastrophe rupture. Therefore the underlying
mechanism of the trans-scale, inverse cascade
of damage during the catastrophe transition is
the coupling between the dynamical nonlinear-
ity and the disordered heterogeneity.

The coupling between the dynamical nonlin-
earity and the disordered heterogeneity makes
the catastrophe prediction a real challenge for
us. Owing to the strong coupling, the catas-
trophic failure of solids may sensitively depend
on some details of mesoscopic heterogeneity.
This is a trans-scale sensitivity. In theoretical
analysis, trans-scale sensitivity invalidates the
global mean field approximation and many ho-
mogenization methods. In numerical simula-
tion, trans-scale sensitivity causes mesh sensi-
tivity. Since the trans-scale sensitivity is very
tricky to deal with, to develop new concepts of

numerical schemes for catastrophe prediction is
a real challenge focus.

Finally, we can define a parameter to charac-
terize the trans-scale sensitivity quantitatively.
The concept of trans-scale sensitivity means
that in heterogeneous brittle media the re-
sponse of the sample to controlling variables,
like external loading, may become significantly
sensitive as the sample approaches its catas-
trophe transition point. There may be vari-
ous definitions of the response and the sensi-
tivity. Figure 10 shows the variation of the sen-
sitivity defined by energy release versus the
boundary displacement in the process. It can
be found that there is a significant increase in
trans-scale sensitivity S when the sample is ap-
proaching its catastrophe transition. Hence if
the energy release and the governing variable
are both measurable, the sensitivity may pro-
vide clues to catastrophe prediction. This con-
cept has been applied to rock tests and earth-
quake forecasts and looks promising. From the

FIGURE 10. Trans-scale sensitivity based on MFEM simulation
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viewpoint of multiscale problems the sensitiv-
ity reflects the strong correlation between the
extreme events at larger scale and the events at
intermediate to small scales. In particular, this
implies the significant effect of trans-scale sen-
sitivity in multiscale simulations.

4. SUMMARY

Trans-scale coupling plays a significant role in
multiscale problems. Since the mechanisms
governing the trans-scale coupling vary from
case to case, it is truly important to con-
cretely demonstrate the governing mechanisms
of trans-scale coupling in various cases. Only
after that can we can establish effective theoret-
ical characterizations or numerical schemes for
trans-scale coupling effects.

The failure of solid media is a typical mul-
tiscale process. This paper chooses two model
problems, i.e., damage localization in spallation
of an Al alloy and the catastrophe transition in
a rock under quasi-static loading, to illustrate
the trans-scale coupling in different phases of
material failure.

In the spallation process the governing
mechanism of trans-scale effects is the coupling
and competition between dynamics at different
levels, which can be effectively characterized
by the two imposed Deborah numbers.

In the catastrophe failure of heterogeneous
media the governing mechanism of trans-scale
coupling is the strong and sensitive coupling
between the nonlinear dynamics and the dis-
ordered heterogeneity. In addition, the inverse
cascade of damage evolution magnifies the ef-
fects of microstructures on failure and induces
trans-scale sensitivity. How to deal with the
trans-scale sensitivity might be a big challenge
in multiscale simulations. Although the con-
cept of sensitivity seems to be promising in
catastrophe prediction, novel concepts and nu-
merical schemes are still badly needed.
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