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A gas-kinetic model with multiple translational temperature for the continuum and near continuum
flow simulations is proposed. The main purpose for this work is to derive the generalized
Navier-Stokes equations with multiple temperature. It is well recognized that for increasingly
rarefied flowfields, the predictions from continuum formulation, such as the Navier-Stokes equations
lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the
standard Navier-Stokes equations. Here, based on an extended Bhatnagar-Gross-Krook �BGK�
model with multiple translational temperature, the numerical scheme for its corresponding
Navier-Stokes equations is also constructed. In the current approach, the energy exchange between
x, y, and z directions is modeled through the particle collision, and individual energy equation in
different direction is obtained. The kinetic model, newly constructed is an enlarged system in
comparison with Holway’s ellipsoid statistical BGK model �ES-BGK�. The detailed difference is
presented in this paper. In the newly derived “Navier-Stokes” equations from the current model, all
viscous terms are replaced by the temperature relaxation terms. The relation between the stress and
strain in the standard Navier-Stokes equations is recovered only in the limiting case when the flow
is close to the equilibrium, such as small temperature differences in different directions. In order to
validate the generalized Navier-Stokes equations, we apply them to the study of Couette and
Poiseuille flows with a wide range of Knudsen numbers. In the continuum flow regime, the standard
Navier-Stokes solutions are precisely recovered. In the near continuum flow regime, the simulation
results are compared with the direct simulation Monte Carlo solutions. The anomalous phenomena
in the pressure and temperature distributions from the standard Navier-Stokes equations in the
Poiseuille flow case at Kn=0.1 are well resolved by the generalized Navier-Stokes equations. This
paper clearly shows that many thermal nonequilibrium phenomena in the near continuum flow
regime can be well captured by modifying some assumptions in the standard Navier-Stokes
equations. © 2007 American Institute of Physics. �DOI: 10.1063/1.2429037�

I. INTRODUCTION

The transport phenomena, i.e., mass, heat, and momen-
tum transfer in different flow regime, are of a great scientific
and practical interest. The classification of various flow re-
gimes is based on the dimensionless parameter, i.e., the
Knudsen number, which is a measure of the degree of rar-
efaction of the medium. The Knudsen number Kn is defined
as the ratio of the mean free path to a characteristic length
scale of the system. In the continuum flow regime where
Kn�0.001, the Navier-Stokes �NS� equations with linear re-
lations between stress and strain and the Fourier’s law for
heat conduction are adequate to model the fluid behavior. For
flows in the continuum-transition regime �0.1�Kn�1�, the
Navier-Stokes equations are known to be inadequate. This
regime is important for many practical engineering prob-
lems, such as the simulation of microscale flows1 and hyper-
sonic flow around space vehicles in low Earth orbit.2 Hence,

there is a strong desire and requirement for accurate models
that give reliable solutions with lower computational costs.

Currently, the direct simulation Monte Carlo �DSMC�
method is the most successful technique in the numerical
prediction of low density flows.3 However, in the continuum-
transition regime, especially for the microchannel flows, the
DSMC suffers from statistical noise in the bulk velocity be-
cause of the random molecular motion. When the bulk ve-
locity is much slower than the thermal velocity, many inde-
pendent samples are needed to eliminate the statistical
scattering, as for the microelectromechanical system
�MEMS� simulation. In fact, for the nitrogen gas at room
temperature, the standard deviation in the molecular speed is
about 300 m/s, which would require approximately 9�106

independent samples in DSMC to reduce the scatter in the
bulk velocity to 0.1 m/s. For MEMS gas flows that operate
in the mm/s range, the number of required samples can grow
into trillions. Thus, DSMC is impractical in these cases. Al-
ternatively, many macroscopic continuum models have been
intensively developed in the literature. These include the
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Navier-Stokes and the Burnett equations from the Chapman-
Enskog expansion, Grad’s 13 moment equations, the regular-
ized 13 equations, and many others. In order to validate these
continuum models, a few test cases have been used.4 It
seems that none of the models is commonly acceptable for
rarefied flow simulations. In addition, in most above models,
a single translational temperature is usually assumed. Over-
all, the small length scales and slow bulk gas velocity com-
bine to make continuum solutions inaccurate, and particle
solution time consuming. Besides DSMC and continuum
models, many alternative approaches have also been pro-
posed in recent years, such as the empirical slip and viscosity
model,5 the information preservation �IP� method,6,7 and the
lattice Boltzmann method �LBM�.8 However, IP and LBM
are mostly used for the isothermal flows. Recently, advances
have been made in LBM method to describe nonisothermal
behavior,9 and many successful applications in microflows
have been obtained.10

Based on a closed solution of the BGK model, a gener-
alization of particle collision time or constitutive relationship
has been obtained for nonequilibrium flow.11,12 The derived
extended Navier-Stokes equations from the BGK model with
a generalized constitutive relationship, i.e., extended viscos-
ity and heat conduction coefficients to rarefied regime, have
been successfully used in the argon and nitrogen shock struc-
tures for a wide range of Mach numbers, i.e., 1.2�Ma
�11. The current study is to further modify the kinetic BGK
model, construct new Navier-Stokes equations with multiple
translational temperature, and apply it to capture thermal
nonequilibrium phenomena in the near continuum flow re-
gime. The major point we will deliver is that in order to
capture thermal nonequilibrium effect, the stress strain rela-
tionship in the Navier-Stokes equations has to be replaced by
the temperature relaxation terms. In the continuum flow re-
gime, the temperature relaxation goes back automatically to
the Navier-Stokes assumption.

