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In this paper, the author proposes that the generalized Reynolds equation employed in the gas film
lubrication problems, where the flow rates of the Poiseuille flow are calculated from the Boltzmann
equation, can be degenerated for solving the microchannel flow problem in the transitional regime.
Using this approach, the calculated results of pressure distribution in long microchannels show
excellent agreement with the experimental data and the result of the information preservationsIPd
method. The results in short microchannels show excellent agreement with the direct simulation
Monte Carlo method and the IP method. The lattice Boltzmann method solution of the microchannel
flow is examined by comparison with the degenerated Reynolds equation calculations and the
disagreement in the pressure distribution confirms that the lattice Boltzmann method is unsuitable
for the solution of the microelectromechanical systemssMEMSd flows in transitional regime. For
microchannel flows, the degenerated Reynolds equation can serve as a criterion having the merits of
kinetic theory for testing various methods intending to solve rarefied gas flow problems in MEMS
devices in the transitional flow regime. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1867474g

I. INTRODUCTION

Since the 1990s, the micromachining technologies for
the fabrication of microsystems have become more and more
mature. Based on these techniques, the microelectromechani-
cal systemssMEMSd developed rapidly and found many ap-
plications not only in microelectronics, but also in medicine,
biology, optics, aerospace, and other high technology fields.
Both experimental and computational efforts have been un-
dertaken to understand the specific features of the microscale
flows. Microchannel is a basic constituent of the MEMS de-
vices, its geometric form is regular and simplessee Fig. 1d,
but it can reveal many specific features of the low speed
microinternal flows. The UCLA–Caltech researchers first
proposed and fabricated an integrated microchannel/pressure
sensor system using the combined surface bulk silicon
micromachining.1,2 The second generation microchannel2 is
40 mm wide and 1.2mm high with 11 pressure sensors uni-
formly distributed along the 4000mm length of the channel
at intervals of 400mm. The Knudsen number at the outlet of
the channel under STP is,0.055 for nitrogen and is,0.16
for helium, the flow is surely beyond the slip flow regime.
The MIT microchannels3,4 were fabricated in almost the
same way with a height of 1.33, width 52.25, and length
7500mm. Nitrogen, argon, carbon dioxide, and helium have
been used as the working media, the flow of argon has a
Knudsen number of 0.05 at the exit at atmospheric pressure
and that of helium has a Kn,2.5 at the exit at a low pressure
of 6.53103 Pa. The pressure distribution along the channel
and the flow rates through the channel were measured and

the pressure distribution was found to deviate from the linear
distribution of the Poiseuille flow and the experimental re-
sults were compared only with the slip Navier–Stokes equa-
tion solution,1–4 while the flow was certainly in the transi-
tional regime. Utilization of direct simulation Monte Carlo
sDSMCd method5 in simulating microchannel flows is appro-
priate but it has the problems of the excessively high de-
mands on storage capacity and computation time. The nec-
essary gradual regulation of the inlet and outlet boundary
conditions of low speed flow in the channel seems to be
tremendously difficult for DSMC in solving the long channel
problems. Up to the present the DSMC simulation of the
microchannel flow has been limited to very short channels or
to the high speed and even hypersonic cases.6,7 Recently,
Shen, Fan, and Xie8 successfully simulated the microchannel
flows under the experimental conditions1–4 using the infor-
mation preservationsIPd method9,10 by the employment of
the conservative scheme and superrelaxation technique, with
results in excellent agreement with the experimental data.1–4

