
Acta Mechanica 157, 113 127 (2002) 
ACTA MECHANICA 
�9 Springer-Verlag 2002 

Size effects in the particle-reinforced metal-matrix 
composites 

S. H. Chen and T. C. Wang, Beijing, China 

(Received August 20, 2001; revised September 10, 2001) 

Summary. Many experimental observations have shown the influences of particle size on the mechanical 
properties of the particle-reinforced metal-matrix composite. However, the conventional theory cannot 
explain the phenomena because no length scale parameters are included in the conventional theory. In the 
present paper, the strain gradient theory proposed by Chen and Wang [32] is used, and a systematic 
research of the particle size effect in the particle-reinforced metal-matrix composite is carried out. Many 
composite factors, such as the particle size, the particle aspect ratio, the Young's modulus ratio of the par- 
ticle to the matrix material, particle volmne fraction and the strain hardening exponent of the matrix 
material, are investigated in detail. Two kinds of particle shapes, spheroidal particle and cylindrical par- 
ticle, are considered to check the strength dependence of the particle shapes. Calculation to the special 
materials used by Ling [9] has been done, and the calculation results are consistent with the experimental 
results in Ling [9]. The material length scale parameter is predicted. 

1 Introduction 

Particle-reinforced metal  matrix composites (PMMC) are promising candidates for a number  
of  aerospace and automotive applications due to their higher specific stiffness, specific 
strength and better wear resistance. It  is well known that  the mechanical behavior of  this class 
of  materials is significantly affected by their microstructure, such as the Young 's  modulus of  
the particle, the particle aspect ratio, the particle volume fraction and size effect, as well as the 
strain hardening exponent of  the matrix material. During the past two decades, many  
at tempts have been made to explore the relationship between microstructure and deformation 
behavior in PMMC.  Cont inuum models including the cell models [1], [2] gave some detailed 
quantitative information about  the composite strength. The composite always shows strength- 
ening because a higher triaxiality stress exists within the matrix region near the particle sur- 
face under loading [1]. The particulate aspect ratio and the volume fracture, as well as the 
strain hardening exponent of  the matrix material  had important  influences on the composite 
properties, and some quantitative relations were developed by using cell models. The pre- 
dicted results are consistent with experimental results. In addition, a self-consistent analytical 
model has been used successfully to predict the behavior of  the P M M C  [3]. More  recently, a 
systematic experimental research for the metallic fiber reinforced Al-alloy matrix for a series 
of  the volume fraction of  fiber was carried out [4]. On the researches of  the particle size effects, 
the experimental results [5]-[9] showed that  the strength of  the P M M C  was sensitive to the 
particle size. The conclusion was that  the smaller the particle, the higher the composite 
strength. In order to predict the particle size effects, some analytical models were developed 
[10], [11]. It  is well known that  the conventional elastic-plastic theory cannot  be used to pre- 
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dict the particle size effect effectively, because no length scale parameter is included in the the- 
ory. Besides PMMC, these size effects have been found in many research regions, such as in 
the micro-indentation test [12], in the micro-torsion test of thin copper wire [13], in the ultra- 
thin beam bending test [14] as well as the interface separation of metal/ceramic system [15]. 

In order to describe the size effects, several strain gradient theories have been developed 
[16]- [18]. Fleck and Hutchinson [16] developed a phenomenological strain gradient theory 
based on the reduced couple stress theory, and a material length scale was introduced for 
dimensional grounds. In order to explain experimental findings of indentation and fracture 
[12], [15], Fleck and Hutchinson [17] gave another strain gradient theory, in which two kinds 
of length parameters were introduced. Wei [19], [20] has used the strain gradient theory in [17] 
to investigate crack tip field and size effects in the PMMC. A rate-dependent strain gradient 
crystal plasticity formulation was developed by Shu and Fleck [21] and was used to investigate 
the microscopic details of the deformation of a whisker-reinforced metal-matrix composite 
[22]. Bassani et al. [23] used both discrete dislocation plasticity and a nonlocal continuum 
crystal plasticity theory to investigate a two-dimensional model composite with elastic reinfor- 
cements in a crystalline matrix, which is subjected to macroscopic shear. Nix and Gao [24] 
started from the Taylor relation and gave one kind of hardening law for gradient plasticity. 
Motivated by the hardening law, Gao et al. [18] proposed a mechanism-based theory of strain 
gradient plasticity (MSG). 

