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Abstract

Using analytical and finite element modeling, we examine the relationships between initial unloading slope, contact depth, and mechanical
properties for spherical indentation in viscoelastic solids with either displacement or load as the independent variable. We then investigate whether
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he Oliver–Pharr method for determining the contact depth and contact radius, originally proposed for indentation in elastic and ela
olids, is applicable to spherical indentation in viscoelastic solids. Finally, the analytical and numerical results are used to answer quesaised
n recent literature about measuring viscoelastic properties from instrumented spherical indentation experiments.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Instrumented indentation is playing an increasing role in the
tudy of small-scale mechanical behavior of “soft” matters, such
s polymers, composites, biomaterials, and food products. Since
any of these materials exhibit viscoelastic behavior, it is impor-

ant to have a sound understanding of instrumented indentation
n viscoelastic solids. Although instrumented indentation has
ecently become popular for measuring the small scale mechan-
cal properties of soft materials, theoretical studies of linear
iscoelastic bodies in contact became active since the mid 1950s
y the work of Lee[1], Radok[2], Lee and Radok[3], Hunter

4], Graham[5,6], Yang[7], and Ting[8,9]. In recent years, a
umber of authors have extended the early work to the analysis
f indentation measurements in viscoelastic solids using either
onical or spherical indenters[10–15]. It has been reported, how-
ver, that a most commonly used method due to Oliver and
harr [16,17] for analyzing instrumented indentation experi-
ents does not produce accurate results when it is applied to

spherical indentation in viscoelastic solids[18,19]. In this paper
we investigate spherical indentation in linear viscoelastic s
using analytical and finite element modeling. Specifically,
examine the relationship between initial unloading slope,
tact depth, and mechanical properties for spherical indent
in linear viscoelastic solids since this relationship is the b
for the Oliver–Pharr method. We then investigate whethe
commonly used Oliver–Pharr method for determining the
tact depth or contact area is applicable to spherical indent
in viscoelastic solids. This work, together with our two previ
publications on conical indentation in linear viscoelastic so
[20,21], helps improve the understanding of indentation in lin
viscoelastic solids and resolve questions raised in recent l
ture about measuring viscoelastic properties from spheric
well as conical indentation experiments.

2. Analytical results

2.1. Spherical indentation in linear viscoelastic solids
∗ Corresponding author. Tel.: +1 586 986 0939; fax: +1 586 986 3091.
E-mail address: yang.t.cheng@gm.com (Y.-T. Cheng).

We consider a rigid, smooth, and frictionless spherical inden-
ter with a radiusR indenting a viscoelastic solid that can be
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described by the following constitutive relationships[22,23]
between deviatoric stress and strain,sij and dij, and between
dilatational stress and strain,σii andεii,

sij(t) = 2
∫ t

0
G(t − τ)

∂dij(τ)

∂τ
dτ

σii(t) = 3
∫ t

0
K(t − τ)

∂εii(τ)

∂τ
dτ

, (1)

where G(t) is the relaxation modulus in shear andK(t)
is the relaxation modulus in dilatation. The time-dependent
Young’s modulus and Poisson’s ratio are then given
by E(t) = [9K(t)G(t)]/[3K(t) + G(t)] and ν(t) = [E(t)/2G(t)] − 1,
respectively.

Alternatively, the stress–strain relations can be written as
[22,23]

2dij(t) =
∫ t

0
J1(t − τ)

∂sij(τ)

∂τ
dτ

3εii(t) =
∫ t

0
J2(t − τ)

∂σii(τ)

∂τ
dτ

, (2)

whereJ1(t) is the shear compliance andJ2(t) is the volumetric
compliance. Obviously, Eqs.(1) and(2) are not independent of
each other. In fact, the relationships between the relaxation an
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when the displacement is the independent variable. When the
force is the independent variable, the relationship between dis-
placement,h(t), and force,F(t), is given by[1–9]:

h3/2(t) = 3(1− ν)

8
√

R

∫ t

0
J1(t − τ)

dF (τ)

dτ
dτ. (6)

The load–displacement relationship can therefore be obtained if
the viscoelastic properties of materials,G(t) or J1(t), andν, are
known using the respective Eq.(5) or (6). Conversely, the vis-
coelastic properties may be obtained from measuredF(t) versus
h(t) relations by solving integral Eq.(5) or (6) [10–15]. Eqs.(5)
and(6) reduce to the well-known equation for spherical inden-
tation into purely elastic solids[24],

F = 8

3

G

1 − ν

√
Rh3/2, (7)

whereG = 1/J1 andν are the time-independent shear modulus
and Poisson’s ratio, respectively.