In this paper, Sec. II provides details on the construction
of the kinetic equation and its generalized Navier-Stokes
equations. Section III describes the gas-kinetic scheme to
solve the newly constructed Navier-Stokes equations. Sec-
tion IV concerns the application of the current scheme to
flow computation from continuum to the near continuum re-
gime, i.e., 0.001�Kn�0.5. The numerical solutions from
the current model are compared with the exact Navier-Stokes
solutions in the continuum flow regime and the DSMC re-
sults in the transition flow regime. The final section is the
conclusion.

II. MULTIPLE TRANSLATIONAL TEMPERATURE
KINETIC MODEL AND ITS GENERALIZED
NAVIER-STOKES EQUATIONS

In this section, we first review the BGK equation, con-
struct the multiple-temperature �multi-T� kinetic model for
monatomic gas, and derive its macroscopic Navier-Stokes
equations for both continuum and near continuum flow simu-
lation.

A. Standard BGK model and Navier-Stokes equations

The Boltzmann equation expresses the behavior of a
many-particle kinetic system in terms of the evolution equa-
tion for a single-particle gas distribution function. The sim-
plification of the Boltzmann equation given by the BGK
model is formulated as13

�f

�t
+ u ·

�f

�x
=

feq − f

�
, �1�

where f is the number density of molecules at position x and
particle velocity u= �u ,v ,w� at time t. The left-hand side of
the above equation represents the free streaming of mol-
ecules in space, and the right side denotes the collision term.
If the distribution function f is known, macroscopic vari-
ables, such as mass, momentum, energy, and stress, can be
obtained by taking the moments of the gas distribution func-
tion. In the BGK model, the collision operator is approxi-
mated by a simple relaxation term, where f approaches a
local equilibrium given by feq in a characteristic time scale �.
Traditionally, the equilibrium state is given by a single-
temperature Maxwellian,

feq = �� �

�
��K+3�/2

e−���u − U�2+�2�,

where � is the density, U the macroscopic fluid velocity, and
�=m /2kT. Here, m is the molecular mass, k is the Boltz-
mann constant, and T is the temperature. For an equilibrium
flow, the internal variable � accounts for the rotational and
vibrational modes, such as �2=�1

2+�2
2+ ¯ +�K

2 , and the total
number of degrees of freedom K is related to the specific
heat ratio 	. In the current paper, we only consider mon-
atomic gas with K=0. The relation between mass �, momen-
tum �U, and energy densities �E with the distribution func-
tion f becomes

� �

�U

�E
� =	 
�fdu , �2�

where 
� is the component of the vector of moments


 = �1,u,
1

2
u2�T

,

with du=du dv dw and u2=u2+v2+w2. Since mass, momen-
tum, and energy are conserved during particle collisions, f
and feq satisfy the conservation constraint

	 �feq − f�
�du = 0, �3�

at any point in space and time.
The BGK model was originally proposed to describe the

essential physics of molecular interactions with � chosen as
the molecular collision time. Although the BGK model ap-
pears to describe only weak departures from local equilibria,
it has long been recognized that such an approximation
works well beyond its theoretical limits as long as the relax-
ation time is known for a physical process. Based on the
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above BGK model, the Navier-Stokes equations can be de-
rived with the Chapman-Enskog expansion truncated to the
first order:

f = feq + Kn f1 = feq − ���feq/�t + u · �feq/�x� . �4�

For the Burnett and super-Burnett solutions, the above ex-
pansion can be naturally extended,14 such as f = feq+Kn f1

+Kn3 f3+¯.
Based on the Chapman-Enskog expansion and the BGK

model, in the continuum flow limit the Navier-Stokes equa-
tions with the stress and Fourier heat conduction terms can
be derived. In this paper, in order to make the expression
clear, the derived macroscopic governing equations from ki-
netic model in one-dimensional �1-D� space is presented, but
the numerical scheme presented is solving the corresponding
multidimensional flow equations. The Navier-Stokes equa-
tions derived from the single-temperature BGK model for a
monatomic gas in the 1-D case can be written as

� �

�U

�E
�

t

+ � �U

�U2 + p

��E + p�U
�

x

=�
0

4

3
�Ux

5

2
�RTx +

4

3
�UUx

�
x

, �5�

where p=�RT is the pressure and �=�p is the dynamical
viscosity coefficient. With the relation �=m /2kT=1/2RT
and Cp=5k /2m=5R /2 for a monatomic gas, the heat
conduction coefficient in the above equations becomes
=5k� /2m, and the Prandtl number becomes fixed with the
value Pr=�Cp /=1. This is a well known result for the
BGK model.

