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The thermocapillary motion of two bubbles along their line of
centers in a uniform temperature gradient is investigated theo-
retically. The bubbles are moving in the direction of the temper-
ature gradient. And the interaction between the leading bubble and
the trailing one becomes significant as the separation distance be-
tween them is decreased greatly so that the bubble interaction is
considered in this case. The appropriate equations of momentum
and energy are solved using the method of reflections. In order
to proceed analytically, sets of transformations between two co-
ordinates are obtained. By using these transformations and the
reflection process, accurate migration velocities of these two bub-
bles in the microgravity environment are derived for the limit of
small Marangoni and Reynolds numbers. These results are em-
ployed to describe the thermocapillary motion of two bubbles and
to estimate the effects of bubble size and the thermal gradient on
the interaction between two bubbles. All of our results for the mi-
gration of the two bubbles demonstrate that the approach of the
second bubble to the first one intensifies the mutual interaction be-
tween these two bubbles and yields some interesting thermocapillary
motions. C© 2002 Elsevier Science (USA)
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INTRODUCTION

It has long been known that when a bubble is present in a
continuous host fluid and subjected to a temperature gradient,
it will move toward the hot portion of the host fluid in the mi-
crogravity environment. This is attributed to the temperature-
induced variation of the surface tension on the bubble interface.
The consequence of the variation of surface tension due to a
thermal gradient results in a tangential stress which, by viscous
traction, causes the motion of the neighboring fluid. As a result,
the bubble is itself propelled to the hot side of the host fluid.
The investigation of the migration of bubbles in fluids is very
important for basic research as well as for materials science and
chemical engineering. Especially, the thermocapillary phenom-
ena has received much attention with the development of the
orbiting spacecraft and increasing prospects of experimenting
and manufacturing in reduced-gravity environments.
1 To whom correspondence should be addressed. E-mail: drrsun@yahoo.com.
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The thermocapillary migration was first investigated by
Young, Goldstein, and Block (1), who provided a theoretical
description for the migration velocity of an isolated bubble in a
bulk fluid with an imposed thermal gradient. This can be shown
to hold when Reynolds and Marangoni numbers are small. They
also observed the movement of a bubble in the liquid. The theory
of Young, Goldstein, and Block was extended by Subramanian
(2, 3) for the case with a convective heat transport in a micro-
gravity environment. Reviews of the literature can be found in
Wozniak et al. (4) and Subramanian (5).

In practical applications, collections of bubbles are usually
encountered, and the interaction between them will be more im-
portant. In a previous article, Meyyappan et al. (6) theoretically
investigated an axisymmetric thermocapillary migration of two
bubbles in the microgravity environment moving along their line
of centers in the quasi-static state, and the bispherical coordi-
nate system is used. They found that the smaller one of the two
bubbles always runs more rapidly than that in the isolated case,
while the larger bubble moves slightly slower than that in the
isolated case. As a corollary, the velocities of two bubbles with
an identical diameter are the same and equal to the value in the
case of an isolated bubble. This result was obtained numerically
by Meyyappan et al., and the analytical one was showed later
by Feuillebois (7). Meyyappan and Subramanian (8) analyzed
the thermocapillary migration of two bubbles in arbitrary orien-
tation with respect to an applied temperature gradient by using
a far-field approximation, while Anderson (9) solved the prob-
lem of two arbitrarily oriented droplets by using the reflection
method (10). Acrivos et al. (11) also predicted the thermocapil-
lary migration velocities of a number of identical bubbles, and
the results agree with the ones shown in Ref. 9. Wang et al. (12)
used the method of twin multipole expansions to study the ther-
mocapillary migration of two bubbles oriented arbitrarily with
respect to the applied thermal gradient and obtain the solution in
the form of infinite series with undetermined coefficients. They
then truncated the series and obtained the coefficients to the
desired accuracy.