Eqs. (5) and (6) are special cases of more general expres-
sions derived by Graham[5] and Ting[8]. They showed that
Eqs.(5) and(6) are valid when the contact area is a monotoni-
cally increasing function of time. Under the same condition, the
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creep functions,G(t) andJ1(t), as well asK(t) andJ2(t), have
simple forms after transforming them using Laplace tran
mation[22,23],

∫ t

0
J1(t − τ)G(τ) dτ =

∫ t

0
J1(τ)G(t − τ) dτ = t∫ t

0
J2(t − τ)K(τ) dτ =

∫ t

0
J2(τ)K(t − τ) dτ = t

. (3)

As a consequence, we have,

J1(0)G(0) = J1(∞)G(∞) = 1

J2(0)K(0) = J2(∞)K(∞) = 1
. (4)

In the following, we assume that Poisson’s ratio is time inde
dent. Consequently, eitherG(t) andν or J1(t) andν are sufficien
to describe the linear viscoelastic behavior.

2.2. Relationships between load, displacement, and contact
depth

In the “classical spherical” indenter approximation, wh
the indenter shape is a paraboloid of revolution, the rela
ship between force,F(t), and displacement,h(t), is given by
[1–9]:

F (t) = 8
√

R

3(1− ν)

∫ t

0
G(t − τ)

dh3/2(τ)

dτ
dτ, (5)
d

-

-

elationship between contact depth,hc(t), and contact radiu
(t), and indenter displacement,h(t), is the same as that in t
urely elastic case[5,8],

(t) = a2(t)

R
= 2hc(t). (8)

he equations for unloading where the contact area decr
onotonically have also been derived[5,8], though they ar
ore complicated. As a result, a number of authors have
osed methods for deducingG(t) or J1(t) from indentation load

ng curves using Eq.(5) or (6) without using the informatio
ontained in the indentation unloading curves[18,25]. However
qs.(5) and(8) may be used to evaluate the initial unload
lope of unloading curves, as we have shown in the similar
f conical indentation in linear viscoelastic solids[20,21]. In
ection2.2, we derive equations for initial unloading slop
sing Eqs.(5), (6), and(8). In Section3, we validate the initia
nloading slope equations using finite element calculation
iscuss the applicability of the Oliver–Pharr method for de
ining contact depth or contact area.

.3. Relationships between initial unloading slope, contact
epth, and viscoelastic property

.3.1. Initial unloading slope when displacement is the
ndependent variable

Suppose unloading takes place att = tm with a constan

nloading rate of dh
dt

∣∣∣
t+m

= −vh, we have, using Eq.(5) for
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0≤ t ≤ tm and�t → 0,

F (tm + �t) − F (tm)

�t
= 8

√
R

3(1− ν)�t

[∫ tm+�t

0
G(tm + �t − τ)

dh3/2(τ)

dτ
dτ −

∫ tm

0
G(tm − τ)

dh3/2(τ)

dτ
dτ

]

= 8
√

R

3(1− ν)�t

[∫ tm

0
G(tm + �t − τ)

dh3/2(τ)

dτ
dτ +

∫ tm+�t

tm

G(tm + �t − τ)
dh3/2(τ)

dτ
dτ

−
∫ tm

0
G(tm − τ)

dh3/2(τ)

dτ
dτ

]

= 8
√

R

3(1− ν)�t

[∫ tm

0
G(tm − τ)

dh3/2(τ)

dτ
dτ + �t

∫ tm

0

dG

dη

∣∣∣∣
η=tm−τ

dh3/2(τ)

dτ
dτ

+G(0)
dh3/2(t+m)

dt
�t −

∫ tm

0
G(tm − τ)

dh3/2(τ)

dτ
dτ

]

= 8
√

R

3(1− ν)

[∫ tm

0

dG

dη

∣∣∣∣
η=tm−τ

dh3/2(τ)

dτ
dτ − 3

2
G(0)h1/2(t+m)vh

]

(9)

The initial unloading slope is then given by, usingdF
dh

= dF/dt
dh/dt

and Eq.(8),

dF

dh
= 8

√
R

3(1− ν)

