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Summary. The main mechanisms for the hardening of metal materials are the multiplication, accumula-

tion and interaction of dislocations. The dislocation density tensor can be decomposed into two parts: one

is the plastic strain curl tensor and the other is the plastic curvature tensor. The influence of the plastic

curvature can be characterized by the interaction between the Cauchy’s stresses and the couple stresses.

The plastic strain curl is supposed to play the most important role for the stress level. Three rotational

degrees of freedom xi, named as micro rotation, are introduced besides the displacement components ui.

Micro rotations xi have no direct dependence upon ui while the material rotation h ¼ r� u=2. The

generalized normality law is used to describe constitutive relations of Cauchy’s stresses versus strains and

couple stresses versus curvatures. Plastic strain curl is incorporated into the instantaneous tangent

modulus. In this way, the generalized equivalent stress is no longer a single-variable function of the

generalized equivalent strain. The plastic strain energy density is no longer determined by the generalized

equivalent strain solely, too.

Based on the present theory, an FEM program is developed to simulate the microindentation tests

on Copper and Tungsten. The calculated hardness is observed to elevate as the indent depth decreases.
The calculated results agree well with the experimental data. The crack tip field for small scale yielding

condition is also studied. The calculated results clearly show that the stress level near the crack tip with
plastic strain curl effects is considerably higher than that in the conventional plasticity theory. The

singularity of the mean stress near the crack tip is nearly equal to the square-root singularity, and the
singularity of the effective stress field is slightly greater than the square-root singularity. Consequently,

the singularity of stress components is also slightly greater than the square-root singularity. The
J-integral is observed to be essentially path independent.

1 Introduction

The work hardening of metallic materials is caused by the storage and interaction of disloca-

tions. According to Taylor’s hardening law, the flow strength of the material is related to the

dislocation density in the material by the following formula:

r ¼ CGB
ffiffiffi

q
p

; ð1:1Þ

where C is a constant coefficient, G is the shear modulus and b is the magnitude of Burger’s

vector b. The dislocations are stored as two types: the statistically stored dislocations and the

geometrically necessary dislocations [1], [2]. Then, the flow strength is

r ¼ CGB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qs þ qG

p

¼ CGB
ffiffiffi

q
p

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qG

qs

r

; ð1:2Þ

where qS is the statistically stored dislocation density and qG is the geometrically necessary

dislocation density.
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If the geometrically necessary dislocation density is negligibly small, the flow strength can be

expressed as

r ¼ CGB
ffiffiffiffiffi

qs

p
: ð1:3Þ

On the other hand, the uniaxial stress-strain law of the classical theory of plasticity can be

written as

r ¼ r0AðeÞ ð1:4:1Þ

or

r ¼ r0AðeepÞ; ð1:4:2Þ

where r0 is the yield stress, A is the work hardening function, re is the equivalent stress and eep

is the equivalent plastic strain. From Eqs. (1.3), (1.4.1) and (1.4.2), one can see that the

statistically stored dislocation density is a function of the equivalent plastic strain.

In the conventional theories of plasticity, only the influence of statistically stored dislocations

is considered. Comparing with the statistically stored dislocation density, the geometrically

necessary dislocation density is negligible at macro scales. That is why the conventional theories

of plasticity are successfully used at those scales.

The geometrically necessary dislocation density is related to the inhomogeneous plastic strain

[1]. Once the size of the plastic deformation zone is of a few microns or less, the plastic strains

vary sharply in a small zone, and then the geometrically necessary dislocation density cannot be

neglected anymore. Therefore, the local stress level may be much higher than the calculated

results using a conventional plasticity model.

The phenomenon of increase of material strength at micron scale was reported in numerous

microindentation studies [6]. Pyramidal indents whose depths exceed fifty microns generally

produce size-independent hardness values in most metals, just consistent with the conclusion of

the conventional theory of plasticity. Nevertheless, the mentioned microindentation tests

showed an increase in hardness with decreasing depth of penetration for depths less than ten

microns. This phenomenon is known as the indentation size effect. Since the conventional

theory of plasticity involved no material length scales, it cannot be used to explain the size

effect.

Another instance of stress elevation was revealed in the stress field near a crack tip. In a

remarkable experimental work, Elssner et al. [7] measured both the macroscopic fracture

toughness and the atomic separating work of an interface between a single crystal of Niobium

and a Sapphire single crystal. According to their experimental results, Hutchinson [8]

concluded that the stress level needed to produce atomic decohesion of a lattice or a strong

interface were generally considerably larger than 5 times the tensile yield stress r0 of the metal.

However, the maximum stress level that could be achieved ahead of the crack tip was not

greater than about 4r0 – 5r0 according to models based on the conventional theory of plas-

ticity. It is evident that the conventional plasticity theory is inadequate at the small scales

involved in the crack tip deformation.