The objective of this paper is to make a further investigation
by another approach on the interaction between two bubbles
and predict their thermocapillary motions. To make the analy-
sis tractable, we also restrict our attention only to the case of
small Reynolds and Marangoni numbers without considering
5 0021-9797/02 $35.00
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the convective terms in the momentum equations and the en-
ergy equation. The process of a bubble pursuing another bub-
ble is an unsteady one, but in many practical applications,
such as the glass processing, the Reynolds number based on
the bubble radius and the typical velocity, u0 = Tg|γ ′|R/µ, is
usually low. Here R is the radius of a bubble, Tg the thermal
gradient imposed in the fluid, µ the dynamic viscosity of the
continuous phase, and γ ′ refers to the rate of change of in-
terfacial tension with temperature. In the scaled momentum
equation Re[∂u/∂t + u · ∇u] = −∇ p + ∇2u, as indicated by
Meyyappan et al. (6), if the Reynolds number is low and the vari-
ation of the velocity with time due to the bubble migration is not
large, the Stokes equation will give a better approximation of the
thermocapillary motion of two bubbles pursuing one by another.

An analytical method is used in the present paper by estab-
lishing two coordinate systems fixed respectively at the centers
of the two bubbles. By using the method of reflections, sets of
transformations are adopted to obtain singularity combinations
satisfying the impenetrable and the adiabatic conditions on the
bubble surfaces. In light of these combinations, explicit ther-
mocapillary migration velocities of the two bubbles satisfying
the balance of tangential stress on the bubble surfaces are con-
structed from the expression for a single bubble. These expres-
sions are iterative ones in form, and furthermore, they are just
power series of given bubble radii and the separation distance.
Therefore, this is the numerical advantage of the approach.

The governing equations and boundary conditions are pre-
sented in section 2. In section 3, we are concerned with the
transformations of some harmonics. This is followed by analysis
of axisymmetric thermocapillary migration of the two bubbles,
including the details that are necessary to complete this portion
of the analysis. An explicit recurrence formula to calculate the
migration velocities will be developed. In section 4, the pre-
diction of thermocapillary motions of the two bubbles is given
in light of the computational results, and several examples are
discussed. Finally, conclusions are presented in section 5.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The axisymmetric thermocapillary motions of two spherical
bubbles of radii R1 and R2, respectively, are considered in an
unbounded host fluid in the microgravity environment. These
two bubbles move along their line of centers in the positive z
direction, as shown in Fig. 1. In the continuous phase, a tem-
perature field, which has a uniform thermal gradient Tg parallel
to the z-axis far away from the pair of bubbles, is imposed. A
leading bubble with center o1 located at z1 moves with a migra-
tion velocity u1, while a trailing bubble with center o2 situated
at z2 moves with velocity u2. The separation distance between
the bubble centers o1o2 is denoted by s.

For a two-bubble system, two coordinates are introduced for
convenience, one is a Cartesian coordinate (x, y, z) fixed at the

center of bubble 1, the other (X, Y, Z ) at the center of bubble 2,
as shown in Fig. 2. The translational transformation between
D HU

z

s

o
1 R

1

R
2

u
1

u
2

zTT g=∞

o
2

FIG. 1. Schematic of the leading and trailing bubbles.

(x, y, z) and (X, Y, Z ) is


x = X
y = Y

z = Z − s.
[1]

These two Cartesian coordinate systems can be turned into

z

s

o
1

R
1

R
2

o
2

p

y

x

r
1

Y

X

Z

θ1

r
2

θ2
FIG. 2. Sketch of the two bubbles and the corresponding coordinate
systems.
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spherical ones by




x = r1 sin θ1 cos ϕ

y = r1 sin θ1 sin ϕ

z = r1 cos θ1

and




X = r2 sin θ2 cos ϕ

Y = r2 sin θ2 sin ϕ

Z = r2 cos θ2.