[
3

2
G(0)h1/2(t+m) − 1

vh

∫ tm

0

dG

dη

∣∣∣∣
η=tm−τ

dh3/2(τ)

dτ
dτ

]
vh→∞≈ 4

√
Rh

1 − ν
G(0) = 4G(0)a

1 − ν
(10)

2.3.2. Initial unloading slope when force is the independent
variable

Suppose unloading takes place att = tm with a constant

unloading rate ofdF (t)
dt

∣∣∣
t+m

= −vF, we have, using Eq.(6) for

0≤ t ≤ tm +�t and�t → 0,

h3/2(tm + �t) − h3/2(tm)

�t
= 3(1− ν)

8
√

R�t

[∫ tm+�t

0
J1(tm + �t − τ)

dF (τ)

dτ
dτ −

∫ tm

0
J1(tm − τ)

dF (τ)

dτ
dτ

]

= 3(1− ν)

8
√

R�t

[∫ tm

0
J1(tm − τ)

dF (τ)

dτ
dτ + �t

∫ tm

0

dJ1(η)

dη

∣∣∣∣
η=tm−τ

dF (τ)

dτ
dτ

+J1(0)
dF (t+m)

dt
�t −

∫ tm

0
J1(tm − τ)

dF (τ)

dτ
dτ

]
[∫ t

∣
dF (τ)

]
(11)

Eqs.(10)and(12)suggest that the initial unloading slopes con-
verge when the unloading rate, either in displacement or load
control, is sufficiently fast. Once this limiting case is reached,
Eqs.(10) and(12) become the same as that for purely elastic
case, i.e.,

dF

dh

∣∣∣∣
h=hm

= 4G(0)a

1 − ν
, (13)

sinceG(0) = 1/J(0) according to Eq.(4). Thus, the “instanta-
neous” moduli,G(0)/(1− ν) or E(0)/(1− ν2), can be obtained
provided that the contact radius,a, or contact depth,hc, is
known as a function ofhm = h(tm). The latter condition is pro-
vided by Eq.(8). An interesting, though not necessarily surpris-
ing, implication of Eqs.(10) and (12) is that, aside from the
requirement that the contact area should remain monotonically

are
To
ally

pth
= 3(1− ν)

8
√

R

m

0

dJ1 (η)

dη

∣∣∣
η=tm−τ

The initial unloading slope is then given by, usingdF
dh

= dF/dt
dh/dt

=
− νF

dh/dt
= −(3/2)h1/2νF

dh3/2/dt
and Eq.(8),

dF

dh
= −

3
2h1/2vF

dh3/2

dt

= 4
√

Rh

1 − ν

1

J(0) − 1
vF

∫ tm
0

dJ(η)
dη

∣∣∣
η=tm−τ

dF (τ)
dτ

dτ

vF→∞≈ 4a

1 − ν

1

J(0)
. (12)
dτ
dτ − J1(0)vF

increasing, the details of loading history, i.e.,h(t) or F(t) in the
respective displacement- or load-controlled measurements,
unimportant as long as the unloading rate is sufficiently fast.
satisfy the requirement that the contact area be a monotonic
increasing function of time, it is sufficient thath(t) or F(t) are
monotonically increasing with time prior to unloading.

2.4. Oliver–Pharr method

The most widely used method for estimating the contact de
or area is the procedure proposed by Oliver and Pharr[16,17].
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Based on the results of Sneddon[24], Oliver and Pharr developed
an expression for,hc, at the indenter displacement,hc,

hc = hm − ξ
Fm

(dF/dh)m
, (14)

whereFm and (dF/dh)m are the respective load and the initial
slope of the unloading curve at the indenter displacement depth,
hm. The numerical value ofξ is 3/4 for paraboloids of revo-
lution (“classical spherical” indenter). Although Eq.(14) was
derived from solutions to elastic contact problems, it has been
used to estimate contact depth for indentation in elastic–plastic
solids [16,17] and viscoelastic solids[18,19,25,26,29–34]. In
the following, we examine the conditions for using Eq.(13)
and the applicability of Eq.(14) by analyzing the complete
loading–unloading curves and contact depths using finite ele-
ment calculations.

