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Abstract 

In this paper, a kind of strain gradient theory proposed by Chen and Wang (2001) is briefly introduced and is 
used to analyze the crack tip field in homogeneous materials and interface crack tip field with the help of finite 
element methods. Differences are found between the two kinds of crack tip fields. For the crack tip field in 
homogeneous materials, the whole field consists of a strain gradient dominance zone, a classical plasticity field 
and a Κ field. While for the interface crack tip field, there are only the strain gradient dominance zone and a Κ 
field and the classical plasticity field hardly exists. The reason will be given in the present paper. For both kinds 
of crack tip fields, the effective stresses near the crack tip are much higher than the counterparts in the classical 
field, which provides an explanation to the experimental observation of cleavage fracture in ductile materials 
(Elssner et al., 1994). 
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1 Introduction 

In 1994, Elssner et al. measured both the 
macroscopic fracture toughness and atomic 
work of separation of an interface between a 
single crystal of niobium and a sapphire single 
crystal. The macroscopic work of fracture was 
found to be two to three orders of magnitude 
higher than the atomic work of separation. This 
large difference between the macroscopic work 
of fracture and its counterpart at the atomic 
level was attributed to plastic dissipation in 
niobium, i.e., there must be significant plastic 
deformation associated with dislocation 
activities in niobium. However Elssner et al. 
(1994) observed that the interface between two 
materials remained atomistically sharp. 
Meanwhile the stress level needed to produce 
atomic decohesion of a lattice or a strong 
interface is typically on the order of 0.03 times 
the Young's modulus, or 10 times the tensile 
yield stress. But the maximum stress level that 
can be achieved near a crack tip is not larger 

than 4 or 5 times the tensile yield stress of 
metals, according to models based on 
conventional plasticity theories (Hutchinson, 
1997). This clearly falls short of triggering the 
atomic decohesion observed in Elssner et al.'s 
experiments (1994). Attempts to link 
macroscopic cracking to atomistic fracture are 
frustrated by the inability of conventional 
plasticity theories to model stress-strain 
behavior adequately at the small scales involved 
in crack tip deformation. 

In order to explain the atomistically sharp 
crack tip in ductile niobium observed in Elssner 
et al.'s experiments (1994), it is necessary to 
develop a continuum theory for micron level. 
Thus strain gradient theory has been developed. 
As direct application, strain gradient plasticity 
theory has been used to investigate fracture of 
materials. Several significant results (Huang, et 
al., 1999; Wei and Hutchinson, 1997; Jiang et al. 
2001; Chen and Wang, 2002) are obtained. 
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In this paper, using the strain gradient 
theory proposed by Chen and Wang (2001) and 
finite element method, we investigate crack tip 
field in homogeneous materials and interface 
crack tip field in bimaterial. Comparison of the 
results for the two kinds of crack tip fields are 
given in this paper. 

The strain gradient theory will be briefly 
given in section 2. Finite element results for 
crack tip fields in a homogeneous elastic-power 
law hardening solid are shown in section 3. 
Numerical results for the interface crack tip 
fields will be presented in section 4. Detail 
discussion is given in section 5. 

2 Briefly review of the strain gradient theory 

The strain gradient theory (Chen and Wang, 
2001) preserves the essential structure of the 
incremental version of conventional couple 
stress deformation theory. No higher-order 
stress or higher-order strain rates are introduced. 
The rotation gradient influences the material 
character through the interaction between the 
Cauchy stresses and the couple stresses; the 
stretch gradient measures explicitly enter the 
constitutive relations only through the 
instantaneous tangent modulus and the 
boundary value problem of the incremental 
equilibrium is the same as in the conventional 
theories. The tangent-hardening modulus is 
influenced by not only the generalized effective 
strain but also the effective stretch gradient. 

In a Cartesian reference frame xi, the strain 

tensor etj and the stretch gradient tensor ηΙ]Ι( 

are related to the displacement w, by 

£u = 2 ("'.v+"/.<) (1) 

Vtjk ~ uk,ij 

The definition 

(2) 

€ can be found in 

Smyshlyaev and Fleck (1996) 
The rotation gradient can be defined as the 

curvature tensor, which is related with the 
micro-rotation vectors ω,, 

Xij = °>,J 

Also, we define 
(3) 

£ e = ^ £ i / £ y ' X e = ^ X i j X , j , 7, = V 7 ^ 7 ^ 

(4) 
In the general couple stress theory, the 

material rotation vector Θ, is θ = (l/2)curlu . 
Then the relative rotation tensor atJ is defined 
as 

"y =e,jk(o)k - 0 k ) (5) 
The micro-rotation vector ω , which is the 

sum of the material rotation vector θ plus the 
particle relative rotation vector with respect to 
the material, is an independent quantity with no 
direct dependence upon u, i.e. ω ψ θ . 