[2]

Assuming that gravitational effects are ignored, the defor-
mation of the bubbles is negligible, and thus the normal stress
balance on the bubble surfaces is ignored. In addition, the den-
sity, viscosity, and thermal conductivity of the gas phase are
negligibly small in comparison with those in the host fluid, and
all other physical properties are assumed independent of tem-
perature except for the surface tension, γ , which varies linearly
with temperature (γ = γ0 − γ ′T ). The assumption on the very
low thermal conductivity of the gas phase means the normal flux
of energy on each bubble surface is zero, and the temperature
distribution has a jump across the surface of these bubbles. As
mentioned earlier, for highly viscous glass melts, our attention
in this analysis is focused only on the case in which the Reynolds
and Marangoni numbers are set equal to zero (Meyyappan et al.
(6)). Hence the governing equations in the microgravity envi-
ronment can be written as

∇ · u = 0, [3a]

∇ p − µ∇2u = 0, [3b]

∇2T = 0. [3c]

Here u denotes the velocity vector of the host fluid and T is
the temperature field. Here T = Tgz + T ′ is the summation of a
linear temperature field far away from the bubbles and a distur-
bance field.

The boundary conditions to be satisfied on the surface of the
bubble i are

u · ni = ui e3 · ni , [4a]

τ i − ∇γ |
i = 0, [4b]

ni · ∇T = 0, [4c]

and

u → 0, T → Tg z, at infinity, [4d]

where ni is the unit vector normal to the surface of bubble i, τ i its
shear stress on the same surface 
i , and e3 denotes the unit vec-
tor in the positive z-direction. Boundary condition [4a] denotes
impenetrability on the surfaces of the bubbles; [4b] represents
the balance of tangential stress on the bubble interfaces, and [4c]
is the condition of a zero heat flux on each bubble surface.

ANALYTICAL SOLUTION
Based on the general solution given by Lamb (13), the ve-
locity field for a single bubble of radius R in a thermocapillary
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migration with velocity u0 along the z-axis is written in the form
of

u = −u0 R3

2
∇

(
z

r3

)
+ a

2µ

(
R2 − r2

3

)
∇

(
z

r3

)
+ 2a ∇z

3µ r
,

[5]

where µ denotes the dynamic viscosity of the fluid, a is a con-
stant to be determined by the boundary condition. In the grav-
itational field, a = gR3ρ/3, where g is the gravitational accel-
eration and ρ the density of the host fluid, as shown in Ref. 1.
In the microgravity environment, g → 0 leads to a → 0.

Similarly, the temperature field for the same bubble neglecting
the normal flux of energy is

T = Tg

(
r + R3

2r2

)
cos θ. [6]

Owing to the axisymmetric nature of the system, there is no
dependence of the field variables on the azimuthal coordinate ϕ.

Transformations between Harmonics

Because it is impossible to find the solution for the problem
with a triply connected region by using a limited number of sim-
ple functions, the method of reflections has to be adopted. For
this reason, we look for transformations between two coordinate
systems. A pair of transformations of associated Legendre func-
tions between (r1, θ1, ϕ) and (r2, θ2, ϕ) was given by Hobson
(14) as

Pm
n

rn+1
1

= (−1)n−m
∞∑

k=m

Cmnkrk
2 Pm

k [7a]

and

Pm
n

rn+1
2

=
∞∑

k=m

(−1)k−mCmnkrk
1 Pm

k , [7b]

where Cmnk = ( n+k
n−m )/sn+k+1(n ≥ m). Here Pm

n and Pm
n denote

Pm
n (cos θ1) and Pm

n (cos θ2), respectively.

Derivation of Bubble Velocities

In this subsection, we solve the problem of two interacting
bubbles using a reflection procedure corresponding to that pre-
sented by Sun and Chwang (15, 16). Suppose that the initial
disturbance velocity generated by bubble 1 is given by u′

0 and
in the (r1, θ1, ϕ) spherical coordinates takes the form

u′
0

(1) = ∇
(

P1

r2
1

)
.