3. Numerical results

3.1. Finite element model

We consider a frictionless, spherical indenter of radius
R = 2�m indenting an isotropic, three-parameter “standard” lin-
ear viscoelastic model solid (seeFig. 1). The shear and hydro-
static relaxation modulus are given by:

w -
a ,
K re
c t,
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“
a ;
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fi ause
o erials
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s t
t y-
m rried
o ple-
m as

s.

Fig. 2. Displacement–time profiles (a) and the calculated loading–unloading
curves (b) for the same loading rate and three different unloading rates. The
tangent line with initial unloading slope is also shown for the converged unload-
ing curve (b). The loading–unloading curves are labeled by the time duration of
unloading.

the independent variable. The finite element mesh is the same
as that used in Ref.[28].

3.2. Displacement control

For constant indentation displacement rate profiles given in
Fig. 2a, the corresponding loading–unloading curves from finite
element calculations are shown inFig. 2b. These examples
clearly show that, for the same loading history, the initial unload-
ing slopes converge when unloading rate is sufficiently fast, in
agreement with Eq.(10). A tangent line with the converged
initial unloading slope is also shown inFig. 2b. Furthermore,
Fig. 2b suggests that the complete unloading curve converges to
one limiting case as the unloading rate increases.

3.3. Load control

For constant indentation loading rate profiles given inFig. 3a,
the corresponding loading–unloading curves from finite ele-
ment calculations are shown inFig. 3b. When unloading is
slow, the indentation depth continues to increase after the force
reaches a maximum, resulting in a “bulge” or “nose” in the
unloading curve, which has also been observed experimentally
[25,26,29–34]. This bulge is the consequence of material mem-
ory effect carried over from the continuing forward movement of
t ove-
m er the
f avior
G(t) = G1

(
1 − G1

G1 + G2
(1 − e−t/τs )

)

K(t) = K1

(
1 − K1

K1 + K2
(1 − e−t/τs )

) , (15)

here the relaxation timeτs =η/(G1 + G2). Various materi
ls parameters are given asG1 = 235 MPa, G2 = 25.8 MPa
1 = 688 MPa,K2 = 75.6 MPa, andt = 0.99 s. The parameters a
hosen such that Poisson’s ratio,ν = 0.483, is time independen
hough bothG(t) andK(t) are time dependent. Specifically, th
instantaneous” and “equilibrium” values at the respectivet = 0
nd∞ are as follows:G(0) = 235 MPa andG(∞) = 23.2 MPa
(0) = 688 MPa andK(∞) = 68.1 MPa. The parameters of t
ctitious model solid are used for illustration purposes. Bec
f linearity, the results can be scaled to represent other mat
f the same general type when the dimensionless param
uch asG1/G2, K1/K2, G1/K1, andt/τs, are equal. It is importan
o note thatG(0)/G(∞) is about 10 which is typical of many pol
ers and biomaterials. Finite element calculations were ca
ut using the classical isotropic linear viscoelastic model im
ented in ABAQUS[27] using either displacement or load

Fig. 1. A three-parameter “standard” model for linear viscoelastic solid
he indenter prior to unloading. Because of this forward m
ent of the indenter, the maximum contact area occurs aft

orce maximum. This delayed maximum contact area beh



Y.-T. Cheng, C.-M. Cheng / Materials Science and Engineering A 409 (2005) 93–99 97

Fig. 3. Force–time profiles (a) and the calculated loading–unloading curves (b)
for the same loading rate and four different unloading rates. The tangent line
with initial unloading slope is also shown for the converged unloading curve (b).
The loading–unloading curves are labeled by the time duration of unloading.

was predicted by the analytical theories of Graham[5] and Ting
[8,9], and was verified for conical indentation by numerical cal-
culations[20,21]. With increasing unloading rate, the “bulge”
disappears. For the same loading history, the initial unloading
slope converges when the unloading rate is sufficiently fast
in agreement with Eq.(12). Furthermore, the entire unload-
ing curve converges to one limiting case as the unloading rat
increases.