We postulate that the strain energy density 
w depends only upon the strain tensor ε and 
the curvature tensor χ , It follows 

= 0 
' d a , 

(6) 

where r,; is the anti-symmetric part of Cauchy 
stress and the work conjugate of the relative 
rotation tensor a . 

The deviatoric part stJ of Cauchy stress and 

deviatoric part m'tJ of couple stress are defined 

as the work conjugates of e'j, χ'ν respectively; 

gm and mm are defined as the work conjugates 

of em and χ η respectively, giving 

Sw ' s j 5 ε ' , + ιη',,δχ' + σ i f , + τ η δ χ „ ( 7 ) ij ij // λ- ij m m m Λ/ m 

It is mathematically convenient to assume 
that the strain energy density w depends only 
upon the single scalar strain measure Ee, 
where 

£ 2 2 +[2 2 
e e cvA e (8) 

where /C( is an intrinsic material length, which 
reflects the size effects of the rotation gradient 
on the material behaviors. 

Ie is the work conjugate of Ee, i.e. 

Σ . = 
d w ( E J 

d E. 
(9) 

Then the constitutive relations can be written as 
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2Σ 

2Σ 

where Σ, = (σ) + /"Χ 2) 1 / ί (12) 

and Κ is the volumetric modulus and is 
called the bend-torsion volumetric modulus. 

While the stretch gradient is not considered, 
the hardening relation between Σ€ and Et in 
this paper is taken as 

Σβ=Α(Ε,), Σε>σγ 
(13) 

Σ„ = 3 μΕβ , Σς < α γ 

While the stretch gradient is considered, the 
incremental hardening relationship is proposed 

te=A'(Ee)(l + ̂ )2Ee, Σκ > σγ 
Ee (14) 

Λ = 2μΕβ Σκ < υ γ 

where μ is the shear modulus and /, is the 
second intrinsic material length. 
In order to solve the crack tip field, the 
constitutive relations are written in the 
incremental form also. 

σ — 2 lib', + Κέ δ • 
TJ R^ IJ m I] 

Σ . < Σ , (15) 

2Γ, 
4 + 

2Σ , 
3 Ee

 iJ 
2Σ 

~ 3E2 £ijEe + K£
m

S,j 

2Σ, 
3£e 

^csXi 
, 2 Σ 
, +—~ 
' 3 Ee 

μ y· -'csAij > 

2Σ 
-£llX'ijEe+Kxl2csXmSij itje 

Σ , > Σ 0 (16) 

3 Crack tip field in homogeneous 
materials 

9-node element is used in this paper. The 

displacement and rotation vectors in the 
element are interpolated through the shape 
function. Plane strain case is studied in the 
present paper. The domain for the finite element 
analysis is a circle, whose central point is at the 
crack tip and the radius is Ä = 1000/cv. The 
classical Κ fields are imposed on the outer 
boundary. The results presented below were 
computed with σγ / Ε = 0.2% , ν = 0.3, 
R = 1000/..... 

r/l 

Fig.l. Normalized effective stress ahead of the crack 
tip versus the normalized distance 

Fig.l shows the normalized effective 
stresses, σ,, I σγ , at polar angle 0 = 0° versus 
the normalized distance r/lcs for the present 
strain gradient theory with the plastic hardening 
exponent n - 0.2 and / ,= 0.1/cs. The remotely 
applied stress intensity factor in Fig.l is 
Κj /(σγ11ί2) = 20. The plastic zone size is a bit 
more than 10/C4.. The corresponding stress 
distribution in classical plasticity (without strain 
gradient effects) is also shown in Fig. 1. Outside 
the plastic zone, it is observed that both the 
present strain gradient theory and the classical 
plasticity theory give the same straight line with 
slope -1/2, which corresponds to the elastic Κ 
field. The predictions of the present strain 
gradient theory and the classical plasticity 
theory are almost the same within the plastic 
zone at a distance larger than 0.06lcs to the 
crack tip. At a distance of 0.03/Ci. to the crack 
tip, the effective stress given by the present 
strain gradient theory is much higher than that 
in classical plasticity and the absolute value of 
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the slope is larger than that for the HRR field, 
which means that the stresses around the crack 
tip in the present strain gradient theory are more 
singular than the HRR field. The order of the 
stress singularity nearly tends to be -1/2 . 

