Key Engineering Materials Vols. 145-149 (1998) pp 113-122
© ( 1998) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/KEM.145-149.113

Dislocation Emission and Cleavage Process at Crack Tip

T.-C. Wang
LNM, Institute of Mechanics, Chinese Academy of Science, Beijing 100080, China

Keywords: Dislocation Emission, Cleavage, Mode | Crack, Cohesive Zone

ABSTRACT

The competition process between dislocation emission along a pair of symmetric slip planes
and quasi-cleavage at Mode I crack tip is investigated in this paper. The equilibrium positions
and the total number of emitted dislocations are determined based on Peierls framework. The
fundamental physical events at the crack tip are reviewed. The crack blunting effects on the
stress fields near the top of the blunted crack are analysed.

1. INTRODUCTION

During the last two decades much experimental and theoretical work has been published con-
cerning the brittle versus ductile behaviours of materials. The fundamental physical events at a
crack tip include dislocation nucleation, dislocation emission and crack cleavage. The process of
dislocation emission from a stressed crack tip has been observed by many authors{1,2,3]. Rice
and Thomson[4] presented a dislocation emission model to characterize the plastic shear at a
crack tip. Rice[5], Schoeck[6] and Rice et al.[7] have reanalyzed the Rice-Thomson criterion on
the basis of the Peierls concept.

A new approach was developed by Wang[8] with a slightly modified Rice’s model. Both
the dislocation nucleation and emission from the crack tip were analysed. A unified model
for dislocation nucleation, dislocation emission and dislocation free zone has been proposed
by Wang[9]. A general theory of brittle fracture criterion accounting for the effects of the
dislocation emission has been developed by Wang[10].

Recent experiments[11,12] have revealed a new mechanism of quasi-cleavage fracture by
forming a nanocrack in the Dislocation Free Zone and by linking the nanocrack with the main
crack. Zhu et al.[13] have analyzed the quasi-cleavage process driven by dislocation pileups.

The competition process between dislocation emission and quasi-cleavage at a Mode I crack
tip is investigated in this paper. The dislocation can emit on a pair of symmetric slip planes of
angle a with respect the crack plane. The equilibrium positions and the total number of emitted
dislocations are determined by means of a Peierls-type stress versus displacement relation in
the cohesive zone. The attention will focus on the fundamental physical events at the crack tip.
The strong interaction between the cohesive zone and the emitted dislocation is revealed as the
DF7Z size is small. The crack blunting effects on the stress fields near the top of the blunted
crack are analysed. A fracture criterion after a number of dislocation emissions is proposed.
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2. Dislocation Nucleation and Emission along inclined
planes

We consider the process of dislocation nucleation and emission on a pair of symmetric slip
planes of angle a with respect to the crack plane as shown in Fig.1. The crack configuration
is remotely loaded by pure mode I stress intensity factor K;. The integer Ny denotes the
total number of emitted dislocation in one arm of the symmetric slip planes. The equilibrium
positions of the emitted dislocation are denoted by r;,¢ =1,2,--- Ny.

Assume the emitted dislocations on each arm pile up behind an obstacle, which is located
at ro5. Hence we have a constraint equation 7, = 7y .

The dislocation nucleation and emission are treated as a pure shear process. An incipient
static distribution ¢, of sliding discontinuity across a pair of symmetric slip planes develops in
the cohesive zones. The equilibrium equation for shear along upper slip planes in the cohesive
zone is

A, = Q0 +A/ (r,p)bu(p)dp + ADS g, (1)
e
where R is the length of the cohesive zone, A = u/(xk + 1)7,n = Ny, and r,;?)(r) is the singular
shear stress due to the applied stress intensity factor K’y

Kb
2V2rr

where b is the magnitude of the Burgers vector along the inclined slip planes.

The second term in the right hand of Eq.(1) is the shear stress produced by the distributed
dislocations in the upper and lower cohesive zones. The third term is the shear stress contributed
by the emitted discrete dislocations in the plastic zones. T[A,] is the cohesive shear stress,

sin « cos 2 (2)

(0)( )=

T[A,] = Tmax sin(27réb—')

3
A, =8 +h (3)
n

where h is the interplanar spacing across the slip plane.
For the i-th emitted dislocation in the upper plastic zone, we have

)+ A [ gl (p)dp+ Ab S 'glrey ) + Ablgolriss) + galrss )l = 71, i = 2,3, Ny

7=1
(4)
where

o) = ==+ lr.p) + n(r.p) (5)