However, all the above strain gradient plasticity theories introduce the higher order stress 
which is required for this class of strain gradient theories to satisfy the Clausius-Duhem ther- 
modynamic restrictions on the constitutive model for second deformation gradients [25]. In 
comparison, no work conjugate of strain gradient has been defined in the alternative gradient 
theories [26]-[29]. Retaining the essential structure of conventional plasticity and obeying 
thermodynamic restrictions, Acharya and Bassani [30] concluded that the only possible for- 
mulation is a flow theory with strain gradient effects represented as an internal variable, 
which acts to increase the current tangent-hardening modulus. Chen and Wang [31] estab- 
lished a concrete hardening law based on the incremental version of conventional J2 deforma- 
tion theory, which allows the problem of incremental equilibrium equations to be stated with- 
out higher-order stress, higher-order strain rate or extra boundary conditions. The new 
hardening law has been used to investigate microtwisting and microbending experiments. The 
predictions based on the hardening law agree well with experimental data. Subsequently, 
Chen and Wang [32] have proposed a new strain gradient theory with independent micro- 
rotation degrees of freedom, a~i, which has no relation to the displacement ui. While only the 
rotation gradient is considered, the phenomena found in the thin-wire torsion and ultra-thin 
beam bending tests can be explained successfully. And the theory only considering the rota- 
tion gradient was used to analyse the crack tip asymptotic field [33], [34]. It is found that 
while the fracture and indentation problems are considered, the new hardening law proposed 
by Chen and Wang [31] must be used, in which the stretch gradient is introduced. Using the 
new strain gradient theory and hardening law, fracture and indentation problems have been 
successfully investigated [35], [36], and the results explain the phenomena found in the experi- 
ments [15], [12] very well. 

In the present paper, the hardening law in [31] and the strain gradient theory in [32] are 
used to simulate the mechanical response of the PMMC. A detailed analysis of the particle 
size effect is carried out. Adopting the strain gradient plasticity theory, the composite stress- 
strain curves will depend on the following parameters: the Young's modulus of both particle 
and matrix; particle volume fraction; particle aspect ratio; strain hardening exponent of 
matrix material; a normalized particle volume with the material length scale parameter. A cell 
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model is adopted and two kinds of particle shapes: spheroid and cylinder are considered. 
Finally, using analysis results to the experiments, the material length scale parameter is pre- 
dicted. 

2 Strain gradient theory 

2.1 Review of the general couple stress theory 

In the general couple stress theory, the micro-rotation vector, to, is treated as an independent 
kinematic quantity with no direct dependence upon u and distinct from the material rotation 
0-= (1/2)curlu. a denotes the symmetric part of the Cauchy stress and v denotes the anti- 
symmetric part of the Cauchy stress, m denotes the overall couple stress tensor. 

Neglecting the body forces and body couples, the principle of virtual work for the general 

couple stress theory is 

f (~ij + Tij) 6~/ij + mij6X~j] dV : f [Ti6ui + q{6cci] dS,  (1) 
v s 

where Xij : Cdi,j is the work-conjugated curvature tensor and 7ij = u i , j  @ eijkcck is called the 
relative displacement gradient tensor. V is the volume of the body and S is the surface of it. 

The above virtual work statement can be rearranged to the form 

f (aij&ij + Tij6aij + rnij6Xij] dV = f [Ti6ui + qi6(z,] dS,  (2) 
v s 

where the symmetric tensor eij is the usual strain tensor, 

%i,j -~- Uj,i (3) 
CiJ - -  2 

and the anti-symmetric tensor c~j is the relative rotation tensor 

~ j  = eijk~k -- ( ~ , ~ -  ~ j ) / 2  = ~jk(~k --Ok).  (4) 

Via the divergence theorem, the left side in Eq. (2) can be written as 

f (aij6eij + Tij6c~ij + mijSXij] dV = f (oij + Tij) nj6ui dS - f (aij + "rij) ,j 6ui dV 
v s v 

+ f mijnSa~i a s  + f ~-jkeijk&ci dV - f mij,j6a;i dV ,  (5) 
S V V 

then, the equilibrium relation of force in V is 

t i j , j  = o-ij,j -~- qzij,j ----- O, (6) 

and moment equilibrium is 

1 
Tjk = ~ e i j kmip ,p .  (7) 

Here, a comma indicates a partial derivative with respect to a Cartesian coordinate and a 
repeated suffix denotes summation over 1 to 3. A subscript index can take the value of l, 2 or 
3, and eijk denotes the usual permutation symbol. 