Here superscripts (1) and (2) mean that physical variables are

expressed in the (r1, θ1, ϕ) and (r2, θ2, ϕ) coordinate system,
respectively.
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When a second bubble is released at a standstill into the flow
field at o2, around bubble 2, u′

0 can be expressed by using the
transformation in [7a] as

u′
0

(2) = −
∞∑

k=0

C01k∇
(
rk

2 Pk
) =

∞∑
k=0

λ
(1)
1k ∇(

rk
2 Pk

)
, [8]

where λ
(1)
1k = −C01k . In order to satisfy the impenetrable bound-

ary condition on the surface of bubble 2, we should add an extra
velocity u′

1

u′
1

(2) =
∞∑

k=0

k

(k + 1)
λ

(1)
1k R2k+1

2 ∇
(

Pk

r k+1
2

)
[9]

into the flow field. In light of transformation [7b], u′
1 may be

expressed in the (r1, θ1, ϕ) coordinates as

u′
1

(1) =
∞∑

k=0

∞∑
l=0

(−1)kl R2l+1
2

(l + 1)
λ

(1)
1l C0lk∇

(
rk

1 Pk
)

=
∞∑

k=0

λ
(2)
1k ∇(

rk
1 Pk

)
, [10]

where λ
(2)
1k = (−1)k

∑∞
l=0 l R2l+1

2 λ
(1)
1l C0lk/(l + 1), and the added

disturbance makes an extra contribution to the velocity field and
violates the impenetrable condition on bubble 1. This distur-
bance should be counteracted by introducing another correcting
velocity. Repeating the same procedure in succession leads to an
infinite sequence of reflection velocities. And thus the velocity
field for the two-bubble system in relation to u′

0 is

u′ = ∇
(

P1

r2
1

)
+

∞∑
k=0

k R2k+1
2

k + 1
∇

(
Pk

r k+1
2

) ∞∑
i=0

λ
(2i+1)
1k

+
∞∑

k=0

k R2k+1
1

k + 1
∇

(
Pk

rk+1
1

) ∞∑
i=0

λ
(2i)
1k , [11]

where λ
(i)
1k is in the form of recurrence formulae

λ
(0)
1k = 0, λ

(1)
1k = −C01k,

λ
(2i)
1k = (−1)k

∞∑
l=0

l R2l+1
2 C0lkλ

(2i−1)
1l

l + 1
, [12]

λ
(2i+1)
1k =

∞∑
l=0

(−1)l l R2l+1
1 C0lkλ

(2i)
1l

l + 1
.

The expressions above hold for all positive integers k and i .
Next, let us consider the contribution to the velocity field just

from an initial disturbance velocity caused by bubble 2 when
bubble 1 is inserted motionless nearby. Similarly, the velocity

field for the system in relation to the disturbance velocity u′′

0,
D HU

which in the (r2, θ2, ϕ) coordinates is written as

u′′
0

(2) = ∇
(

P1

r2
2

)
,

is expressed as

u′′ = ∇
(

P1

r2
2

)
+

∞∑
k=0

k R2k+1
1

k + 1
∇

(
Pk

rk+1
1

) ∞∑
i=0



(2i+1)
1k

+
∞∑

k=0

k R2k+1
2

k + 1
∇

(
Pk

r k+1
2

) ∞∑
i=0



(2i)
1k , [13]

where



(0)
1k = 0, 


(1)
1k = (−1)k C01k,



(2i)
1k =

∞∑
l=0

(−1)l l R2l+1
1 C0lk


(2i−1)
1l

l + 1
, [14]



(2i+1)
1k = (−1)k

∞∑
l=0

l R2l+1
2 C0lk


(2i)
1l

l + 1
,

holding for all positive integers k and i .
For an initial disturbance temperature field created by

bubble 1,

T ′
0

(1) = P1

r2
1

,

then the temperature distribution for the two-bubble system
becomes

T ′ = P1

r2
1

+
∞∑

k=0

k R2k+1
2

(k + 1)