The detailed formulae of the functions go(r, p) and g;(r, p) can be obtained from the following
derivation.
Stress and displacement components can be expressed by complex potentials ®(z) and Q(z),

o1 + 0 = 4Re{®(2)}
Oo +iT1p = @(2) + Q(2) + (7 — 2)¥'(2) (6)
Qu(u —iv), = k®(z) = Q(2) — (Z — 2)9'(2)

The interaction problem between a crack and dislocations has been studied by many authors
(see Lin and Thomson[14] and Suo[15]). The solution can be obtained by the superpositions of
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two solutions. One corresponds to a dislocation solution in an infinite plate without the crack.
The second solution is due to the interaction between the crack and the dislocation. Hence we

have
d(z) = @o(z) + Pa(2) (7)
(z) = Do(z) + N(2)

The potentials ®o(2), and Qo(z) for a pair of dislocations at s and 3§ are given by

<I)O(Z’S)zzé.s-{-zBiE ()
B 35— B(s—73 8
Qo(z,s) = — +l(3z(s_ s;)+f§+i(_§)2)

z— S8

where .
i ) 'ueza )
7r(f$+1)i( 1 +ib) 71’(K+1)i( -+ ib)

b, and b, are the Burgers vector components in 3 and z, directions, respectively, Kk = 3 — 4v

for plane strain.
The second potentials ®;(z) and (4(2) can be expressed as

= ~{(B+B)[F(z,3) + F(z,5)] (9)

M(z) = 61(2)
+(s — 3)[BFi(z,8) — BF(z,3)}

where . oF
Fles) = —— [1 —\/a, sFl(z,s)=z——é“:—’s—)+F(z,s) (10)

In our situation bg = 0,b, = b.
Using Eq.(10), Eq.(9) can be written as

Q4(z,8) = D1(z,8) = —Absina {zg—[F(z,s) + F(2,3)) + 2[F(z,s) + F(z,E)]} (11)

Regarding to the contribution of the continuous distribution of edge dislocations in the

upper and lower cohesive zones, we have
0°(2) = ¥5(2) + 95(2) 02)
°(z) = Q=) + (=)

Potential ®g(z) takes the form

o5(=) = mAIG(() — G,

R 1 R (Xed
66 =2 ], T slovte (13)
1 (R e
G0 == [ ——=belo)dp
nJo z—3
where b,(p) is the dislocation density, s = pe,
2z 2
Czﬁela_lv C*:_ge—mt_l
The reason of introducing the variables ¢ and (. becomes clear later. Similarly, we have

(G () + € HG ()] — il GO — e GG} (14)

| W

Q(z) = ®5(z) + 2m A{sin of
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Furthermore, we obtain
By(z) = Q5(2) = —Asina{z[P'(z) + Q'(2)] + 2[P(2) + Q(2)]} (15)

Z

where

Pe) = [ FGoblo)de, Q)= [ F9blo)do (16)

The singularity of the dislocation density b,(p) is less then \/Lﬁ at the crack tip, while the

dislocation density b,(p) vanishes at the end of the cohesive zone. With the variable translation
(1 + cos §),0<8<m, the dislocation density b,(p) can be expressed as the following sine

p=1%
series
Z O sin(m — —)0 (17)
m=1,2
Then we have |
%br(p) =3 2:1 O [sinmb + sin(m — 1)6] (18)
Substituting Eqgs.(17) and (18) into Egs.(13) and (15), it follows
Ge) = - S Gy (G-
(¢ £ C mz_:l m-1(C)
()= £ am m(:)+gale /2 (19)
Q= ) "?_.: WnQm(z) + s0n€? -
where ha(C)
Po.(z) = e G, _1((, ] — 1ol
hy (0) ] (20)

Qm(Z) = Tfei“Gm_L(C)[l - W—_\/ﬂ—l
hi(C - V(= )1/2 + (¢ = V¢ 7 - )1/2

In derivation above equations, the following formulal® is used

_;]r_'/_l mUm(E)dE — [Q— Cz_llm (21)

§—¢

Gm(C) =

where U,,(£) is the second Chebyshev polynomial

(Jm(é.): S]I}7n9 ’ §:C0397 771,:1,2,"' (22)
sind
The sliding displacement takes the form
R R & sin(m 4+ )8 sin(m — £)8
R e T
r ( 4 m=172 [ ( + %) (m - %)
The shear stress 7,4 along the upper slip plane is
T = Im{e®*[Q(2) — ®(2) + (z — 2)¥'(2)]} (24)