B. Multiple-temperature gas-kinetic model
and its corresponding Navier-Stokes equations

Traditionally, the BGK model is considered suitable only
for isothermal rarefied gas flow. It does not provide reliable
results for nonisothermal flows because it gives incorrect
Prandtl number. The disagreement between an exact solution
based on the Boltzmann equation and that obtained from the
BGK model reaches 30% near the hydrodynamic flow re-
gime. In order to get the correct Prandtl number, many modi-
fication of the BGK model have been proposed. One is the
ellipsoid-statistical BGK �ES-BGK� model of Holway,15 and
the other is the S-model of Shakhov.16 In the ES-BGK
model, the �temperature� becomes a tensor and it is related to
the Prandtl number. In the S-model, a heat flux term is added
in the equilibrium state. In our early BGK scheme for solv-
ing the compressible Navier-Stokes equations in the con-
tinuum flow computation,17 the correct Prandtl number is
achieved through the modification of heat flux across a cell

interface in a finite volume scheme. In the following, we are
going to propose a multi-T model. The purpose of construct-
ing such a model is not for the Prandtl number correction,
but for the derivation of the generalized Navier-Stokes equa-
tions with the inclusion of multiple translational temperature
for the near continuum flow, where the traditional NS equa-
tions are not adequate.

Since this paper concerns the mainly two-dimensional
�2-D� flow simulations, a 2-D multi-T kinetic model will be
presented. The generalized BGK model has the same form as
the original one,

�f

�t
+ u

�f

�x
+ v

�f

�y
=

g − f

�
, �6�

but the equilibrium state has multiple temperatures,

g = ���x

�
�1/2��y

�
�1/2��z

�
�1/2

�exp�− �x�u − U�2 − �y�v − V�2 − �zw
2� . �7�

Here, �x=m / �2kTx�, �y =m / �2kTy�, and �z=m / �2kTz� are re-
lated to the translational temperature Tx, Ty, and Tz in the x,
y, and z directions. In order to determine all unknowns in the
corresponding macroscopic variables, such as �, U, V, Tx, Ty,
and Tz, we propose the following moments for the collision
term of the BGK model:

	 �� �f

�t
+ u

�f

�x
+ v

�f

�y
�du dv dw

=	 �
g − f

�
dudvdw =�

0

0

0

0

��Ex
eq − �Ex�/�

��Ey
eq − �Ey�/�

� , �8�

where

� = 
1,u,v,
1

2
�u2 + v2 + w2�,

1

2
u2,

1

2
v2�T

.

The first four moments on the right-hand side of Eq. �8� are
the conservative moments of the mass, momentum, and total
energy, which have zero values due to the conservation dur-
ing particle collision. The last two moments are the models
proposed to simulate the energy exchange in different direc-
tions. The equilibrium energies �Ex

eq and �Ey
eq in Eq. �8� have

the forms
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�Ex
eq =

1

2
�U2 +

�

4�eq ,

and

�Ey
eq =

1

2
�V2 +

�

4�eq ,

which are constructed based on the assumption that the sys-
tem will approach to an equilibrium state with equal tem-
perature. The common equilibrium temperature, i.e., �eq, in
all directions is determined by equally distributing thermal
energy in all degrees of freedom,

�
3

4�eq = �E −
1

2
��U2 + V2� ,

where �E is the total energy, i.e.,

�E =	 1

2
�u2 + v2 + w2�fdu dv dw

=	 1

2
�u2 + v2 + w2�gdu dv dw .

The tendency for the gas distribution function to approach to
a common Maxwellian determined by �� ,U ,V ,�eq� means
that the H-theorem for the system �6� and �8� is satisfied.
Note that the last two moments on the right-hand side of Eq.
�8� cannot be derived directly from the BGK equation �6�
itself. It is a model we construct. The basic consideration is
that there needs particle collision to exchange energy in dif-
ferent directions. The direct moments � 1

2u2 , 1
2v2� to the BGK

equation �6� with the multiple-temperature equilibrium state
g in Eq. �7� will give


