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te concept of equilibrium in crack numerical density is applied to analyze the process
llective damage evolution for short fatigue cracks. The damage moments with respect
ack numerical density and crack length are adopted to evaluate the damage extent of
ersive short cracks. The analytical results show that the crack growth rate is in relation
he “zero-th” order of damage moment Dy, and the “first” order of damage moment D,
reases exponentially with fatigue cycles whereas D, is linearly proportional to D;.

It has been noticed that the formation and the development of short fatigue cracks in
some metallic materials present collective evolution characteristics, namely that the damage
Eﬁmu]a.tion due to surface short cracks in the primary stage of fatigue failure is dominated
by the initiation and propagation of a large number of dispersed short cracks [1-6]. The
‘most essential character of the collective damage is that the number of short cracks gradually
increases with an increasing number of fatigue cycles [1-6].

To deal with such a problem, a few investigators [5-7] carried out statistical simulations
and illustrated graphical displays of short-crack development so as to describe the collective
evolution of short cracks. In addition, the concept based on the balance of crack-numerical-
density was invoked to analyze the behaviour of the collective damage (8], which seemed to
be an applicable approach to account for the collective behaviour.

At the primary stage of fatigue damage in some materials, short cracks may initiate
sporadically and the interaction between cracks is negligible. Thus, the equilibrium equation
based on the balance of crack-numerical-density within the concerned phase-space is 8] :

2] a
5 "6 t) + 5o 14(e) -nle,t)] = Ny~ nu(e) , (1)

where A is the crack growth rate, n, is the crack nucleation rate, and n is the crack numerical
density which is such defined that at time ¢, the number of cracks with sizes between ¢ and
¢ + de within a unit volume is nde. The above equation is in the form of a non-dimensional
expression, and the non-dimensional coefficient Ny = (n},-d)/(n"- A*), with n}, being the char-
acteristic crack nucleation rate, A* the characteristic crack growth rate, n* the characteristic
crack numerical density and d the characteristic microstructural dimension of the material
concerned (e.g. grain diameter). Eq. 11is established based on the consideration that the
total number of short cracks is produced by both the crack nucleation and the crack growth.
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If the initial condition for Eq. 1 is that n(c,0) =0 and that the initial crack length before
growth is zero, then the theoretical solution of Eq. 1 is [9] :

n(c,t) = ﬁn{i) Ng 'ﬂu[c') de' . (2)

The implication of (c,t) is that the crack with its length of n at t = 0, will grow to length
¢ at time ¢ under the growth rate of A(c).

In order to describe the damage extent of dispersive short cracks, the damage moments
may serve as promising parameters. A series of damage moments are generally defined:

[=+]
Dm='7f n(c,t) - ¢™de, (3)
0

where 7 is a non-dimensional coefficient and m = 0,1,2,---. Tt is evident that D, the
“zero-th” order of damage moment, is in relation to the total number of cracks and Dy, the
“first” order of damage moment, corresponds to the total crack lengths. In the following,
the characteristics of damage moments in the collective evolution of short fatigue cracks are
theoretically analyzed. The relation between crack growth rate 4 and Dy is inferred, and the
variation of Dy and D, with respect to time ¢ is evaluated.

2. CORRELATION BETWEEN CRACK GROWTH RATE AND DAMAGE MOMENTS

In Egs. 1 and 2, the crack growth rate A is only regarded as a function of crack length
¢, i.e. Ais independent of time ¢ or the progression of fatigue cycling. However, at different
stages of fatigue damage, A may vary not only with ¢ but also with ¢.

Consider that A is a function of ¢ and ¢ with the two variables acting independently:

Ale,t) =G(e) - T(t) , (4)

where the value of T'(t) is always positive and Jo° T(t)dt is not rational in the physical sense.
Substituting Eq. 4 into Eq. 1, one may re-construct the equilibrium equation as,

a i)
-a—t—n[c, t)+ T(t) o (G(e) - n(c,t)] = Ny - ny(e) . ()
Assuming that the particular solution of Eq. 5 is ng(e, t), then one may write,
iie,t) = n(e,t) — no(c,t) . (6)
Introducing Eq. 6 into Eq. 5, one can show,
a d
— file. t Bl - =0. 7)
3 f(e,t) + T(t) e [G(e) - fifc,t)] =0 (
Since the effects of ¢ and ¢ on the crack evolution are assumed to be acting separately, thus,
G(c)  fife,t) = P(e) - Q(t) . (8)