Pk

r k+1
2

∞∑
i=0

φ
(2i+1)
k

+
∞∑

k=0

k R2k+1
1

(k + 1)

Pk

rk+1
1

∞∑
i=0

φ
(2i)
k , [15]

where

φ
(0)
k = 0, φ

(1)
k = −C01k,

φ
(2i)
k = (−1)k

∞∑
l=0

l R2l+1
2 C0lkφ

(2i−1)
l

l + 1
, [16]

φ
(2i+1)
k =

∞∑
l=0

(−1)l l R2l+1
1 C0lkφ

(2i)
l

l + 1
,

whereas for the initial disturbance temperature field aroused by
bubble 2,
T0 =
r2

2

,
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the temperature distribution for the whole system is

T′′ = P1

r2
2

+
∞∑

k=0

k R2k+1
1

(k + 1)

Pk

rk+1
1

∞∑
i=0

�
(2i+1)
k

+
∞∑

k=0

k R2k+1
2

(k + 1)

Pk

r k+1
2

∞∑
i=0

�
(2i)
k , [17]

where

�
(0)
k = 0, �

(1)
k = (−1)k C01k,

�
(2i)
k =

∞∑
l=0

(−1)l l R2l+1
1 C0lk�

(2i−1)
l

l + 1
, [18]

�
(2i+1)
k = (−1)k

∞∑
l=0

l R2l+1
2 C0lk�

(2i)
l

l + 1
.

According to the superposition theorem for linear equations,
the velocity field in surrounding fluid is u = −u1 R3

1u′/2 −
u2 R3

2u′′/2, and the temperature distribution takes the form
T = Tg(z + R3

1 T ′/2 + R3
2 T ′′/2). Substituting u and T above

into [4b] leads, with manipulation, to two explicit expressions of
the bubble migration velocity in the microgravity environment,

u1

R1

{
1 + R3

1

2

∞∑
i=0

λ
(2i)
11

}
+ R3

2u2

2R1

∞∑
i=0



(2i+1)
11

− γ ′Tg

2µ

{
1 + R3

1

2

∞∑
i=0

φ
(2i)
1 + R3

2

2

∞∑
i=0

�
(2i+1)
1

}
= 0 [19a]

and

u2

R2

{
1 + R3

2

2

∞∑
i=0



(2i)
11

}
+ R3

1 u1

2R2

∞∑
i=0

λ
(2i+1)
11

− γ ′Tg

2µ

{
1 + R3

2

2

∞∑
i=0

�
(2i)
1 + R3

1

2

∞∑
i=0

φ
(2i+1)
1

}
= 0. [19b]

Readers can obtain well-known results, ui = Riγ
′ Tg/(2µ),

by letting s → ∞ in Eqs. [19a] and [19b].

RESULTS AND DISCUSSION

The migration velocity expressions coupled with temperature
field, Eqs. [19a] and [19b], are applied to predict the thermo-
capillary migration of the two axisymmetric moving bubbles
in the quasi-static process. To do this, we have to resort to the
numerical computation of migration velocity expressions since
iterative formulae in Eqs. [19a] and [19b] are not directly avail-
able in general. As each of the mth term in recurrence formulae
[12], [14], [16], and [18] behaves like 1/s3m , the truncated se-

ries in the above formulae at m = 50 would have errors smaller
than the error tolerance of five significant figures even for a near
TIONS IN MICROGRAVITY 379

contact. The series in [19a] and [19b] truncated at i = 50 make
our numerical results accurate up to the 300th inverse power of
s in the present paper. To assure convergence, our calculations
are carried out with automatic increase in i until the results re-
main unchanged to the desired level of accuracy. In addition,
to obtain trajectories of the bubbles, at first the trailing bubble
is released at the origin, i.e., z20 = 0, and the leading bubble is
put at z10 simultaneously. At the beginning of the j th time inter-
val δt j ( j = 1, 2 . . .), the migration velocities of the given bub-
bles, u1 j and u2 j , are obtained by solving algebraic Eqs. [19a]
and [19b]. At the end of the j th time interval, the new position
of the center of bubble i is simply calculated by zi j = zi j−1 +
ui jδ t j .