��1

2
U2 +

1

4�x
� − �Ex�/�

and


��1

2
V2 +

1

4�y
� − �Ey�/� ,

for the two terms on the right-hand side of Eq. �8�, which are
not adequate to close the system due to the three unknowns
��x ,�y ,�z� instead of one. In other words, the multiple-
temperature equilibrium state in Eq. �6� includes two more
unknowns, such as �y and �z. In order to close the system to
have a unique solution, we have to introduce two more equa-
tions or constraints, which are the last two moments in �8�,
where �eq can be explicitly determined through the total ther-
mal energy in the system. Thus, the above multi-T BGK
model is an extension of the original BGK model and the
nonconservative moments are modeled instead of directly
derived from the BGK collision term. In the above model,

the thermal equilibrium among x, y, and z directions will be
achieved through the particle collisions, and there will be a
time delay to achieve such a temperature equilibrium. In the
standard Navier-Stokes equations, it is assumed that the
same equilibrium temperature in different directions is ob-
tained instantaneously. As shown in the following, the
Navier-Stokes assumption between the stress and the veloc-
ity gradient is valid mainly in the continuum flow limit. The
real viscosity terms in the NS equations will be replaced by
the temperature relaxation term. The Chapman-Enskog ex-
pansion of the multi-T kinetic model will present generalized
NS equations, and they go back to the traditional ones when
the temperature differences among Tx, Ty, and Tz are small.
In order to make the presentation clear, even for the above
2-D kinetic model, in the following, we are going to apply it
to the one-dimensional flow and derive the corresponding
macroscopic governing equations. However, in terms of the
numerical scheme presented in section III, the 2-D general-
ized Navier-Stokes equations will be solved.

Based on the multi-T kinetic model, in the 1-D case the
equilibrium state can be written as

g = ����

�
�1/2���

�
�exp�− ���u − U�2 − ���2� ,

where � represents the particle random motion in y, and
z directions, i.e., �2=v2+w2, and the �� =1/2RT� and
��=1/2RT� represent the x-direction temperature T� and the
temperature T� in other directions. For the equilibrium flow
with T� =T�, the inviscid governing equations, i.e., the Euler
equations, can be obtained from Eq. �6�,

�
�

�U

1

2
��U2 + RT� + 2RT�� �

t

+�
�U

�U2 + �RT�

1

2
�U�U2 + 3RT� + 2RT�� �

x

= �0

0

0
� . �9�

Even though T� =T� in the above equilibrium flow, in order
to distinguish the different contribution to the energy and
corresponding fluxes from the random motion in different
directions, the distinguishable temperatures T� and T� are
still used. By using the first-order Chapman-Enskog expan-
sion, the following dissipative governing equations from the
kinetic model �6� can be obtained:
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�
�

�U

1

2
��U2 + RT� + 2RT��

�RT�

�
t

+�
�U

�U2 + �RT�

1

2
�U�U2 + 3RT� + 2RT��

�URT�

�
x

=�
0

−
2

3
�R�T� − T��

3

2
��R2T��T��x + ��R2T��T��x −

2

3
�RU�T� − T��

��R2T��T��x +
1

3
�RU�T� − T��

�
x

+�
0

0

0

�

3�
R�T� − T��� . �10�

The above equations are different from the standard Navier-
Stokes equations �5� derived from the single temperature
BGK model. Instead of the viscous flux �4/3��Ux in �5�, the
current model replaces it by the temperature relaxation term,
i.e., −�2/3��R�T� −T��. Near the thermal equilibrium limit,
i.e., T� T�Teq, the temperature difference becomes

T� − T� = − 2�TeqUx.

Therefore, the relaxation term in the momentum equation
goes to

− 2
3�R�T� − T�� = 4

3��RTeqUx,

which exactly recovers the viscous term in the standard
Navier-Stokes equations. In addition, the total energy dissi-
pative flux becomes

4
3��RTeqUUx + 5

2��R2TeqTx
eq,

where the pressure becomes p=�RTeq. Thus, in the thermal
equilibrium limit, the standard Navier-Stokes equations are
obtained, and the thermal energy equation in �10� becomes a
dependent equation that can be derived from the total energy
and momentum equations. Hence, the multi-T kinetic model
corresponds to an enlarged Navier-Stokes equations, and this
system shrinks to the standard NS equations in the con-
tinuum limit. As presented in the numerical experiments, in
the continuum flow regime, i.e., Kn�0.01, the solution from
the enlarged system does recover the exact Navier-Stokes
solution. The nonequilibrium thermal effect only takes places
when Kn becomes large, such as in the near continuum flow
regime. In order to validate the generalized Navier-Stokes
equations, instead of solving Eq. �10� directly, we are going
to solve numerically the kinetic model �6� to the Navier-
Stokes order using BGK-NS scheme, which is presented in
Sec. III.

From the above relaxation model, we can realize that the
viscous term approximation in the Navier-Stokes equations
is not an intrinsic property of a gas, but rather, an approxi-
mation designed to simulate the effect of thermal relaxation
when the governing equations are cast in terms of a single

temperature. This approximation is based on the assumption
that the time scale of the macroscopic gas motion is much
larger than the relaxation time for the thermal energy equi-
librium. This local thermodynamic equilibrium assumption is
a good approximation only for low Knudsen number flows.
When the characteristic time for temperature relaxation is
comparable to the characteristic flow time scale in the near
continuum flow regime, the relaxation effect has to be con-
sidered.