Still it is desirable to have a direct test by a test stone with
the merits of kinetic theory to verify the IP method. The
author proposes that the generalized Reynolds equation for
calculating the gas film lubrication problem, where the flow
rates of the Poiseuille flow are calculated from the linearized
Boltzmann equation,11 can be degenerated for the solution of
the microchannel flow problem. In the following the gener-
alized Reynolds equation is briefly introduced and its results
in calculating the gas film bearing are compared with the
DSMC and IP calculations. Then it is shown how the degen-
eration of the Reynolds equation is used to solve the micro-
channel problem. Comparison of the calculations of the mi-
crochannel flows by the degenerated Reynolds equation with
the experimental results and the simulation results of the IP
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and DSMC methods shows excellent agreement. The lattice
Boltzmann methodsLBM d solution of the microchannel flow
has been compared earlier with the DSMC and IP calcula-
tions but in this paper it is reexamined by comparison with
the degenerated Reynolds equation calculations and the dis-
agreement in the pressure distribution reveals again that the
lattice Boltzmann method is unsuitable for solving the
MEMS flows in the transitional regime.

II. THE GENERALIZED REYNOLDS EQUATION

The squeezed air bearing problem in the Winchester-type
hard disk drive may be schematically modeled as a lower
plate sthe surface of the spinning platterd moving in its own
plane with a velocity ofU under the upper stationary tilted
platesthe read/write head, see Fig. 2d. The thin film air flow
between the plates is most appropriately described by the
Reynolds equation which is an integrated mass conservation
relationship applied to a cross section of the gap of heighth
between the plates at positionx relating the pressurep, den-
sity r, platter velocityU, and the heighth of the gap, first
developed by Reynolds for continuum fluid.12 It is a mass
conservation relation applied not to a fluid element but to a
cross section of the squeezed air flow and is obtained from
the continuity equation by integrating it over the vertical
direction from the lower plate to the upper plate with the
employment of the momentum conservation equation. By in-
troducingX=x/L, H=h/ho, P=p/po, and the bearing num-
ber L=6mUL /poho

2, the Reynolds equation for the steady
and two-dimensional case can be written in the normalized
form13

d

dX
SH3P

dP

dX
D = L

d

dX
sPHd. s1d

This equation shows that the flow rate through any cross
section is the sum of the flow rates of the Couette flowsthe
right-hand sided and the Poiseuille flowsthe left-hand side
with the negative signd and this rate does not change from
one cross section to another in steady flow. Equations1d is

extended to the slip flow case by Burgdorfer.14 From the
solution of the simple slip flow problem it is known that the
flow rates of the Poiseuille flow with slip boundary condition
surpasses that of the slip-less case by a factorssee, e.g., Ref.
15d of

QP,SL

QP,C
= S1 + 6

2 − s

s
KnD , s2d

wheres is the tangential accommodation coefficient. For the
Couette flow the flow rates have a specific feature, i.e., they
are identical in the slip-less case and the slip casesand even
in the transitional regime cased and have the following value
independent of the Knudsen number owing to the symmetry
of the flow ssee Fig. 3d:

QC = rUh/2. s3d

So the following Reynolds equation is obtained in the slip
flow regime in place of Eq.s1d:

d

dX
FS1 + 6

2 − s

s
KnDH3P

dP

dX
G = L

d

dx
sPHd, s4d

where Kn=l /h is the local Knudsen number. Fukui and
Kaneko11 showed that the solution of the linearized Boltz-
mann equation for the thin film bearing problem can be de-
composed into the solutions of the plane Couette flow and
the plane Poiseuille flow.16 On this basis they derived the
generalized Reynolds equation for the thin film air bearing
problem by employing the flow rates of the fundamental Poi-
seuille and Couette flows solved by the linearized Boltzmann
equation. This generalized Reynolds equation in the isother-
mal case can be written as11

d

dX
FQ̄P,TRsKndH3P

dP

dX
G = L

d

dx
sPHd, s5d

where Q̄P,TRsKnd is the flow rate in the transitional regime
snormalized by the slip-less valueQP,Cd calculated from the
linearized Boltzmann equation for Poiseuille flow and is
shown to be the same as that solved by Cercignani and
Daneri.16 A table database of the calculated values of

Q̄P,TRsKnd for s=1, s=0.9,s=0.8, ands=0.7 is provided in
Ref. 17, and a fitted formula approximation for diffuse re-
flection ss=1d by Robert is recorded in Ref. 18,

FIG. 1. Schematic of the microchannel flow.