To better describe migration velocities of the two bubbles,
we define the interaction parameter as in Ref. (6) with a little
correction:

�i (S, λi ) = ui

max(u1YGB, u2YGB)
, [20]

S = s

max(R1, R2)
, [21]

λi = Ri

max(R1, R2)
, [22]

where uiY G B = Riγ
′ Tg/(2µ).

Let us first consider the axisymmetric thermocapillary migra-
tion of two identical bubbles along their line of centers. Based on
Eqs. [19a] and [19b], interaction parameters �1 and �2 against
the scaled separation distance S are plotted in Fig. 3 for equal-
sized bubbles. Note from the figure that the two equal-sized
bubbles move at the velocity that they would have if they were
in isolation, independent of the separation distance, as indicated
by Meyyappan et al. This result may be explained quantita-
tively as follows: as R1 = R2 = R, Eqs. [19a] and [19b] can be

S

2 3 4 5 6 7 8

Ωi

0.0

.5

1.0

1.5
FIG. 3. Interaction parameters, �1 and �2, for two identical bubbles versus
the dimensionless separation distance S.
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rewritten as

u1

{
1 + R3

2

∞∑
i=0

λ
(2i)
11

}
+ R3u2

2

∞∑
i=0



(2i+1)
11

− Rγ ′Tg

2µ

{
1 + R3

2

∞∑
i=0

φ
(2i)
1 + R3

2

∞∑
i=0

�
(2i+1)
1

}
= 0 [23a]

and

u2

{
1 + R3

2

∞∑
i=0



(2i)
11

}
+ R3u1

2

∞∑
i=0

λ
(2i+1)
11 − Rγ ′Tg

2µ

×
{

1 + R3

2

∞∑
i=0

�
(2i)
1 + R3

2

∞∑
i=0

φ
(2i+1)
1

}
= 0. [23b]

From iterative formulae [12], [14], [16], and [18], it is easy to
find that

∞∑
i=0

λ
(2i)
11 =

∞∑
i=0

φ
(2i)
1 ,

∞∑
i=0



(2i)
11 =

∞∑
i=0

�
(2i)
1 ,

∞∑
i=0

λ
(2i+1)
11 =

∞∑
i=0

φ
(2i+1)
1 ,

∞∑
i=0



(2i+1)
11 =

∞∑
i=0

�
(2i+1)
1 .

Therefore, the conclusion is u1 = u2 = Rγ ′Tg/(2µ) by solving
[23a] and [23b]. This means that the thermal and fluid mechan-
ical interaction effects are counterbalanced thoroughly.

Using the expressions given in Eqs. [19a] and [19b], we can
determine the influence of the interaction on the migration of the
two bubbles in the course of a large trailing bubble pursuing a
small leading one. Figures 4 and 5 show the interaction parame-
ters �1 and �2 vary with the dimensionless separation distance
S for four different size ratios R1/R2 = 0.5, 0.2, 0.1, and 0.01.
It is noted from Fig. 4 that the interaction between two bubbles

S
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FIG. 4. Interaction parameter, �1, for the smaller bubble versus the dimen-
sionless separation distance S.
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FIG. 5. Interaction parameter, �2, for the larger bubble versus the dimen-
sionless separation distance S.