C. Comparison between multi-T kinetic model
and ES-BGK model

Based on the first-order Chapman-Enskog expansion, the
original BGK model gives the Navier-Stokes equations with
unit Prandtl number. In order to obtain a proper Prandtl num-
ber for a realistic flow, Holway suggested the ES-BGK
model,15 where the Maxwellian distribution in the BGK
model is replaced by an anisotropic Gaussian so that the
collision term reads

Q = �gh − f�/� ,

where gh denotes the anisotropic Gaussian,

gh =
�

�2��ij

exp
−
1

2
�ij

−1CiCj� ,

and the matrix �ij is given by

�ij = RT�ij + �1 −
1

Pr
� pij

�
.

Here, �ij
−1 denotes the inverse matrix. Same as the BGK

model, the ES-BGK assumes that the collision frequency is
independent of the microscopic velocity. An entropy condi-
tion for ES-BGK has been recently proved by Andries et
al.18 The above ES-BGK model is different from the kinetic
model we proposed in the last subsection. For example, for
the 1-D flow, the equilibrium state from the above ES-BGK
model has the form,
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gh =
�

�2��3/2

1

�11
1/2�22

exp
−
�u − U�2

2�11
−

�v2 + w2�
2�22

� ,

where

�11 = �1 −
Pr − 1

Pr
�RT +

1

�

Pr − 1

Pr
	 �u − U�2fdu dv dw ,

and

�22 = �1 +
1

2

Pr − 1

Pr
�RT −

1

2�

Pr − 1

Pr

�	 �u − U�2fdu dv dw ,

are determined from the moments of f with a local tempera-
ture T. As shown above, the Prandtl number is involved in
the determination of �11 and �22. Physically, �11 and �22 in
the ES-BGK model are only components of a matrix which
have no direct meaning to the temperature. The real tempera-
ture in ES-BGK is T, and �ij is used mainly for the recovery
of correct Pr number by modifying the viscosity coefficient
to �=��RT Pr. In addition, the evaluation of �ij is through
the moments of f , which is different from our model, where
independent governing equations for the thermal energy �or
temperature� in different directions are proposed. In our
multi-T model, the modification of Pr number is not our
concern. For a flow with Pr=1, the ES-BGK model will go
back to the standard BGK model with a single “tempera-
ture,” i.e., �11=�22=�33. However, the multiple temperatures
still exist at Pr=1 in our proposed model. Using the
Chapman-Enskog expansion, to the first order of Kn, the
standard Navier-Stokes equations will be derived from the
ES-BGK model. As presented in the last subsection, our
multi-T model has an enlarged Navier-Stokes system �10�.

III. FINITE VOLUME BGK SCHEME FOR THE
GENERALIZED NAVIER-STOKES EQUATIONS

The macroscopic governing equations derived from the
new kinetic model in the previous section will be solved
using the gas-kinetic BGK scheme.17 It is a conservative
multiscale finite volume method, in which the update of the
macroscopic flow variables is through the numerical fluxes at
cell interfaces which are evaluated based on the time-
dependent gas distribution function. Since we are going to
develop a directional splitting method to solve Eq. �6�, the
kinetic model in x direction can be written as

f t + ufx = �g − f�/� ,

where g is the multiple-temperature equilibrium state �7�.
Taking moments � to the above equations in a control
volume x� �xj−1/2 ,xj+1/2� and time interval t� �tn , tn+1�,
the update of the macroscopic flow variables, i.e.,
W= �� ,�U ,�V ,�E ,�Ex ,�Ey�T inside each numerical cell
�xj−1/2 ,xj+1/2� from time step tn to tn+1, becomes

W j
n+1 = W j

n +
1

�x
	

tn

tn+1

�F j−1/2�t� − F j+1/2�t��dt + S j
n�t ,

�11�

where F j+1/2 are the corresponding fluxes at a cell interface,
which are evaluated based on the gas distribution function
f j+1/2 there,

F =	 u�f j+1/2du dv dw .

The source term is due to the moments of the collision term
in Eq. �8�, which has the form

S = �0,0,0,0,��Ex
eq − �Ex�/�,��Ey

eq − �Ey�/��T.

For the current multi-T model, the evaluation of the gas dis-
tribution function f at a cell interface is similar to the
BGK-NS method in Ref. 17, where the only difference be-
tween them is that three temperatures Tx, Ty, and Tz have to
be accounted for. The following is about the calculation of
the gas distribution function f j+1/2 based on the multi-T
model �6�.

Based on the multi-T kinetic model, up to the 1st-order
expansion to the Navier-Stokes order, we have the following
gas distribution:

f�xj+1/2,t,u,v,w� = g − ���g/�t + u�g/�x� + t
�g

�t
, �12�

where −��gt+ugx� is the Chapman-Enskog expansion and tgt

is the time evolution part.14 The relation between � and � is
�=� / p, where � is the dynamical viscosity coefficient and p
is the pressure. For a two-dimensional gas flow, the equilib-
rium gas distribution function g has the form

g = ���x

�
�1/2

exp�− �x�u − U�2���y

�
�1/2

�exp�− �y�v − V�2���z

�
�1/2

exp�− �zw
2� . �13�

The connection between macroscopic variables and the dis-
tribution function is

W = ��,�U,�V,�E,�Ex,�Ey�T =	 �gdu dv dw .