FIG. 2. A schematic model of the thin film air bearing flow.

FIG. 3. Velocity profiles and the flow rates of the slip-less and slip Couette
flow.

046101-2 Ching Shen Phys. Fluids 17, 046101 ~2005!

Downloaded 23 Mar 2006 to 159.226.230.75. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Q̄P,TRsKnd = 1 + 6AKn +
12

p
Kn lns1 + BKnd, s6d

where A=1.318 889 andB=0.387 361. Alexander, Garcia,
and Alder18 used the DSMC method to simulate the short
head length air bearing problemsL=5 mm, ho=50 nm
=0.05mm, U=25 m/s,s=1, and also with alternative simi-
lar conditionsd, and found excellent agreement of the DSMC
simulation with the generalized Reynolds equations5d and
Eq. s6d. Note, their description of the latter as continuum
hydrodynamic Reynolds equation corrected for slip is mis-
leading. As we have shown, the generalized Reynolds equa-
tion is a global mass conservation relation applied to the
cross section of the air bearing flow with the flow rate cal-
culated by the Boltzmann equation. Recently, Jiang, Shen,
and Fan19 solved the thin film air bearing problem by the IP
method. Figure 4 shows the comparison of the pressure dis-
tributions for the cases of the actual lengthL=1000mm of
the read/write head calculated by the IP method and by the
generalized Reynolds equation. One can see the agreement is
excellent. This can be considered as a verification of the IP
method used for solving a problem with significance of prac-
tical application in a test having the merits of the strict ki-
netic theory of gases.

III. DEGENERATION OF THE REYNOLDS EQUATION
FOR SOLVING THE MICROCHANNEL FLOW

The generalized Reynolds equations5d is originally de-
rived for application in the thin film air bearing problem with
the lower plate moving with a velocityU and the upper plate
tilted. We suggest using this Reynolds equation to solve the
microchannel flow problem in which the lower plate is sta-
tionary and the upper plate is parallel to the lower one. Ow-
ing to the steadiness of the lower plate the right-hand side
term vanishes, asU=0 andL=0, there is not any contribu-
tion of the Couette flow. Owing to the parallelity of the two
plates the valueH is a constant and can be dropped from the
equation. So the generalized Reynolds equation for applica-
tion to the microchannel problems is degenerated to the form

d

dX
FQ̄P,TRsKndP

dP

dX
G = 0. s7d

The values ofP at the inlet ad outlet of the channel are to be
specified to make the microchannel problem solvable. This
degenerated Reynolds equation is proposed by the author to
be used for solving the microchannel flow in the transitional
flow regime provided the flow rate of the local Poiseuille

flow Q̄P,TRsKnd in transitional regimesnormalized by the
slip-less valueQP,Cd is known from the strict kinetic theory.
There are many works devoted to the solution of the Poi-
seuille flow providing the database for the flow rates at dif-
ferent Knudsen numbers and for different boundary condi-
tions at the surface. With the database incorporated the
degenerated Reynolds equation is valid for any surface con-
ditions of the plates and can be integrated numerically. For
example, the incomplete diffuse reflection cases with tangen-
tial accommodation coefficients=1, s=0.9, s=0.8, ands
=0.7 were calculated in Ref. 17 with table database of the

values ofQ̄P,TRsKnd provided under these boundary condi-
tions. If the practical case has the need, even situations with
two plates having different accommodation coefficients
could be considered. But for illustrative purposes only the
case of completely diffuse reflection,s=1, is expounded
here. For this case the fitted formula approximation of

Q̄P,TRsKnd, Eq. s6d, can be used, and the degenerated Rey-
nolds equation attains the form

d

dX
HF1 + 6AKn +

12

p
Kn logs1 + BKndGP

dP

dX
J = 0. s8d

For the ease of integration the local Knudsen number Kn is
most conveniently expressed throughP, e.g., for hard sphere
models it can be written as