In order to explain the experimental results, it is necessary to develop a continuum plastic

theory with intrinsic material length scales.

Fleck, Hutchinson and their co-workers proposed a version of couple stress theory (CS

theory) [9], [10]. Shu and Fleck [11] investigated the microindentation problem with the CS

theory but they failed to simulate the test. The asymptotic analysis [12] and FEM calculation

[14], [16] also found that the stress level near a crack tip estimated by the CS theory was

essentially the same as that by conventional plasticity. The reason of these phenomena might lie

in the fact that the stretch gradient was not considered in the CS theory.
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Then a general strain gradient theory of plasticity (SG theory) was developed by Fleck and

Hutchinson [17] to introduce the effect of stretch gradient. Begley and Hutchinson [18]

simulated successfully the microindentation test with the SG theory and determined the

length scales in that theory by fitting the experimental data. Wei and Hutchinson [19], Chen

et al. [20] and Shi et al. [21] used the SG theory to study the crack tip field. The elevation of

stress level was indeed observed in their analysis. Nevertheless, as a mode-I crack tip was

approached, the traction was found to switch to compressive [20]. It was therefore concluded

by Chen et al. [20] that the asymptotic crack tip field in the SG theory had no domain of

physical validity.

Gao, Huang and their co-workers [22], [24] presented a mechanism-based strain gradient

theory (MSG theory). Based on the MSG plasticity theory, Huang et al. [25] investigated the

microindentation problem. Shi et al. [26] investigated the asymptotic crack tip field of MSG

theory and concluded that its near crack tip field was inseparable. Jiang et al. [27] presented

the crack tip field with finite element analysis of MSG theory. They observed the

stress elevation and found that the stress singularity exceeded or equaled the square-root

singularity.

Third-order stresses were introduced in both the SG theory and MSG theory. As a result, the

governing equations become quite complicated and the extra complex boundary condition

must be introduced. Retaining the essential structure of conventional plasticity, Acharya and

Bassani [28] concluded that a possible formulation is a flow theory with strain gradient

measures incorporated into the instantaneous hardening functions. However, they did not give

a systematic way of constructing the tangent modulus to validate this framework. Following

their thought, Chen and Wang [29] established a new hardening law based on the incremental

version of conventional J2 deformation theory. The effective strain gradient was only a

parameter to influence the tangent modulus in that hardening law. Chen and Wang [30], [31]

established a new version of the phenomenological strain gradient theory for crystalline solids.

Stretch gradients were introduced in a similar way as that by Chen and Wang [29]. Based on the

new theory, both the asymptotic fields [32], [33] and the full field solution [34] were studied. Xia

et al. [35] developed a simplified theory of strain gradient. The essential structure of conven-

tional J2 deformation theory was maintained in the simplified theory. Neither couple stress nor

higher-ordered stress was introduced. The strain gradient measure influenced the instantaneous

tangent modulus only. Plane-strain mode-I crack tip field was investigated with the simplified

theory. The stress elevation was observed.

A plastic strain curl theory is presented in this paper. The initial idea of the new theory comes

from the continuum theory of dislocation [36]. In that theory, the dislocation density tensor can

be written as

q ¼ �rotep � tr~vpð ÞIþ ~vpð ÞT ; ð1:5:1Þ

where ep is the plastic strain tensor, ~vp is the plastic curvature tensor, I is the unit tensor.

Equation (1.5.1) is deduced from the displacement incompatibility introduced by dislocations.

In fact, at the micro scale, the statistically stored dislocations rapidly accumulate by trapping

one another in a random distribution way and introduce no incompatibility into the solids at

macro scales. It means that the densities of statistically stored dislocations only correspond to

the uniform deformation at macro scales. Only the geometrically necessary dislocations are

required for the nonuniform deformation at macro scales, which is consistent with Eq. (1.5.1).

Hence, the dislocation density calculated in conformity to Eq. (1.5.1) can only be the density of

geometrically necessary dislocations, i.e.,
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qG ¼ �rotep � tr~vpð ÞIþ ~vpð ÞT : ð1:5:2Þ

It is evident that the density tensor of geometrically necessary dislocations can be decomposed

into two parts: one is the plastic strain curl tensor and another is related to the plastic curvature

tensor. One can imagine that the work conjugate of the curvature tensor is the couple stress.

Hence, the effect of the plastic curvature tensor on the plastic deformation can be described by

introducing the couple stress. Thus, the plastic strain curl will play the key role in the new

theory.