Introducing Eq. 8 into Eq. 7, one obtains,

. + . c dl'
Q(t) = oy - exp {—sk/c.' T(r) dr} , and  Plc) = oy -exp{zk i TZ')} , )
where a; and oy are constants, and k is a coefficient related to the solution. Hence, the
solution to the equilibrium equation is
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- TFk) ..

n(c,t) = no(e,t) + e, t) = no(c,t) + f G{{c; exp[st - (k)] dk , (10)
0

e F(k), function of a; and o, is determined by the boundary and the initial conditions

ming that F(k) is always integrable], T'(k), corresponding to k, is the portion of crack-

swih-rate relevant to time ¢, and

k| dc /

el .
(k) ‘*L & Df Ty(r) d»,—]
' Consider that Ti(t) is independent of k, and t tends to infinity. Making use of the
* Riemann-Lobergue lemma [10], one sees that,

' TF(E) . .
Df G Pl RNk =0 (11)
'_'fh‘lls, the solution (Eq. 10) tends to mo(c,t). If T(t)]t~00o = To (a bounded parameter),
referring to Eq. 2, one finds,

n(e,t) — no(e,t) = Tiolc) = ﬁ%@ [ N ma(eae (12)

The physical implication of the irrelevance between T (t) and k is that the crack growth rate
A is independent of the distribution pattern of crack numerical density n(ec,t), although
A depends on n(c,t). Note that Dy(t) is the total number of cracks:

Do(t) = Tn(c,t] de=t- fn,.,[c) de . (13)

Obviously, Ti(t) = Tk(Do) is in accordance with T} being irrelevant to k. In this case,
A = Ale, Do(t)] = G(c) - T[De(t)] - (14)

On the other hand, consider that A is relevant to the distribution pattern of n(e,t), i.e.
T, depends on k. If there is a series of k; which enable ¥(k;) # 0, ¥'(k;) =0 and U"(k;) # 0,
then let §; = (m/4)sgn¥"(k;). When ¢ tends to infinity, according to the stationary-phase-
theorem [10], one derives,

n(c,t) — To(e) + —é]i?) i {F(kj].’f‘,- (t)-exp [x’ (k,-f Gd(i’] —k; f Ty;(r) dr + Bj)} } , (15)

i=1 0

where k; (j = 1,2, - N) are stationary-phase-points, and

t t g =

4 f (a—-—%f])k_d—r — 2k f (a g;gf))kl d'r\
0 3 0 £

Eq. 15 is the solution for the case when T}, is dependent on k, which is equivalent to the case

when A4 is correlated with Dy, (m > 1). The analysis of Eq. 15 suggesis that n(c,t) will vary

with ¢ in an oscillating pattern of distribution.

Our previous investigation (8] indicated that, crack numerical density n(c,t) increased
with time t (fatigue cycles) monotonically and tended to a stable distribution. For such a

L
z

T;(t) = V7
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situation, therefore, one may argue that the crack growth rate A is dominated by the crack
length and the zero-th order of damage moment Dy:

A= Ale, Do(t)] - (16)

3. RESPONSES OF THE FIRST ORDER OF DAMAGE MOMENT
Similar to Eq. 1, the equilibrium equation with respect to [c-n(ec,t)] can be expressed as
a a
é-E[c -nfe,t)] + E[A c-nfc,t)] = Ng-c-ny(e) + A-n(c,t) . (17)

By taking into account the propensity of short-crack behaviour, the following expressions for
A and n, are proposed, which are required in the derivation of the solution for D;:

1—(1—Ag) e (e<1)
Ale) = { d-c (e >1) (18'}
and .
na(e) = { " o= (19)
0 (c>2)

where Aq4 is the crack growth rate at ¢ = 1, and d is the ratio of non-dimensional aver
grain diameter d to A(0). Since c is normalized by d, thus Aq is the crack velocity at b’
time the crack tip reaches the first grain boundary. ;

Regarding the definition of D, and the balance of the crack system, one may have,