Kn =
l

h
=

C

P
, s9d

where

C =
m

p0h
ÎpRT0

2
= l0/h = Knout, s10d

for we have for hard sphere

l =
m

p
ÎpRT

2
, s11d

and p0 is the pressure at the outlet,T0 is the temperature of
the gas, andm is the viscosity of the gas atT0. The constant
C has the physical meaning of the Knudsen number at the
outlet of the channelfsee Eqs.s9d and s10d, at outletP=1g.
Substituting Eq.s9d into Eq. s8d, one arrives at the degener-
ated Reynolds equation for microchannel flow with the dif-
fuse reflecting surface

FP + 6AC+
12

p
C logS1 +

BC

P
DGdP

dX
= D, s12d

whereD is an unspecified constant to be determined from the
integration and has the physical meaning of the flow rate
through the channel normalized by the slip-less flow rate

FIG. 4. Pressure distribution in the actual length disk driver bearing for
Kno=1.25,L=1000mm, comparison of IP methodssolid lined, and the gen-
eralized Reynolds equation resultssRef. 19d scirclesd.
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value. To illustrate the use of the degenerated Reynolds
equation in solving the microchannel problem we calculate
the pressure distribution for nitrogen in the 1.2340
33000mm3 channel1 and helium in the 1.2340
34000mm channel.2 For T0=294 K the value ofC for he-
lium is 0.155 79, and for nitrogen is 0.052 325. Equation
s12d is integrated under the following boundary condition:

uPuX=0 = pin/pout, uPuX=1 = pout/pout = 1. s13d

The pressurespin at the inlet of the channel are taken as the
experimental data in Refs. 1 and 2. The experimental values
of pin in psi sgauged given in Refs. 1 and 2 and the corre-
sponding values ofuPuX=0 are listed in Table I. The results of
integration are presented in Figs. 5 and 6. From these figures
one sees that the agreement between the IP result and the
result of the degenerated Reynolds equation is excellent, the
curves for the helium case cannot be distinguished from each
other, the experimental data agree with the above two meth-
ods within the limit of the experimental accuracy.

In fact the degenerated Reynolds equation is the global
mass conservation equation obtained from the constancy of
the flux across any cross section of the channel. This idea can
be developed to obtain easily the pressure distribution along
the channel in the continuum and slip flow regimes.

IV. EXAMINATION OF THE FEASIBILITY
OF THE LATTICE BOLTZMANN METHOD
IN SOLVING THE TRANSIONAL FLOW PROBLEM

The lattice Boltzmann methodsLBM, see Ref. 20, and
references cited thereind solves the simplified Boltzmann
equation on lattice points. LBM solution converges to the
Navier–Stokes solution for small Kn. The ease of LBM in
handling complex geometry, simplicity in implementation
and its high efficiency makes it tempting to use it in simu-
lating gas flows in MEMS. Recently Nie, Doolen, and
Chen21 attempts to use it in the transitional regime. It is of
fervent concern for the scientific community to know
whether LBM is capable to simulate correctly the transitional
regime flows in MEMS. Shen, Tian, Xie, and Fan examined
the suitability of using LBM in simulating MEMS flows by
comparison with the DSMC calculations.22 Here the LBM
results are compared with the calculations using the degen-
erated Reynolds equation and the same conclusion as in Ref.
22 is reached, but this time the conclusion is confirmed by a
test stone having the merits of strict kinetic theory.

Equations12d is integrated under the following condi-
tions for a short 13100 mm2 microchannel that has been
considered with LBM in Nie, Doolen, and Chen:21

C = 0.194, uPuX=0 = 2, uPuX=1 = 1, s14d

TABLE I. The experimental inlet pressure data in psisgauged and corresponding values ofuPuX=0 for nitrogen
and helium.