has significant influence on the migration of the smaller bubble.
The greater the difference in size between the two bubbles, the
greater the increase in the velocity of the smaller one. In the case
of R1/R2 = 0.01, the velocity of the small leading bubble would
reach a maximum that is 97 times more than that in the isolated
case and that nearly equals that of the large trailing one. As a
corollary, for a very small leading bubble, if there is no bubble
break, the two bubbles would ultimately move forward at the
same velocity. One can see a qualitative explanation below: as
R1 → 0 and s → R1 + R2 → R2, Eqs. [19a] and [19b] can be
simplified as

u1 − u2 + O(R1) = 0 [24a]

and

u2 − R2γ
′Tg

2µ
+ o(R1) = 0, [24b]

that is, u1 ≈ u2 ≈ R2γ
′Tg/(2µ). On the other hand, as R1 → 0,

one can derive again the Meyyappan heuristic approximation,
u1/u1YGB = 1 + (R2/s)3(R2/R1 − 1), directly from [19a] and
[19b]. And even more important, it is found from the figure that
as the dimensionless separation distance S is less than 3.0, the
migration velocity of the smaller bubble changes greatly due
to interaction. This implies that there is an “interaction inter-
val” around a bubble. The interaction interval is defined as one
diameter apart from the bubble. If a second bubble intrudes into
the interaction interval of the first one, its migration would be
greatly affected by the first bubble. This phenomenon is consis-
tent with the physical intuition.

Figure 5 shows the influence of the interaction on the mi-
gration of the larger bubble. It is seen from the figure that the
effect of the interaction on the large bubble is not significant.

The difference in velocity from a case of two touching bubbles
to the separated one is less than 2%. Therefore, one can think
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FIG. 6. Motions of two bubbles with R1 = 0.005 cm, R2 = 0.5 cm,
γ ′ = 0.034 dyn/cm · K, Tg = 30 K/cm, and µ = 0.397 dyn · s/cm2.

that there is a negligible influence on the migration of the large
bubble.

By comparing the results in Figs. 4 and 5 with ones given by
Meyyappan et al., it is observed that for the corresponding size
ratios, R1/R2 = 0.5, 0.2, and 0.1, the results agree well with each
other except for rather small separation distances with a largest
difference less than 0.3% over all the size ratios. The reason
may be that these two solutions are expressed in terms of two
kinds of functions respectively, hyperbolic functions and power
ones, and thus there is a different accumulative error in each
individual calculation. Power series of given bubble radii and
the separation distance have a smaller accumulative error than
those of hyperbolic functions, especially for touching bubble
cases. But this slight difference is unrelated to the description of
the physical process.

Figure 6 gives an example to illustrate the process of the
large trailing bubble pursuing the small leading one. In this
case, R1 = 0.005 cm, R2 = 0.5 cm, γ ′ = 0.034 dyn/cm · K,
Tg = 30 K/cm, and µ = 0.397 dyn · s/cm2, corresponding to a
case of two bubbles in vegetable oil. The two bubbles are first
released at z10 = 1.5 cm and z20 = 0 cm, respectively. Note that
the small leading bubble gradually increases its velocity in the
initial phase of migration and speeds up as t = 2.0 s when the sep-
aration distance is about 0.85 cm. At last the two bubbles move
forward at almost the same velocity while touching each other.

Based on Eqs. [19a] and [19b] and recurrence formulae [12],

[14], [16], and [18], it is not difficult to find that if we exchange
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the values of R1 and R2, u1 and u2 have the same change, too.
This demonstrates that all results are unchanged in spite of the
order of alignment of the two bubbles.

CONCLUSIONS

This paper presents an analytical method of investigating an
axisymmetric thermocapillary migration of two bubbles in the
quasi-static limit. By using reflections, the analytical solution is
derived. This solution is employed to predict the motion of two
pursuing bubbles in the microgravity environment. The results
indicate that the interaction between two bubbles has significant
influence on the migration of the smaller bubble. This effect
mainly is focused in an “interaction interval,” which is about one
diameter apart from the larger bubble. If a small bubble intrudes
into the zone, its velocity changes greatly due to the interaction.
As a very small bubble is in this case close to another large one,
they would ultimately move forward at the same velocity if there
is no bubble break.
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