Thus, from the reconstructed initial data W�xj+1/2 , tn� at the
beginning of each time step, the equilibrium state g in Eq.
�12� can be uniquely determined at a cell interface. Then,
from the spatial derivative �W /�x there, we can evaluate
�g /�x in Eq. �12� as the following. Based on the Taylor
expansion, the expansion �g /�x can be expressed as
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�g

�x
= g
1

�

��

�x
+

1

2�x

��x

�x
−

�

�x
��xU

2 + �yV
2� +

1

2�y

��y

�x

+
1

2�z

��z

�x
+ 2

���xU�
�x

u + 2
���yV�

�x
v

−
��x

�x
u2 −

��y

�x
v2 −

��z

�x
w2�

= g�a1 + a2u + a3v + a4u2 + a5v
2 + a6w2� = ga , �14�

where

a = a1 + a2u + a3v + a4u2 + a5v
2 + a6w2.

All coefficients in a can be determined from

�

�x
W =	 �agdu dv dw .

Since

�x = �/�4��Ex − 0.5�U2�� ,

we have

��x

�x
= −

4�x
2

�

 ���Ex�

�x
−

1

2

���U2�
�x

� +
�x

�

��

�x
= − a4,

��y

�x
= −

4�y
2

�

 ���Ey�

�x
−

1

2

���V2�
�x

� +
�y

�

��

�x
= − a5,

��z

�x
= −

4�z
2

�

 ���E − �Ex − �Ey�

�x
� +

�z

�

��

�x
= − a6.

Let us define

A =
1

�

 ���U�

�x
− U

��

�x
� ,

and

B =
1

�

 ���V�

�x
− V

��

�x
� ,

then,

a3 = − 2a5V + 2�yB ,

a2 = − 2a4U + 2�xA ,

and

a1 =
1

�

��

�x
− a2U − a3V − a4�U2 +

1

2�x
� − a5�V2 +

1

2�y
�

− a6
1

2�z
.

After determining �g /�x=ga in Eq. �12�, the term
�g /�t=gA with

A = �A1 + A2u + A3v + A4u2 + A5v
2 + A6w2� ,

can be obtained by requiring the nonequilibrium part in the
Chapman-Enskog expansion vanishing to the moments �,

	 ��au + A�gdu dv dw = 0,

where the six unknowns in A can be uniquely obtained from
the above six equations. The procedure to get A is similar to
obtaining a. Therefore, the gas distribution function at the
cell interface �12� is totally determined, which can be used to
evaluate the fluxes.

After the determination of f at a cell interface, we can
explicitly evaluate the heat flux there as well. In order to
simulate the flow with any realistic Prandtl number, a modi-
fication of the heat flux in the energy transport, such as that
used in Ref. 17, is also implemented in the present study.
Therefore, the current model can simulate flow with any
Prandtl number. It needs to be emphasized again that the
kinetic scheme presented in this section is targeting to solve
the generalized multiple-temperature Navier-Stokes equa-
tions, which can be derived from the multi-T kinetic model.

IV. NUMERICAL EXPERIMENTS

A. Shear-driven Couette flows

Shear-driven Couette flows are encountered in micromo-
tors, comb mechanisms, and microbearings. In the simplest
case, the Couette flow can be used as a prototype flow to
model such flows driven by a moving plate. Since the Cou-
ette flow is shear driven, the pressure does not change in the
streamwise direction. Hence, the compressibility effects be-
come important for large temperature fluctuations or at high
speeds. In this section, we simulate the Couette flows in both
continuum and near continuum flow regime.

This is a gas flow problem between two infinite parallel
plates, separated by a distance L. The schematic structure is
shown in Fig. 1. In our computation, the most cases we study
are the hard-sphere �HS� molecule and the working gas is
argon. The specific heat ratio is 	=5/3 with molecular mass
m=6.63�10−26 kg. The viscosity coefficient for HS is
�=2.117�10−5��T /273� N s/m2. The mean free path is
defined as

l0 =
16

5
� 1

2�RT
�1/2 �

�0
,

where R is the gas constant, and T and � are temperature and
density, respectively. In most calculations, both surfaces

FIG. 1. Couette flow.
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maintain 273 K and the Maxwell diffusive kinetic reflection
boundary condition17 are used. The density �0 has a value
corresponding to the pressure of 1 atm �or 101 325 Pa� at
T=273 K. The Knudsen number is defined as Kn= l0 /L,
which increases as the length L decreases. In all computa-
tions, we use 50 cells in the one-dimensional computational
domain.