For nitrogen

pin fpsi sguagedg 5 10 15 20 25

uPuX=0 1.3402 1.6805 2.0207 2.3609 2.7012

For helium

pin fpsi sguagedg 8.7 13.6 19.0

uPuX=0 1.5920 1.9254 2.2929

FIG. 5. The pressure distribution in a 1.234033000mm3 microchannel
for nitrogen. Comparison of the degenerated Reynolds equations12d ssolid
lined, the IP methodsdashed lined sRef. 8d, and the experimental datasn, s,
x, L, hd, the figures in the units of psisgauged indicate the pressures at the
inlet of the channeld sRef. 1d.

FIG. 6. The pressure distribution in a 1.234034000mm3 microchannel
for helium. Comparison of the degenerated Reynolds equations12d ssolid
lined, the IP methodsdashed lined sRef. 8d, and the experimental datafn, h,
L, the figures in units of psisgauged indicate the pressures at the inlet of the
channelg sRef. 2d. It is noted that the curves for the degenerated Reynolds
equation and for the IP method can hardly be distinguished from each other.
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C = 0.388, uPuX=0 = 2, uPuX=1 = 1. s15d

The comparison of results of the degenerated Reynolds equa-
tion s12d with those of Nie, Doolen, and Chen by using the
lattice Boltzmann methodsLBM d sRef. 21d are shown in
Figs. 7 and 8. Also shown are the DSMC and IP results.
From the comparison it is seen that the DSMC method, the
IP method, and the degenerated Reynolds equation yield al-
most identical pressure distribution, but the LBM results are
quite different from the calculations of the degenerated Rey-
nolds equation and as well from DSMC and IP results, so it
can be concluded that the version of LBM employed in Ref.
21 is not suitable for simulating microchannel flows in the
transitional regime. For the detailed examination of the fea-
sibility of the LBM method in simulating transitional regime
microchannel flows, readers are referred to Ref. 22 where
among other things the version of LBM used21 was briefly
described. Also, there the comparison of the pressure distri-
butions was given in the form of deviation from linearity, so
the differences between results of various methods were re-
vealed in a more distinguishable way. In this paper the quan-

tities being compared are the pressure distributions them-
selves and the same conclusions are achievedssee Figs. 7
and 8d. But here the conclusion is reconfirmed by the com-
parison with calculations having the merits of strict kinetic
theory.

It is essential to note that besides the air bearing problem
and the microchannel flow problem the Reynolds equation
can also model the gas damping problem in micromechanical
accelerometers,23 so the calculation of the flow rates of Poi-
seuille flow based on rigorous kinetic theory with practically
encountered boundary conditions is actual in many practical
applications.

V. CONCLUDING REMARKS

In the present paper the generalized Reynolds equation
for a hard disk drive gas film lubrication problem with flow
rate of the Poiseuille flow calculated from the linearized
Boltzmann equation is degenerated for solving the rarefied
gas flow problems in microchannels. The results show excel-
lent agreement with the experimental data and the IP results
in the long microchannels. Before this the IP results for long
channel have only been compared with the experimental data
sthe DSMC was not able to accomplish simulation of the
long channel flow where the experimental data were avail-
abled, now they are verified by comparison with results of the
degenerated Reynolds equation. This is a verification of the
IP method for the two-dimensional case having direct signifi-
cance in practical application by a method based on kinetic
theory. With the degenerated Reynolds equation in hand we
have a means with the merit of strict kinetic theory to test
various methods intending to solve the microscale rarefied
gas dynamic flows in transitional regime. The unsuitability
of LBM for solving the transitional flow problem was shown
before by comparison with the DSMC results, now this con-
clusion is reconfirmed by comparison with the degenerated
Reynolds equation. From the practical application viewpoint,
creating a database for the flow rates of the Poiseuille flow
with various combinations of possible surface properties cal-
culated on the basis of Boltzmann equation or other strict
kinetic theory is an actual task for the solution of the micro-
channel flow, the thin film air bearing problem and also the
gas damping problem in micromechanical accelerometers.
The database in the form of fitting formulas is especially
desirable.
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