Plastic strain curl theory is constructed based on general couple stress theory [37]–[42]. Micro

rotations xi are introduced. Curvatures vij are the gradients of micro rotations xi. The con-

stitutive relations of Cauchy’s stresses versus strains and couple stresses versus curvatures are

deduced from the generalized normality law.

Section 2 gives a brief summary on the governing equations and boundary conditions of

plastic strain curl theory. The finite element formulation is introduced in Sect.3, and the

calculated results are discussed in Sect. 4.

In the remainder of the present paper, if not claimed, a repeated suffix denotes summation

over 1 to 3. A comma in the suffix indicates a partial derivative with respect to a Cartesian

coordinate.

2 Plastic strain curl theory

All materials consist of billion discrete micro particles (e.g., atoms, molecules, ions, etc.). The

location changes of all the particle centers form a displacement field, denoted by u. Material

rotation h is dependent on the displacement, i.e., h ¼ r� u=2. The micro rotation x has no

direct dependence upon the displacement u. It is the angular displacement of a particle. In fact,

micro rotation x is the sum of material rotation h and relative rotation /. The relation between

micro rotation x and material rotation h is illustrated in Fig. 1. In fact, suppose that the

material particle centers after deformation form a deformed lattice and the material rotation h
will reflect the rotation of the deformed lattice which is completely determined by the dis-

placements of the material particle centers while the micro rotation x will be the rotation of the

material particle itself.

Fig. 1. Relation between micro rotation x and material rotation h
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In the continuum theory of dislocations [36], the curvature tensor ~v is defined as the gradient

of material rotation h, i.e.,

~vij ¼ hi;j: ð2:1Þ

The plastic curvature tensor ~vp

ij in continuum theory of dislocations is defined in the form

dhp

i ¼ ~vp

ijdxj; ð2:2Þ

where hp

i is the plastic material rotation. In the plastic strain curl theory, however, the curvature

tensor v is defined as the gradient of micro rotation x, i.e.,

vij ¼ xi;j: ð2:3Þ

This definition is different from the definition in the continuum theory of dislocations. Let us

consider the plastic curvature tensor. As shown in Fig. 2, during the plastic deformation, the

two groups of micro particles will move mutually on the opposite sides of a slip plane without

relative rotations. Therefore the plastic relative rotation /p ¼ 0. Thus it is evident that

xp

i ¼ hp

i ; dxp

i ¼ vp

ijdxj; vp

ij ¼ ~vp

ij; ð2:4Þ

where xp

i is the plastic micro rotation, and vp

ij is the plastic curvature tensor in the plastic strain

curl theory.

In the present theory, only the symmetric part of Cauchy’s stress r and couple stress m are

considered. The antisymmetric part of Cauchy’s stress is supposed to be negligibly small. If

body forces and body couples are absent, the equilibrium equation within body V gives

rij;j ¼ 0;

l�1
CSmij;j ¼ 0;

ð2:5Þ

b

 cba

x0

Fig. 2. Slip of crystalline materials; a Crystal before the slips. The inclined lines stand for the possible

slip surfaces; b Crystal after the slips. The portions divided by slip surfaces move mutually; c Sketch of a
dislocation. The two groups of atoms move mutually on the opposite sides without relative rotation.

Note that (b) denotes the Burger’s vector
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where rij is the stress, mij is the couple stress and lCS is an intrinsic material length scale which

characterizes the size of the three-dimensional dislocation network. The three-dimensional

dislocation network is supposed to be formed during the manufacturing process, which is

related to the smallest nonuniform plastic micro rotation zone.

Traction equilibrium on the surface S of the body V implies:

rijnj ¼ ti;

mijnj ¼ qi; ð2:6Þ

where ni is the outer normal of the surface S, and ti and qi are surface tractions and surface

torque per unit area, respectively.

The constitutive equations of plastic strain curl theory can be obtained through an analogy

with the conventional theory of plasticity. According to the normality law in conventional J2

deformation theory, plastic strains can be written as

ep

ij ¼
3eep

2re

sij; ð2:7Þ

where sij is the deviatoric stress, re is the equivalent stress, and eep is the equivalent plastic

strain. Equation (2.7) can be easily rewritten as

sij ¼
2re

3eep

ep

ij: ð2:8Þ

In another hand, the relation between mean stress and volume strain is

rkk

3
¼ Kekk; ð2:9Þ

where eij is strain and K is volume modulus. Combining Eqs. (2.8) and (2.9), the constitutive

equations in the conventional J2 deformation theory are written as

rij ¼
2re

3e ep

ep

ij þ dijKekk ðre � r0Þ; ð2:10Þ

where dij is Kronecker’s delta. In a similar way, the constitutive equations in plastic curl theory

can be obtained, i.e.,

rij ¼
2
P

e

3Eep

ep

ij þ dijKekk

l�1
CSmij ¼

2
P

e

3Eep

lCSv
p

ij þ dijK1lCSvkk

ðRe > r0Þ; ð2:11:1Þ

where K1 is called the bend-torsion volume modulus, which is defined in the way that

l�1
CSmkk ¼ 3K1lCSvkk: ð2:11:2Þ

A generalized normality law has been employed in Eq. (2.11.1). Generalized equivalent stress