In order to validate the generalized Navier-Stokes equa-
tions in the continuum flow limit, we first apply them to the
case, where the exact Navier-Stokes solutions are available.
Under the conditions of ��T� with �=1 and of adiabatic
lower wall condition, there is an analytic solution in the com-
pressible case,19

�wy

��Uw
=

U

Uw
+ Pr

	 − 1

2
Ma�

2
 U

Uw
−

1

3
� U

Uw
�3� ,

where Uw is the horizontal velocity of the upper wall and
Ma� is the corresponding Mach number. In order to test the
multi-T BGK scheme, we set up the upper wall with a speed
of Ma=3 and lower adiabatic wall with velocity zero, and a
Prandtl number Pr=2/3. The viscosity coefficient is set to be
�=2.117�10−5�T /273� N s/m2. The velocity and tempera-
ture profiles in the channel are shown in Fig. 2, where the
circles are the exact NS solutions and the solid lines are from
the current multi-T scheme. In the current case, the Kn num-
ber has a value Kn=0.001, which well belongs to the NS
flow regime. It is hard to distinguish the three temperatures
in the x, y, and z directions in Fig. 2.

In the following, we simulate the Couette flow cases for
the hard-sphere �HS� molecules with fixed upper wall veloc-
ity 300 m/s. The use of this wall velocity is from the con-
sideration of two aspects. One is the easy solution from the
DSMC simulation and the other is the temperature deviation
due to large shear. The Prandtl number used is Pr=0.68,
which is consistent with the Prandtl number in the DSMC
method for the HS model. The Knudsen numbers simulated
are Kn=0.01, 0.1, and 0.5. Figure 3 shows the velocity and
temperature profiles across the channel at Kn=0.01, where
the solid lines are the current multi-T model results and
circles are the DSMC solutions. Note three temperatures are
plotted for both DSMC and multi-T solutions, even though
they are indistinguishable. At this Knudsen number, the sepa-
ration between the temperature is too small to be seen. As the
Knudsen number increases to 0.1, the three temperatures can
be clearly observed in Fig. 4, where the magnitudes of the
temperature are distributed from the highest Ty, to Tz, and to
the lowest Tx. At Kn=0.1, both velocity and temperature
from multi-T model have a fair agreement with the DSMC
results. As the Kn increases to 0.5, the deviation between
different temperature becomes more obvious. Figure 5 shows
the velocity and temperature distributions. In this case, the
slip velocity due to the kinetic diffusive boundary condition
becomes large, and both velocity and temperature distribu-
tions come flat in comparison with small Knudsen number
results. The temperature in the y direction �same direction as
the flow velocity� is higher than those in other two direc-
tions. Even though there are deviations close to the boundary
in the temperature distributions, the overall match between

the multi-T model and DSMC results is fair. At this Knudsen
number, the velocity profile is not a straight line. The slight
curvature near the wall may be due to the Knusden layer in
the DSMC solution. In terms of computational efficiency, the
multi-T model takes one or two minutes in a PC in all cases
to get a steady state solution. Even though we concentrate on
the HS molecules in the above simulation, the multi-T model
itself can be applied to any molecular model with a general-
ized viscosity coefficient, such as the Sutherland’s law.

B. External force-driven Poiseuille flow

It is generally recognized that in the slip flow regime
with Knudsen number Kn�0.1, the Navier-Stokes equations

FIG. 2. Velocity U /Uupper �top� and temperature T /Tupper �bottom� distribu-
tions in high-speed Couette flow case for a gas with Pr=2/3, ��T, and
Kn=0.001, where the up-plate has a speed of Ma=3.0 and the lower bound-
ary is adiabatic. The circles are analytic Navier-Stokes solutions provided
in,19 and the solid lines are simulation results from the current multiple-
temperature model. Multiple temperatures are plotted in the above figure
�bottom�.
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with the slip boundary condition are capable to accurately
simulate the microchannel flow. However, for the simple
force-driven Poiseuille flow in the slip flow regime with rela-
tive small gradient and Knudsen number, the Navier-Stokes
equations give qualitatively incorrect predictions.20,21 For ex-
ample, they fail to reproduce the central minimum in the
temperature profile and nonconstant pressure profile, which
are both predicted by the kinetic theory and observed in the
DSMC simulations.22–26 In order to understand these phe-
nomena, many analyses have been done. For example, the
nonconstant pressure is well explained based on the Burnett
equations,24 and the temperature minimum at the center is
explained only through the kinetic theory,22,23,26 or the super-
Burnett solution.27 It is interesting to see that the minimal
kinetic modeling lattice Boltzmann method can produce the

temperature minimum qualitatively as well even though it
targets to solve the Navier-Stokes equations.10

The setup of external force-driven Poiseuille flow case
is given in Ref. 20. The simulation fluid is a hard-sphere
gas with particle mass m=1 and diameter d=1. At the refer-
ence density of �0=1.21�10−3, the mean free path is
l0=m��2��0d2�=186. The distance between the thermal
walls is Ly =10l0 and their temperature is T0=1.0. The refer-
ence fluid speed is U0=�2kT0 /m=1, so the Boltzmann con-
stant is taken as k=1/2. The reference sound speed is
c0=�	kT0 /m=0.91 with 	=5/3 for a monatomic gas. The
reference pressure is p0=�0kT0 /m=6.05�10−4. The accel-
eration is chosen so that the flow will be subsonic and lami-
nar. Specifically, �0f =8.31�10−8 for the force-driven case.
In this case the Knudsen number is Kn= l0 /Ly =0.1 and the

FIG. 3. Velocity U /Uupper �top� and temperature T /Tupper �bottom� for a gas
with Pr=0.68, ���T, and Kn=0.01, where the up-plate has a speed of
Uupper=300 m/s. Both boundaries are isothermal with a temperature
T=273 K. The circles are DSMC solutions, and the solid lines are simula-
tion results from the current multi-T model.