In our situation, the emitted dislocations in the plastic zones are treated as two sets of
discrete elastic edge dislocations. The cohesive zones immediately ahead of the crack tip along
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a pair of symmetric slip planes are considered as continuous distributions of infinitesimal edge
dislocations.
Hence the total potentials ®(z) and Q(z) can be expressed as

0(z) = BO()+7Ai X an[Coy() = Gy (G

ad R
—Asin a(zgz + 2){ Y am[Pm(2) + Qm(2)] + 7y cos aﬂ—z—} (25)
m=1
o n eia e—ia . a n _
—Ab: ]gl P -5 73‘} — Absin a(zE + 2)?:_;[)?(2, z;) + F(z,%;)]

) = (2)+27A & an{=ilGpy(() = G s (C)]

. 2z e ] — 2t Yt
+sin o [€7G], 1 (€) + TG, (G} (26)
n 1 1 eia e—ia
+2Abt Y {cos o - —] + irjsin + —
a‘=1{ [Z—Zj Z—Zj] ’ [(Z—Zj)’ (Z~Zj)2]}

where ®©)(z) is the potential of the K field, z; = ;e is the position of the j-th emitted
dislocation in the upper slip plane.
Using Eqs.(25) and (26), one can obtain the Eq.(1). After some manipulations, it follows

. 1 r
- 9 phia rsin(2 .
go(r,p) = Re {He {(p ) + isin(2a) (= rez“")z} } (27)
a(r,p) = 2sin’ aRe{ei“zajéR(z, s)}

where

o

3} _
r(z,8) = (zé—z +2)[F(z,s) + F(z,3)] (28)

z=re*, s=pe”

The governing equations (1) and (4) can be written as

o0 n Ar
r Q)+ Ab Y. amT(r) + A g(r,15) = Tanaxsin(2777) , 0Sr<R (29)

m=1 j=1

T:g)(ri) + Ab Z amT(ri) + Ab{zlg(riv"'j) + gO(Th'ri) + 91(7'1"7':?)} - Tf 9 1= 25 Tty Nd (30)

m=1 7=1
where

Tlr) = %/ORg(r, p)sin(m — %)0(1/} (31)

The unknown coefficients {a,} and {r;} are chosen as the basic unknown quantities. The
infinite series in Eqs.(29) and (30) can be approximated with a sufficient degree of accuracy by
the corresponding truncated series.

The cohesive zone 0<r<R is discretized into M elements, which vary in size along the region.
The nodal points are given by the following expression

7‘; = g[l +COS(£—k_;4l)E)] ) k: 1727”’11\'{

The governing equations are then transformed into a set of nonlinear algebraic equations
and solved by the Newton-Raphson method.
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The calculations were carried out with materials parameters h/b = 1.0, v = 0.3, 74/p =
0.002, Tmax/pt = 0.1596, and a = 45°.

Fig.2(a) shows variation of local stress intensity factor 1\'?” versus 6P hefore dislocation
emission. Fig.2(b) shows variation of local stress intensity factor K" versus A% /b — N, after
the Ny-th dislocation emission. It is presumed that the nucleated dislocation will emit out of
the crack tip region when K}® reaches the maximum value.

The relation between the local stress intensity factor Ix"f" and the applied stress intensity
factor K is shown in Fig.3. At the first stage, K% is identical to K before any dislocation
emission. At point Ay, the local stress intensity factor K}i” reaches the critical value 1\'}2), then
the first nucleated dislocation is emitted away from the crack tip. The A? is decreased from
point Ag to B; along a vertical line AgB;. Since the emitted dislocation escapes rapidly from
the crack tip with high speed, so that the applied stress intensity K1 can be considered keeping
constant during the dynamic process of dislocation emission.

As the applied stress intensity increases again, the K}ip will increase along the straight line

B1A;. At point A;, the local stress intensity factor 1\"?” achieves a critical value 1\'2), which is
only a little bit larger than I\'}O), the second dislocation will move out of the crack tip region
and stop at distance r,. Then the local stress intensity factor Kf—ip drops from point A; to point
Bs, due to shielding by the second emitted dislocation.

The [x"g) is the maximum value of K¥” in a curve of K¥¥ versus (657/b — 1) after the first

. . .. . . tip - it
dislocation emission. As the sequence is repeated, at point Ay, the K7” is exceeded the KP™»,

cleavage will occur before the next dislocation emission. Here the A% js the intrinsic fracture
toughness of a dislocation free material.