Re and generalized equivalent plastic strain Eep have taken the places of the equivalent stress re

and equivalent plastic strain eep in Eq. (2.10), respectively. The expressions of generalized stress

Re and generalized plastic strain Eep are

R2
e ¼ r2

e þ l�2
CSm2

e; E2
ep ¼ e2

ep þ l2CSv
2
ep; ð2:12Þ
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where me ¼ ð3m0ijm
0
ij=2Þ1=2 is the equivalent couple stress, vep ¼ ð2vp

ijv
p

ij=3Þ1=2 is the equivalent

plastic curvature and m0ij is the deviatoric couple stress.

The incremental version of Eq. (2.11.1) is

_rij ¼
2
P

e

3Eep

_ep

ij þ
2 _P

e

3Eep

ep

ij �
2
P

e

3E2
ep

_Eepep

ij þ dijK _ekk

l�1
CS

_mij ¼
2
P

e

3Eep

lCS _vp

ij þ
2 _P

e

3Eep

lCS _vp

ij �
2
P

e

3E2
ep

_EeplCS _vp

ij þ dijK1lCS _vkk

ðRe > r0Þ: ð2:13Þ

Equations (2.11.1) and (2.13) are similar to the constitutive equations of general couple stress

theory. However, the plastic curl theory is distinguished from the general couple stress theory

by its formulation of instantaneous tangent modulus.

The hardening law in the theory of conventional plasticity is

re ¼ r0AðeepÞ or _re ¼ r0A0ðeepÞ _eep; ð2:14Þ

where r0A0ðeepÞ is the instantaneous tangent modulus in the theory of conventional plasticity.

Similarly, the hardening law in general couple stress theory is

Re ¼ r0A0ðEepÞ or _Re ¼ r0A0ðEepÞ _Eep; ð2:15Þ

where r0A0ðEepÞ is the instantaneous tangent modulus in general couple stress theory.

The incremental version of the hardening law in plastic strain curl theory is different from

Eq. (2.15), i.e.,

_P
e ¼ r0H Eep; l1gep

� �

_Eep ¼ r0A0ðEepÞR Eep; l1gep

� �

_Eep; ð2:16Þ

where r0HðEep; l1gep) is the instantaneous tangent modulus in plastic strain curl theory where l1

is the second intrinsic length scale which characterizes the size of the micro dislocation struc-

ture. The micro dislocation structure is supposed to be formed during the manufacturing

process which is related to the smallest nonuniform plastic deformation zone. Since the plastic

strain curl takes a negligible effect at the large scale, the value of RðEep; l1gep) should be unity

when the characterized scale of the realistic nonuniform plastic deformation zone is far greater

than l1. Hinted by Eq. (1.2) and following the proposal of Chen and Wang [29], [34], and Xia

et al. [35], the expression of the coefficient RðEep; l1gep) is supposed to be

R Eep; l1gep

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
l1gep

Eep

s

; ð2:17Þ

where gep is a measure of both the plastic strain curl and the plastic curvature tensor, i.e.,

gep ¼ gep np

ijn
p

ij; n
p

ijn
p

ji; v
p

ijv
p

ij; v
p

ijv
p

ji; v
p
kk

� �

; ð2:18:1Þ

where np ¼ rot ep is the plastic strain curl tensor, and its component expression is

np

ij ¼ eikle
p

jl;k; ð2:18:2Þ

where eijk is the permutation tensor. Since the effect of the plastic curvature tensor vp can be

described by introducing the couple stress, gep can be supposed to be a scalar function of plastic

strain curl only, i.e.,

gep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np

ijn
p

ij þ cnp

ijn
p

ji

q

; ð2:18:3Þ

where c is a dimensionless constant.
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It is clear that the coefficient RðEep; l1gep) manifests the influence of plastic strain curl (or, in

other words, the dislocation density) on the instantaneous tangent modulus. This is one of the

key characters of plastic strain curl theory. As another important character, because of the

existence of the coefficient RðEep; l1gep), the generalized equivalent stress Re is no longer a

single-variable function of the generalized equivalent plastic strain Eep, and the strain energy

density w is no longer determined by the strain e and curvature tensor v only. Both the

generalized equivalent stress Re and the strain energy density w depend on the loading history.