3.4. Contact depth and unloading slope

The contact area,A, and contact depth,hc, are also
obtained from finite element calculations. The calculations show
hc/h ≈ 0.52± 0.01, which is slightly larger than 1/2 predicted by
Eq.(8). This suggests that Eq.(8) needs to be slightly modified
to become,

hc

h
= α

1

2
, (16)

whereα = 1.04± 0.02. Furthermore, the finite element results
show that there is a small correction to Eq.(10),

dF

dh

∣∣∣∣
h=hm

= β
4G(0)a

1 − ν
= β

2√
π

E(0)

1 − ν2

√
A, (17)

whereβ = 1.02± 0.01. The sameβ correction factor has also
b elas-
t
t

has been attributed to the fact that Eq.(10) was derived using
linearized boundary conditions and infinitesimal theory of con-
tinuum mechanics, finite element calculations take into account
non-linear effects, including large strain and moving contact
boundaries[20]. Because the values ofα andβ are nearly the
same as that for purely elastic and elastic–plastic cases, we
believe they are insensitive to the particular choice of viscoelas-
tic properties used in the finite element calculations. Although
further improvement in the precision and accuracy of theα andβ

values is possible by additional calculations, either Eqs.(16)and
(17)or (8) and(13)can be used to obtain, to within 5% of accu-
racy, contact depth,hc, and “instantaneous” moduli,G(0)/(1− ν)
or E(0)/(1− ν2), when unloading rate is sufficiently fast.

3.5. Oliver–Pharr method

We now discuss the applicability of the Oliver–Pharr method
for estimating contact depth for indentation in viscoelastic
solids. Finite element calculations were carried out using con-
stant indentation displacement rate profiles given inFig. 4a. The
load–displacement curves inFig. 4b show that the force required
to reach a given indentation depth increases with the loading rate,
consistent with the expected behavior of viscoelastic solids. The
unloading rates chosen in the calculations are sufficiently fast
so that they generate the corresponding converged unloading
c t the
c . 5b,
a g

F ading
curves (b) for three different loading rates and sufficiently fast unloading
rates. The tangent lines with initial unloading slopes are also shown (b). The
loading–unloading curves are labeled by the time duration of loading.
een seen in the modeling of conical indentation in purely
ic solids and in elastic–plastic solids[17,20]. The origin of
his correction factor has been discussed previously[17,20]. It
,

e

urves. Furthermore, finite element calculations show tha
ontact depth,hc, is the same for all three cases shown in Fig
s expected from Eq.(8)or (16)sincehm is the same. Accordin

ig. 4. Displacement–time profiles (a) and the calculated loading–unlo
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to Eq.(13)or (17), therefore, the unloading slopes are the same,
which is evident fromFig. 4b.

On the other hand,Fig. 4b demonstrates that the Oliver–Pharr
procedure for estimating the contact depth using Eq.(14) is not
applicable to indentation in viscoelastic solids. This can be seen
by the fact that Eq.(14)would have predicted very different con-
tact depths,hc, sinceFm is different whilehm and (dF/dh)m are
the same for the three cases, contradicting the fact thathc is the
same. Indeed, the contact depth calculated from the Oliver–Pharr
procedure for the three cases shown inFig. 4b are 0.287, 0.415,
and 0.468�m for the 0.5, 5.0, and 50 s loading time, respectively.
In contrast, the actual contact depth for all three cases is about
0.257± 0.001�m from finite element calculations. The errors
are 12, 61, and 82%, respectively. Errors of the same magni-
tude are also seen from finite element calculations when load,
instead of displacement, is the independent variable. We note
that the Oliver–Pharr method always overestimates the contact
depth, resulting in underestimating the modulus values deter-
mined using Eq.(13)or (17). Thus, the Oliver–Pharr procedure
may cause significant error in determining contact depth or con-
tact area when it is applied to the analysis of spherical indentation
in viscoelastic solids. This observation is not surprising since the
Oliver–Pharr procedure, specifically Eq.(14), was derived using
Eq. (7), which is only valid for spherical indentation in purely
elastic solids.

4
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void
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unloading slope is nevertheless a function of holding his-
tory and unloading condition[29–34]. A correction formula
has been proposed by Ngan and coworkers for the initial
unloading slope after the hold period so that the instanta-
neous modulus can be obtained from unloading[31–34].
Eqs.(10) and(12) suggest, however, that the hold-period
may be unnecessary if unloading can be made sufficiently
fast so that the instantaneous modulus can be obtained from
the unloading slope.

(3) For spherical indentation a simple relationship exists
between contact depth and indentation depth (Eq.(8) or
(15)) from which contact area can be determined without
invoking the Oliver–Pharr method.

These general guidelines should help improve the accu-
racy and reproducibility of spherical indentation measure-
ments for determining properties of purely linear viscoelastic
solids.
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