The applied stress intensity factor Ay versus the number Ny is plotted in Fig.4. The dashed
line between points A;_; to B; represents the dynamic process of the i-th dislocation emission.
The solid vertical line B; A; denotes the loading process after the i-th dislocation emission. Fig.5
shows the upper envelope of the actual curve of the applied stress intensity factor K7 versus the
total number Ny of the emitted dislocation. A corresponding upper envelope curve for ]\'}’p is
shown in Fig.6. We should emphasize that the upper envelope of the local stress intensity i'5?
increases very slowly with the increase of the total number N;, meanwhile the upper envelope

of the applied stress intensity factor K increases rapidly.

3. Crack Blunting Effects on Stress Distribution

After numerous dislocation emission, the crack tip will blunt, which results in reduction of the
stress fields ahead of the crack tip. For the sake of simplification, we assume that the blunted
crack tip is a slot with circular top of radius p = nbsiny/cos3. The angles 8 and vy are
introduced in a simplified slip model as shown in Fig.7(b). The slot length 2a is extremely
large compared with b the length of the Burgers vector. In our situation, the length a is chosen
to be about 100,000b.

According to Neuber’s concept, the stress fields near the top of a deep slot are controlled
by the slot length 2a and the curvature radius p at the end of the top. The actual shape of the
deep slot has only negligible effect on the stress fields near the top of the slot. Hence the deep
slot can be treated as an elliptic notch with same length 2a and same curvature radius at the
end of the major axial.

Introduce mapping function w(§)
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where . (a — bo)
a— 0p 9
c=—(a+0b), m=-——=,bi=a 33
2( O)a ((l ¥ b())’ 0 P ( )
Then the infinite region outside the elliptic notch translates into an unit circle and its
exterior in the imagine plane. The infinite elastic plane with an elliptic notch subjects remote
biaxial loading 02° = 03° = 0o and contains two pairs of emitted dislocation arrays as shown in
Fig.7. The cohesive zones are neglected and the positions of emitted dislocations are assumed
to be given by the method of last section after ne%lecting the cohesive zones. The stress field
0

is composed of the applied remote stress field o{” the stress field of the emitted dislocation

27 0
0'1(;-1) and the image stress field due to the free surface of the blunted crack. The image stress
field can be represented by the additional potentials () and ¥(€). Due to symmetry of the

problem, the potential function ¢(§) and #(£) take the form

g2k-1 (34)
Pl SN L3) '
06 = £ i P05

The unknown coefficients a;, and by can be obtained using the boundary collocation method.
In order to check the accuracy of the boundary collocation method, we only apply a remote
biaxial loading. The calculated results are identical with the exact solution by Muskhelishvili[16]
with eight digits accuracy.

Fig.8 shows the normal stress along the extension line from the blunted crack tip for the
case of 7¢/p = 0.002, rop/b = 5000, o = 45°, = 60°, and K7”/uyv/27b = 0.218. As the
applied loading o, increases, more dislocation are emitted. These emitted dislocations produce
the back stress and image stress. It is clear that the effective I stress field agrees very well
with the present calculation results given by boundary collocation method at the distance larger
than 300b. The effective K field used here is defined as

I\vtip

+ o (35)

On the other hand, the effective K field is remarkable higher than that the accurate calcu-
Jation results near the top of the notch. As the applied load is high enough, the peak omqe of
the normal stress s, will shift to some distance away from the notch tip. In this situation, the
FDZ size is about 10b. It means that the strong interaction between emitted dislocations and
the blunted crack will change the stress distribution pattern.

This feature becomes more pronounced when the materials resistance K1 for dislocation
emission is small and the obstacle disappears. The hoop stress versus distance from the crack
tip is plotted in Fig.9 for the case of 74/p = 0.002, ro/b = o0, o = 45°, 3 = 60°, and
K& [ 1ua/27b = 0.1

4. Conclusion Remarks

Based on Peierls framework, the dislocation emission along a pair of symmetric slip planes from
a Mode I crack tip were analyzed in this paper. The equilibrium positions and the total number
of emitted dislocations were determined. The competition process between dislocation emission
and quasi-cleavage is revealed. The interaction between the cohesive zone and the emitted
dislocation results in gradually increase of the resistance K, the critical stress intensity factor

. . .. i ) .
for a new dislocation emission. As the K37 > K the crack cleavage will occur. When the
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total number of emitted dislocations is large enough, the DFZ size becomes small enough, the

hoop stress peak will shift to some distance away from the blunted crack tip. This may lead to

the nucleation of a nanocrack in DFZ.
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Fig.1 A pair of symmetric slip planes emanate from the crack tip.
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Fig.7 (a).Infinite plate with blunted crack, (b). A simplified slip model.
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Fig.8 Hoop stress distribution along the extension line of the blunted crack tip.
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