An exponent law of hardening is employed in the present work. The expression of the work

hardening function A(eep) is

AðeepÞ ¼ 1þ eep

e0

� �n

; ð2:19Þ

where n is the hardening exponent, e0 is a reference strain, and it is taken as the equivalent

strain at which the material yields, i.e.,

e0 ¼
r0

3l
; ð2:20Þ

where l is the shear modulus.

After a laborious deduction, Eq. (2.13) can be rewritten in another form. Then the complete

constitutive equations of plastic strain curl theory, with both the elastic and plastic ranges, can

be written as

_rij ¼ 2ldikdjl þ K � 2l
3

� �

dijdkl

� 	

_ekl

l�1
CS

_mij ¼ 2ldikdjl þ K1 � 2l
3

� �

dijdkl

� 	

lCS _vkl

(

ðRe < r0Þ; ð2:21:1Þ

_rij ¼ D
ð1Þ
ijkl

_ekl þ D
ð2Þ
ijkllCS _vkl

l�1
CS

_mij ¼ D
ð2Þ
klij

_ekl þ D
ð3Þ
ijkllCS _vkl

(

ðRe � r0Þ; ð2:21:2Þ

where

D
ð1Þ
ijkl ¼ C1dikdjl þ K � C1

3

� �

dijdkl þ C2

ep

ije
p
kl

E2
ep

; ð2:22:1Þ

D
ð2Þ
ijkl ¼ C2

lCSe
p

ijv
p
kl

E2
ep

; ð2:22:2Þ

D
ð3Þ
ijkl ¼ C1dikdjl þ K1 �

C1

3

� �

dijdkl þ C2

l2CSv
p

ijv
p
kl

E2
ep

; ð2:22:3Þ

C1 ¼
2lB1

2lþ B1
; ð2:23:1Þ

C2 ¼
4l2B2E2

ep

ð2lþ B1Þð2lþ B�Þ ; ð2:23:2Þ

B� ¼ B1 þ B2 I1 þ I2ð Þ; ð2:24Þ

B1 ¼
2Re

3Eep

; ð2:25:1Þ
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B2 ¼
4

9E2
ep

r0H Eep; l1gep

� �

� Re

Eep

� �

; ð2:25:2Þ

I1 ¼ ep

ije
p

ij; I2 ¼ l2CSv
p

ijv
p

ij: ð2:26Þ

It should be emphasized that the stiffness coefficients defined in Eq. (2.22) will not approach

infinity when the generalized equivalent plastic strain Eep approaches zero. In fact,

substitute Eq. (2.25.1) into Eq. (2.23.1), and the expression of the coefficient C1 can be

changed to

C1 ¼
2l 2Re

3Eep

2lþ 2Re

3Eep

¼ 2lRe

3lEep þ Re

: ð2:27Þ

It is evident that the value of C1 will be 2l when the generalized equivalent plastic strain Eep

equals zero. Then substituting Eqs. (2.24–2.26) into Eq. (2.23.2), one will get

C2 ¼
4l2 4

9E2
ep

r0A0ðEepÞRðEep; l1gepÞ � Re

Eep

� �

E2
ep

2lþ 2Re

3Eep

� �

2lþ 2Re

3Eep
þ 4

9E2
ep

r0A0ðEepÞRðEep; l1gepÞ � Re

Eep

� �

ðep

ije
p

ij þ l2CSv
p

ij vp

ijÞ
h i : ð2:28Þ

Substituting Eq. (2.12) into Eq. (2.28), the expression of the coefficient C2 can be written as

C2 ¼
4l2 r0A0ðEepÞEep � Re

RðEep ;l1gepÞ

h i

ð3lEep þ ReÞ 3l
RðEep ;l1gepÞ

þ r0A0ðEepÞ
h i : ð2:29Þ

When Eep approaches zero, it can be seen from Eqs. (2.19) and (2.17) that if

l1gep 6¼ 0;A0ðEepÞ will approach n=e0, and 1/ RðEep; l1gep) will approach zero, hence the value

of C2 will approach zero. Furthermore, based on the generalized normality law, it can be

concluded that

ep

ij

Eep

¼ 3sij

2Re

;
lCSv

p

ij

Eep

¼ 3l�1
CSmij

2Re

: ð2:30Þ

Therefore,

ep

ije
p
kl

E2
ep

¼ 9sijskl

4R2
e

;
lCSe

p

ijv
p
kl

E2
ep

¼ 9l�1
CSsijm

0
kl

4Re

;
l2CSv

p

ijv
p
kl

E2
ep

¼
9l�2

CSm0ijm
0
kl

4R2
e

: ð2:31Þ

They will not be infinite when the generalized equivalent plastic strain Eep approaches zero.