FIG. 4. Velocity U /Uupper �top� and temperature T /Tupper �bottom� for a gas
with Kn=0.1. The circles are DSMC solutions, and the solid lines are simu-
lation results from the current multi-T model. In terms of the temperature
distributions, the up one is Ty, the middle one is Tz, and the low one is Tx.
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Reynolds number is of order 1. In all calculations, the cell
side takes the size of one-fifth of the mean free path under
the initial flow condition.

Figures 6 and 7 present the results from the current
multi-T model. Besides the excellent match of density and
velocity between the DSMC and the multi-T results, the
curved pressure distribution and temperature are well cap-
tured as well. The temperature minimum in both Tx and the
averaged temperature T can be clearly observed in Fig. 7.
This is surprising because the analysis in24 confirms that the
temperature minimum does not appear even in the Burnett
solution. However, it can be recovered in the super-Burnett
order.27 But, based on our current model, even with the in-
clusion of first-order derivatives in space and time, see Eq.
�12�, the temperature minimum has been recovered. Thus,
the generalized Navier-Stokes equations, where the tempera-

ture relaxation term is used to replace the stress and strain
relation, have significant physical importance in the captur-
ing of the nonequilibrium thermal effect. In order to distin-
guish the current solutions from those obtained by solving
the standard single-temperature Navier-Stokes equations, the
same test case has been calculated by the gas-kinetic
BGK-NS method.17 As shown in Fig. 8, for both pressure
and temperature, the BGK-NS method with slip boundary
condition for the traditional Navier-Stokes solutions has no
the capacity to capture the nonequilibrium thermal effect.
This is consistent with the analysis in Ref. 20 and 21.

V. CONCLUSION

In this paper, a gas-kinetic model for the multiple trans-
lational temperature is proposed and its corresponding
Navier-Stokes equations up to first order of Kn are derived.
The difference between the current kinetic model and the

FIG. 5. Velocity U /Uupper �top� and temperature T /Tupper �bottom� for a gas
with Kn=0.5. The circles are DSMC solutions, and the solid lines are results
from the current multi-T model. In terms of the temperature distributions,
the up one is Ty, the middle one is Tz, and the low one is Tx.

FIG. 6. External force-driven Poiseuille flow at Kn=0.1.20 Density �top� and
velocity �bottom� distributions along the channel cross section, where the
circles are DSMC solutions.
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ES-BGK mode of Holway is explicitly pointed out. In the
generalized Navier-Stokes equations from the current
multi-T kinetic model, the assumption between stress and
strain in the standard Navier-Stokes equations is replaced by
the temperature relaxation term. Based on the numerical ex-
amples, it becomes evident that besides modeling slip bound-
ary condition, in the near continuum flow the basic assump-
tion in the Navier-Stokes equations has to be modified. The
current model presents such a step to go beyond the Navier-
Stokes formulation.

The generalized NS equations are applied to the Couette
flow computation in both continuum and near continuum
flow regime. As presented theoretically and numerically, this
model recovers the Navier-Stokes solutions in the continuum

flow regime, such as at the cases Kn�0.001. In the transi-
tion flow regime, the results from the current model agree
well with the DSMC solutions in the capturing of thermal
nonequilibrium. Without going up to the Burnett and super-
Burnett orders, the nonconstant pressure and the temperature
minimum can be well captured by the current extended
Navier-Stokes solutions. Therefore, in the slip flow regime,
such as Kn=0.1, in order to capture the flow physics the
development of multiple-temperature governing equations is
important and necessary. The current kinetic model and its
numerical method for the extended Navier-Stokes equations
provide an alternative effective tool for the study of microf-
lows in the near continuum flow regime, where the DSMC
method can be very expensive.

FIG. 7. External force-driven Poiseuille flow at Kn=0.1.20 Pressure �top�
and multiple temperatures �bottom� distributions, where the circles are
DSMC solutions. Both the curved pressure and the temperature minimum
are recovered from the multi-T model. Solid line �bottom� is the averaged
temperature, i.e., T= �Tx+Ty +Tz� /3.

FIG. 8. External force-driven Poiseuille flow at Kn=0.1.20 Pressure �top�
and temperature �bottom� distributions from the BGK-NS method,17 where
the circles are DSMC solutions and the solid lines are the Navier-Stokes
solutions. The BGK-NS method basically cannot capture the nonequilibrium
effect at Kn=0.1.
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