Traction equilibrium on the surface S of the body is 
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The strain energy density function w in the general couple stress theory depends upon the 
strain tensor e ,  the curvature tensor Z and the relative rotation a as follows: 

Eij )~ij O~ij 

w ( e , Z  , a)  = f aij deij + f mi j  dx i j  + f "Ciy dais ; (9) 
0 0 0 

then, the constitutive relations are 

Ow Ow Ow 
criJ - Oeij ' mij  - Oxij , "rij - Oaij " (10) 

2.2 Strain gradient theory 

The strain gradient theory given by Chen and Wang [32] is based on the framework of general 
couple stress theory. It is different from the theory proposed by Fleck et al. [16], which is 
based on a reduced couple stress theory. The micro-rotation vector a~, which is the sum of the 
material rotation vector 0 plus the particle relative rotation vector with respect to the mate- 
rial, is an independent quantity with no direct dependence upon u, i.e. o~ ~ 0. So that the rela- 
tive rotation tensor a does not equal zero, which is different from the other existing theories. 

We postulate that the strain energy density w depends only upon the strain tensor e and 
the curvature tensor Z, i.e. the relative rotation tensor a has no contributions to the strain 
energy density w. It follows 

Ow 
- o .  (11) 

7;ij - -  O0~i j 

Since the anti-symmetric part of Cauchy stress vanishes in the present theory, in the following 
sections, the symmetric part of Cauchy stress is called Cauchy stress directly. 

The deviatoric part sij of Cauchy stress and deviatoric part m~j of couple stress are defined 
l ! as the work conjugates of Qj, Xij, respectively; a,~ and m,~ are defined as the work conjugates 

of e,~ and X,~, respectively, giving 

(5w = sij(Se'ij + m'iSX'ij + am(Sere + rn,~SXm, (12) 

where sij -- aiy - (1/3) (5iyakk and m~y =- mij  - (1/3) ~ijmk~. 
l Equation (12) enables one to determine Siy, mij ,  am and m.~ in terms of the strain and cur- 

vature states of the solid as 

Ow Ow Ow Ow 
- -  ' - a m  - m m  . ( 1 3 )  s~j Oe~j rn# OX~j Oe.~ -- Oxm 

According to the work by Fleck et al. [13], [16], it is mathematically convenient to assume that 
the strain energy density w depends only upon the single scalar strain measure Ee, where 

2 2 (14) ~je  2 z s  2 "t- l c s X e  �9 

E~ is called the generalized effective strain in the present paper. 1~8 is an intrinsic material 
length, which reflects the size effects of the rotation gradient on the material behaviors. 

Z~ is the work conjugate of Ee and defined by 

Z~ - dw(E~) (15) 
dE~ 
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Then, Eqs. (13) can be written as 

2E~ , , 2Z~ 2 , 2 (16) 
8ij ~-- 3 ~ e  Cij ' mij = - ~  Icsxij , am = K c m  , m m =  KllcsXm , 

where K is the volumetric modulus; K1 is the bend-torsion volumetric modulus and 

= 2 + (17 )  

3 3 t t 
O'e 2 m_ ~ 8ijSij  ' m e  2 = ~ m i j m i j .  (18) 

The equilibrium relations of  Eqs. (6) and (7) can be written as 

aij,j = 0, (19) 

mij,j = 0. (20) 

The traction boundary  conditions for force and moment  are 

crijnj = Ti ~ on ST,  (21) 

mijnj  = qi ~ on Sq. (22) 

The additional boundary  conditions are 

ui = ui ~ on S~, (23) 

~i =coi ~ on S~. (24) 

2.3 New hardening law 

The hardening relationship in conventional plasticity theory can be expressed as follows: 

ere = A(ee) - dw(e~) 
de~ ' (25) 

and the incremental form of Eq. (25) is 

&~ = A'(ee) ee, (26) 

where A ~(e~) is the tangent hardening modulus in the incremental version of  conventional J2- 
deformation theory. 