Substituting Eq. (2.31) into Eq. (2.22), one obtains

D
ð1Þ
ijkl ¼ C1dikdjl þ K � C1

3

� �

dijdkl þ C2
9sijskl

4R2
e

; ð2:32:1Þ

D
ð2Þ
ijkl ¼ C2

9l�1
CSsijmkl

4R2
e

; ð2:32:2Þ

D
ð3Þ
ijkl ¼ C1dikdjl þ K1 �

C1

3

� �

dijdkl þ C2

9l�2
CSm0ijm

0
kl

4R2
e

: ð2:32:3Þ
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3 Finite element simulation of microindentation tests

For a solid in plastic strain curl theory, the principle of virtual work is
Z

V

rijdeij þmijdvij

� �

dV �
Z

s

tidui þ qidxið Þds ¼ 0: ð3:1Þ

A stiff conical indenter is employed in the calculation so that the simulation of microinden-

tation can be simplified as an axisymmetric problem, as shown in Fig. 3. Then, the non-

vanishing displacement and micro rotation components are

ur ¼ urðr; zÞ; uz ¼ uzðr; zÞ; xh ¼ xhðr; zÞ: ð3:2Þ

The indenter is supposed to be frictionless, and the nodes in the contact region are constrained

to fall on the indenter, with freedom to slide up and down the face of the indenter. Therefore,

for small strain theory and shallow indenter considered here, only uz is prescribed and no

restriction is assigned to ur [18]. Hence, the following boundary conditions in the contact

region are imposed:

uzðrÞ ¼ d� r

tan b
and no restriction on ur; ð3:3Þ

where d is the penetration depth of the indenter and b is the half-angle of the indenter.

A nine-noded isoparametric element is chosen and each node has three degrees of freedom.

The specimen in Fig. 3 is divided into 600 elements with 2601 nodes in total.

During the calculation, the depth of the indenter tip d increases incrementally. A certain

value of the z-displacement uzðrÞ is prescribed to every node in the contact region at each

loading increment. Then the z-displacements uzðrÞ of the nodes on the free surface are

calculated at the present loading increment in accordance with the coordinate system shown in

Fig. 3. If the obtained z-displacement uzðrÞ of a node on the free surface is just greater than the

value described in Eq. (3.3), it means that the node has not contacted with the indenter and the

calculation will enter the next increment. If the obtained z-displacement uzðrÞ is equal to that

value, it means that the node contact, just the right with the indenter and the z-displacement of

that node will be prescribed in the next increment. If the obtained z-displacement uzðrÞ is
smaller, it means that the node is pushed into the interior of the stiff indenter, which is

physically unreasonable. Thus all the displacements, stresses, couple stresses, strains and cur-

vatures will be restored to the previous increment, and the calculation will be restarted at a

reduced loading increment.

First two samples of Copper investigated by McElhaney et al. [6] are chosen. One sample was

strain-hardened and another had been annealed. The strain-hardened sample was polycrys-

talline with a grain size that was large compared to the size of the large indentations. The

z
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d

b = 72° 
o

r

a
indenter

Fig. 3. Calculation model for micro-

indentation test
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annealed sample was a single crystal Copper with the (111) orientation. The material param-

eters are Young’s modulus E ¼ 109:2 GPa, Poisson’s ratio m ¼ 0:3 [43], work hardening

exponent n ¼ 0:3 [10], and dimensionless constant c ¼ 0. Yield stress r0 ¼ 73:8 MPa and

macroscopic hardness H0 ¼ 834 MPa for polycrystal copper, while r0 ¼ 38:5 MPa and

H0 ¼ 581 MPa for single crystal Copper [6]. The indentation simulation results are shown in

Figs. 4 and 5, respectively. The FEM results based on the plastic strain curl theory simulate the

experimental data successfully. A linear law is shown between the squared hardness H2 and the

inverse of contacting depth 1/h. When the contacting depth h is large enough, the value of

hardness H approaches the macroscopic hardness H0. The hardness increases as the indent size

decreases. The slope of the polycrystalline Copper curve is about 7.36 while the other is about

6.86, i.e. the former is only slightly higher than the latter. However, the fitting value of material

length l1 is 0.64 lm for polycrystalline copper while 2.42 lm for single crystal copper. The

obvious difference of the fitting values of material length l1 may be caused by the different

microstructures of the two types of material. The interfaces divided the polycrystalline body

into a large amount of grains. The plastic deformations in the grains introduce a great deal of

geometrically necessary dislocations accumulated near the interfaces. This means that the

geometrically necessary dislocations are easier to be stored in the polycrystalline materials than

in the single crystal materials. Therefore, a relatively smaller material length l1 is needed for the
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polycrystalline materials to get the same effect of stress elevation as the single crystal materials.