In Fig.2, materials with various hardening 
exponents are calculated and the effects of the 
hardening exponents on the effective stress 
distribution ahead of the crack tip are shown in 
Fig.2. The remotely applied stress intensity 
factor is Κ, Ι(σγ1\{2) = 10 also and /, = 0. l / c s . 
The hardening exponents are η = 0.1, 0.2, 0.33. 
One can find from Fig.2 that near the crack tip 
there is a domain dominated by the strain 
gradient, the slope is hardly related to the 
hardening exponents and nearly the same as 
that of classical Κ field. 

Present results 
K=10C jy( Ic i)"2 . I1 = 0.1Ic i 

™i ι I ι ι ι 
0 01 0.1 1 10 100 1000 

Fig.2. The results for different hardening exponents 
with the same external loading 

In this paper, the main object is to compare the 
results for the crack tip field in homogeneous 
materials and those for an interface crack. So 
some other phenomena are not shown and can 
be found in Chen and Wang (2002). 

4 Interface crack tip field 

The interface crack with a rigid substrate is 
often found in engineering problems and here 
this special kind of case is calculated and the 
strain gradient is considered. A finite square 
plate subject to uniform tensile is considered 
and the calculation model is shown in Fig.3, in 
which only the right half of the deformable 
medium is considered. The half of the crack 

length is a and the width of the calculated 
model is 10a. On the boundary of j/ = 10a, 
only normal stress σ™2 is imposed. During the 
calculation the parameters of the upper material 
are ay IE = 0.2%, ν = 0.3, η = 0.2. In all the 

calculation, we take lcs = 1 μηι. 

Fig.3 Mesh division for interface crack 

Fig.4 shows the normalized effective 
stresses, σ , , Ι σ γ , versus the non-dimensional 
distance to the crack tip, r/lcs, ahead of the 
crack tip ( 0 = 3.15°). The remotely applied 
stress is σ"2 Ισ γ = 1/6 . There are four kinds of 
cases in Fig.4, in which three results are 
corresponding to different relations of lcs and 
/,, the other one is for the classical theory. 
Since the material length lcs is taken prior, the 
value of /, for each case is known also. The 
horizontal line separates the elastic and plastic 
zones for each curve. Outside the plastic zone 
and r / l c s < 5, both the present strain gradient 
theory and the classical plasticity theory give 
the same straight line with slope - 1 / 2 , which 
corresponds to the elastic Κ field. As r/lcs > 5 , 
there is an elastic field, which is influenced by 
the outer boundary. From Fig.4, one can find 
the interface crack tip field is significantly 
influenced the material length /, while 
/, >0.01μ*ι. When /, >0.1 μτη, the HRR type 
field seems to vanish, there is no HRR type 
field, which is different from the results for 
crack tip field in homogeneous material. This 
interesting phenomena may be due to the 
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intrinsic properties of the interface crack 
between and elastic-plastic solid and a rigid 
substrate. Since the lower material is rigid 
substrate, the material points along interface in 
both directions are fixed, which results in the 
greater strain gradient along y direction near 
the interface. While the value of material length 
/, decrease, the result tends to the classical 
solution, which reflects that the length scale /, 
plays an important role in crack tip field. 

Fig.4 Normalized effective stresses ahead of an 
interface crack for different /, 

5 Discussion 

For the crack tip field in homogeneous 
materials, the full field solutions are obtained 
numerically with remotely imposed classical Κ 
fields. It is found that the size of the strain 
gradient dominance zone is characterized by the 
intrinsic material length / , . Outside the strain 
gradient dominance zone, the computed stress 
field tends to be a classical plasticity field and 
then Κ field. The singularity of stresses ahead 
of the crack tip is higher than that of the 
classical field and tends to the square root 
singularity. The effective stress near the crack 
tip is significantly improved and much higher 
than the counterpart in the classical theory. 

As for the interface crack tip field, under 
small scale yielding condition and /, >0.1 μτη, 
the remote classical Κ field goes directly to the 
near tip strain gradient dominated zone without 
a classical plasticity field. The material length 
scale /| has an important influence on the 
interface crack tip field and once the plasticity 

is produced, the effects of strain gradient 
dominate the field, which is different f rom that 
in homogeneous material. 

For both kinds of crack tip filed, at a 
distance that is much larger than the dislocation 
spacing such that continuum plasticity is 
expected to be applicable. The near tip stresses 
predicted by the strain gradient theory are 
significantly higher than that in HRR field. The 
increase in the near tip stress level provides an 
explanation to the experimental observation of 
cleavage fracture in ductile materials. 
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