While only the rotat ion gradient is considered, the relation between Z~ and E~ is taken as 

~ = A(Ee) ,  E~ > cry, 
(27) 

Z~ = 3#Ee,  Ze < ~Ty, 

where cry is the yield stress and # is the shear modulus. 

While the stretch gradient is considered, the hardening strength is related with not only 
the density of  statistically stored dislocation but also the density of  geometrically necessary 
dislocation. Instructed by this idea, the new incremental hardening relationship similar to that  
in [31] instead of  Eq. (27) is proposed: 

~ = A'(E~) (1 +11~71 ~ 1/2 
\ ~ ] E~ = B(E~, I I~ I )E ,  Ze > ~v ,  (28) 

s  = 3#/~e Z~ < cry, 
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where B(E~,  11~1) is the hardening function including the effect of the stretch gradient; 11 is 
the second intrinsic material length associated with the stretch gradient�9 ~h is the effective 

stretch gradient defined as follows [37]: 

7]~jk = uk,ij, (29) 

1 
' = ( 6 ~ j ~  + % k ~ )  (30) ~Tijk r~ijk - ~ 

r/i~ k = 1 (r/ijk 4- ~/}ki 4- ~/;ij), (31) 

~/(I) s 1 s s s {jk = ~{jk - g (~{J~k~ + %k~{~ + ~{%~),  (390 

/ -~ )  (~) 
~h = V ~iST~J ~ " (33) 

It must be noted that on each incremental step both the effective strain ~ and the effective 
stretch gradient ~ can be obtained from the updated displacement fields ui; the effective rota- 
tion gradient X~ can be obtained from the updated rotation fields wi. Hence, ~ is only a given 
parameter in Eq. (28), and it doesn't invoke higher-order stress or higher-order strain rates. 

2.4 Incremental  constitutive relations 

While the stretch gradient is introduced through the hardening law, Eq. (28), which is in the 
incremental form, the constitutive relations can be written in the incremental form as follows: 

�9 . /  

O-ij = 2~Cij 4- K~m(~ij 
Z~ < ~r (34) 

�9 2 ,2 .t 2 �9 ~ i j  : #LcsXij 4- f(fllcsXm~ij 

2Z~ 2 ~  2Ze  , �9 . 

, ~o _> ~y .  (35) 

rnij = ~ lcsXij 4 - - ~ e  e.sXij 3 E  2 lcsXijEe 4- KllcsXm6ij 

Here, Z~ is the integration of ~ ,  and ~ is expressed by Eq. (28). 

3 F i n i t e  e l e m e n t  f o r m u l a t i o n  a n d  c a l c u l a t i o n  m o d e l  

In this section, the finite element formulations are presented for the strain gradient theory 
used in the present paper. The principle of virtual work requires 

f ((Tij&ij + m i S x i j )  d V  = f (tk6uk + qk6wk) d S .  
v s 

(36) 

The virtual strains 6eij are related to the virtual displacements 6uk, and 6Xij are related to the 
virtual rotation vector 5wk. tk is the surface stress traction and qk is the surface torque traction. 

The nodal displacements and rotation vectors have to be solved incrementally due to the 
incremental hardening law, i.e. Eq. (28). Therefore, the nodal displacements and the rotation 
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vectors are solved for each loading step by rewriting the principle of virtual work, Eq. (36), 
about the current solution as 

f (Z~Sij6Ctij ~- Z~m~ekk -~- z2~m'ij~Xtij + Amm6Xkk) dV - f (AtkSuk + Aqk&ok) dS 
V S 

= - f sij&'ij + crmSekk + m~SX~ j + mmSxkk) dV + f (tkSuk + qk6wk) dS,  (37) 
V S 

where the superscript prime denotes the deviatoric quantities, A on the left-hand side stands 
for increments, whereas the right-hand side involves the current quantities. 