On the other hand, the characteristic scale of a polycrystalline material is its grain size, i.e.,

about 0.1–1 lm. When the size of the nonuniform plastic deformation zone is of the order or

smaller than the grain size, the material shows strong size effect. When the size of the

nonuniform plastic deformation zone is much larger than the grain size, the size effect is not so

evident. For the single crystal materials, however, such a characteristic size should be larger,

although its physical background is still not so clear. It should be emphasized that when the

number of elements are doubled, the fitting values are the same. Therefore, we may draw a

conclusion that our calculated results are available.

Second, the microindentation test of single crystal Tungsten [3] is simulated. The material

parameters are E ¼ 410 GPa, m ¼ 0:278 [44], r0 ¼ 410 MPa, H0 ¼ 3160 Mpa [3], n ¼ 0:186

for (100) and (111), n = 0.245 for (110) and c ¼ 0. The value of the hardening exponent n is

obtained by fitting the value of H0. The results are shown in Figs. 6–8. The numbers in

parentheses represent the orientation of the crystallographic plane onto which the indenter is

pressed. The numbers in brackets represent the diagonal orientation of the Vickers’ indenter.

The FEM results based on the plastic strain curl theory simulate the experimental data suc-

cessfully. The similar linear laws as the Copper samples are shown between the squared

hardness H2 and the inverse of the contacting depth 1/h. It can be seen that the line slopes in
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Figs. 6–8 are about 0.269, 0.263 and 0.287, respectively, i.e. the values are very close to each

other. The observation of line slopes seems to imply that the relation between the squared

hardness H2 and the inverse of contacting depth 1/h has no dependence on the factors such as

the grain size, the crystalline orientation, and so on. The fitting values of the length scales are

quite different in case of different crystalline orientations. This phenomenon shows the

anisotropy of a single crystal. Hence, a more accurate study should be based on a theory of

anisotropic plasticity.

4 Plane-strain crack tip field

For the FEM formulation of a plane-strain problem, suppose that the z-axis is identical with

the crack front, the y-axis perpendicular to the crack surface and the positive half of the x-axis

lying ahead of the crack, as shown in Fig. 9.

The non-vanishing displacement and micro rotation components in a plane-strain problem

are

ux ¼ uxðx; yÞ; uy ¼ uyðx; yÞ; xz ¼ xzðx; yÞ: ð4:1Þ
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The J-integral of a plane-strain mode-I crack is

J1 ¼
Z

C
ðwn1 � narabub;1ÞdC; ð4:2Þ

where C is a contour starting from the lower surface of the crack and ending at the upper one,

na is the normal of C; a; b ¼ 1; 2;w is the strain energy density and

w ¼
Z

rijdeij þ
Z

mijdvij: ð4:3Þ

The calculated domain was a circular domain centered at the crack tip as shown in Fig. 9.

The radius of the circular domain was a. The classical mode-I K-field was imposed on the outer

boundary of this domain. The crack surface was supposed to be traction-free for both the

stresses and couple stresses. The elastic stress intensity factor, KI, of the remotely applied field

increased monotonically.

An eight-noded isoparametric element was chosen and each node had three degrees of

freedom. The value of l1=a was about 10�7 to 10�3, and the size of the smallest elements was

less than 10�3 l1. Efforts were taken to make the ratio of the length to the width of the elements

approximately unity. Only the upper half of the domain was calculated due to the symmetry

condition. The half domain was divided circumferentially into 12 portions and radially into Nr

portions, respectively. In order to investigate the influence of the mesh, the value of Nr was

taken as 50 and 100, respectively. The calculated results are shown in Fig. 10. It is evident that

results when Nr ¼ 50 and 100 are almost identical, so Nr is taken as 50 in the following

calculations.

A plane-strain finite element program was developed. In order to verify the reliability of the

present program, the case of conventional plasticity was investigated first. Taking the material

length scale l1 as zero, the comparison was made with the result of Chen and Wang [34]. Both

the two results are plotted in Fig. 11. The parameters are chosen the same as in Chen and Wang

[34] i.e., the reference length scale l0 ¼ 10�3a, the ratio of yield strength to Young’s modulus

r0=E ¼ 0:2%, Poisson’s ratio m ¼ 0:3, hardening exponent n ¼ 0:2 and stress intensity factor

KI ¼ 20l
1=2
0 . In addition, the dimensionless constant c in Eq. (2.18.3) is taken as zero. The two

results are almost identical.

Then the calculation was performed in the case of l1=a ¼ 10�3, r0=E ¼ 0:2%, m ¼ 0:3,

n ¼ 0:2, KI ¼ 10r0l
1=2
1 and c ¼ 0.
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The calculated stresses ahead of the crack tip (at polar angle h ¼ 3:18 �) are plotted in Figs.