Dlzfyf n(c,t)-ede = (a-t+Dj),
0

where

5 mN i g d ’
& j{; g ¢ ny(c)de
and -
t 1 _ d rt
* _ " T, ! = " 3
Dl_ﬁ dtj;[A d- n(c,t]dc—kq[)Dﬂt]dt .
Eq. 20 can be rearranged as
ot
D - df Di(t) dt' = y[&-t + O(1)]
0
with ; .
= i 7. !
| @(t)—fndtj;[fl d-¢|n(c,t) de .
Let A4g = 1— Aq, x = Aa+d, f1 = fg‘ Ng - ny(c)de and f; = Jrol Ng-c- n,,,[c)dr_:-';
introducing Eqgs. 2 and 18 into Eq. 24, one obtains
t 1 t 1
— 1 ! = ] B !
@(t)—'/; dt‘L n(e,t') de x/‘; dtj; ¢ nfc,t')de,

in which

1 "
f n(c,t*)dcz,@l-t'—f Aq-n(l,7)dr,
0 0
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1 1 #
f ¢ nfe,t)de=fy-t'+ j; A-nfc,t')de— f Ag-n(l,7)dr . (27)
0 0
5 and 27 were developed such that the balance of n(e, t) for cracks with lengths between
1 was considered. After the derivation of the integrals from Eq. 25 through Eq. 27,

Jlowing result is achieved,

éi+E;-t+£;-t“+E.;-exp(fia-t)+S;-exp(zﬁa-t} (t < to)
e(t) = (28)
bt (t > to)
. Ay-q-Ng[8(24a — 1) + Ad] E*:Ad-q-Ng[4[2fid—1]+Ad]
i 164 ’ 2 8 A3 )
t_[1—(1),31—-'}'-{32_q-NE(3fi§—4jd+1] E,:_Ad-q-Ng(zjd—n
&7 201+ Aa) 8 A% £ oM 24% ’
B _ i : s
6;:__Ad q‘4Ng 3 56: [1 &)ﬂl —-1 ﬁ2'3q Ng, and q:l ’T_ .
16 A% 2(1+ Aq) 8 1+ Ag

Usmg the initial condition of D;(0) = 0 and substituting Eq. 28 into Eq. 23, one finally
obtains the solution for Dy (1):

[51 + &yt + Es-exp(Aq-t) + £4-exp(244-t) + EE‘SXP(J'Q]"Y (t <to)

Di(t)= 7 i 29
1(t) 2'Y-t'fs+'T'[exP(d‘t)_1](2Ea+a-d) st (29)
—_—— — 0
d d?
where gra 2t 23 -
o * d
&1:"—2& __st! 52:_'?3-1 3164(1+m)1
263 - A &ra 26 & Ay | & -Ad
| e — (ST % M TR )
h=gz_3" © ( ==t Y i —d " 0A—d
70 —
%0 60} Ad /
i . /
=70 sof g? j
.. 0. !
- = 40 = e g‘g rf /
™~ - - 04 oy
a” o g f’
10

Fig. 1 Variation of D;/~ with Aq and datt=3.0 Fig. 2 D;/7 versus t at d=1
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Fig. 1indicates that D, increases with increasing value of A4 and d with the influence of
Aq being less sensitive in comparison with that of d. Fig. 2 shows that D; increases sharply
with ¢, in which the curve is approximately of exponential tendency. Upon comparing &
with (&-d), it is noted that the former is relatively small. Consequently, when ¢ > t;, Eq. 29
reduces to

D, = é1?'}’[9.:@((1- t)—1]. (30)

" The above equation is in accordance with the resultant expression for Dy from a numerical
simulation in Reference [8|, in which '

Dy = “lexp(x-t) - 1], (31)

with w and k being material parameters. Eqs. 30 and 31 suggest that Dy and D; are linearly
correlated, i.e.
D]_:K.'Dl'i-w. (32)

4. CONCLUSIONS

The main conclusions of this study are drawn as follows:

(1) For the case that the crack numerical density converges to a stable distribution as
the number of fatigue cycles becomes large enough, the crack growth rate is predominantly
correlated with the zero-th order of damage moment and with the crack length.

(2) The first order of damage moment becomes larger with increasing values of grain size
and with escalating obstacle effect of grain boundary against crack growth.

(3) The zero-th order of damage moment increases linearly with an increasing number of
fatigue cycles. The first order of damage moment enlarges exponentially with an increasing
number of fatigue cycles, whereas D; and D; are linearly interrelated, when the number of
fatigue cycles is beyond a critical value.
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