12 and 13. Figure 12 shows the distribution of normalized mean stress rm/r0 and equivalent

stress re/r0 versus normalized distance r=l1 from the crack tip. Figure 13 shows the distribution

of normalized stress components rrr/r0 and rhh/r0 versus r=l1. It can be seen that the size of the

plastic zone (the range in which re/r0�1) is a bit larger than 5 l1. The elastic K-field exists

beyond the plastic zone. The curves are all straight lines with a slope of -1/2 in the elastic zone.

As the distance from the crack tip r decreases, the curves are transited into the more even

straight lines. This zone, ranging from about 0.2 l1 to 5 l1, is the range of HRR type field. The

calculated results of plastic strain curl theory and conventional theory are identical in both

elastic zone and HRR zone, which means that the effect of geometrically necessary dislocation

density (or, in other words, plastic strain curl) is negligible in these two ranges. When r < 0:2l1,

the density of geometrically necessary dislocations (plastic strain curl) plays an evident role.

Therefore, the calculated results with plastic strain curl effect are much higher than the results

with conventional plasticity in that range. This means that the calculated stress level at the

crack tip will be elevated greatly by the effect of plastic strain curl. By the way, the slope of the

mean stress curve is about -1/2 near the crack tip while the equivalent stress curve is more

inclined. This implies that the singularity of mean stress is the square root singularity and the

singularity of equivalent stress is higher than the square root singularity. However, since the
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mean stress is at least one time greater than the equivalent stress in the calculated range,

the slopes of stress component curves are still nearly )1/2.
Figure 14 is the plot of the normalized J-integral JE=½ð1� m2ÞK2

I � versus normalized distance

r=l1 from the crack tip. The calculated contours are 100 circles centered at the crack tip with

different radii. It can be observed that the J-integral is almost path independent in the whole

range. This result is clearly different from the result by Xia et al. [35]. In that work, the

J-integral is path independent only in the elastic and HRR type zones. The difference may be

caused by the fact that the deformation was not decomposed into elastic and plastic parts in the

simplified theory proposed by Xia et al. [35].

The influence of the exponent n is shown in Fig. 15. The value of n has been taken to be 0.1,

0.2 and 0.3, respectively. The other parameters are chosen as l1=a ¼ 10�3, r0=E ¼ 0:2%,

m ¼ 0:3, KI ¼ 10r0l
1=2
1 , and c ¼ 0. It can be seen that the greater the value of the hardening

exponent n is, the higher the stress level in the plastic zone will be. In the range of HRR type

field, the greater value of n leads to the steeper inclination of the curve. In fact, the stress

singularity of HRR type field is r�n=ðnþ1Þ. The slopes of three curves are approximately the

same in the range where plastic strain curl plays an evident role. Therefore, the stress singu-

larities are also the same in the three cases.

The distribution of normalized equivalent stress re/r0 versus r=l1 under different load levels

is plotted in Fig. 16. The value of stress intensity factor KI has been taken as 10 r0 l
1=2
1 , 20 r0 l

1=2
1
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and 30 r0 l
1=2
1 , respectively. The other parameters are chosen as l1=a ¼ 10�3, r0=E ¼ 0:2%,

m ¼ 0:3, n ¼ 0:2 and c ¼ 0. Apparently, the stress level increases as the external load increases.

Accordingly, the sizes of the plastic zone, HRR type zone and plastic-strain-curl-dominating

zone increase also. The slopes of the three curves are almost identical in all ranges of the

calculated domain. It seems that stress singularity is independent on the load level.

5 Conclusion

The plastic strain curl theory has been proposed in this paper in order to consider the effect of

dislocation density. According to the viewpoints of material science, work hardening of metals

is caused by the accumulation of dislocations and the increase of dislocation density. Plastic

strain curl plays the key role in the influence of dislocation density. The measure of plastic

strain curl is incorporated as an internal variable to elevate the tangent modulus. In this way,

finite element formulations of microindentation tests and the plane-strain mode-I crack tip field

are developed. The indentation size effect is successfully simulated. The values of material

length scale l1 for polycrystal copper, single crystal copper and single crystal tungsten are

obtained. The crack tip field for small scale yielding condition has been investigated. The
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numerical results show the elevation of the stress level, which may explain the experimental

results of Elssner et al. [7]. It is observed that near the crack tip the singularity of the mean

stress seems to be of the square-root singularity while the singularity of equivalent stress is

higher than the square root singularity. The J-integral is path independent in the calculated

domain. Neither the hardening exponent n nor the stress intensity factor can influence the stress

singularity in the range where the plastic strain curl plays an evident role.
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