3.1 Choice of elements 

Many researchers [19], [20], [38], [39] have found that the choice of the element for gradient 
plasticity is complicated and in particular quite sensitive to details of the constitutive relation. 
Xia and Hutchinson [39] have discussed some choices of finite elements for strain gradient 
plasticity with the emphasis on plane strain cracks. Several elements have been developed for 
the phenomenological strain gradient plasticity theory to investigate the crack tip field, micro- 
indentation experiments and stress concentrations around a hole. A review of these elements 
can be found in [40]. 

For the two-dimensional case, such as the problem of plane strain and the axis-symmetry, 
second-order element can be used, such as the eight-node and nine-node elements. In the pre- 
sent paper, nine-node elements have been used to analyze the PMMC problem. The displace- 
ment and rotation vectors in the element are interpolated through the shape function, whereas 
the strain and the rotation gradient tensors in the element are then obtained from the displace- 
ment derivatives and the micro-rotation vector's derivatives. This element is only suitable for 
solids with vanishing higher-order stress traction on the surface. For example, the element has 
worked very well in the fracture analysis of strain gradient plasticity [19], where the higher- 
order stress tractions vanish on the crack face and on the remote boundary. This element also 
works well in the study of microindentation experiments [36] because the higher-order stress 
tractions are zero on the indented surface. Since the strain gradient theory used in the present 
paper does not include higher-order stress and higher-order stress tractions, these kinds of ele- 
ments will work well in the present study. 

3.2 The nodal degrees of  freedom 

It is convenient to express the field quantities in terms of the circular cylindrical coordinate 
system (r, 0, z) as shown in Fig. 1. Both the geometry and loading are axis-symmetric, and 
without loss of generality we consider the section of 0 = 0. 

Since the independent parameter ~i is introduced in addition to the displacement ui in the 
present strain gradient theory, which is different from the theory proposed by Fleck and 
Hutchinson [16], one node has three degrees of freedom, i.e. ui~, uiz and w,zo for the axis-sym- 
metric indentation case. The displacement field and the rotation vector field can be obtained 
through the shape function Ni, the nodal displacements and nodal rotation vectors, i.e., 

Ur = ~ Niuir, (38) 
i-1 

Uz = ~ Niuiz, (39) 
i--1 

~0 = ~ Niwio. (40) 
i=1 
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Fig. 1. Cell model and the coordinate system 

3.3 Calculation model 

Consider two kinds of  particles, spheroid and cylinder. The simplified cell models are shown 

in Fig. 1. For  the axial-symmetrical condition, only one fourth of  the material region needs to 

be considered as shown in Fig. 1. The normalized cell sizes for the spheroidal particles are 

( 3 ~  1/3VP1/3 B A=- R = (2@fp) 1/3VP1/3 , H R=- (41) 

A =  k, 47r ] 11 ' z ' 11 ~ ' 

where A, B, R and H are shown in Fig. 1; Vp and f p  are the particle volume and volume frac- 

tion, respectively, and 

A R 
- - (42) 

B H 

are the particle and cell aspect ratios. Note that the cell volume can not  take unity as usual 

because the reference length is 11, instead of  the usual cell size. The relation between the two 

material length scales is taken as l~s = I1 = L in the present paper. Therefore, three indepen- 

dent parameters for the cell geometry description are needed, instead of  only two independent 
parameters for the usual cell model description. F rom dimensional analysis, an additional 
composite parameter, Vp1/3/ll ,  describing the cell size and the strain gradient effects, must 

appear in the analysis inevitably. 
For  the cylindrical particle case, we have 

A (24~ 1/3VP1/3 A Q~p)l/3Vp1/3 R 
= , B = - - ,  R = , H = - - .  (43) 

kTr/ ll u 11 

The boundary conditions as shown in Fig. 1 are described as 

u z = O ~  G r z = O ,  rnoz=O on z = 0 ,  (44) 

uz = ecH,  arz = O, moz = 0 on z = H ,  (45) 

H 
uT = Co GzT = O, f Gr~. dz  = O, rno~ = 0 on r = R ,  (46) 

0 

where Co is a constant to be determined by the third equation in Eq. (46). 
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a b 

Fig. 2. Mesh division of the calculation model: 
a cylindrical particle reinforced metal-matrix 
composite; b spheroidal particle reinforced 
metal-matrix composite 

In the present paper, the metal matrix is treated as an elastic-plastic material considering 
the strain gradient. The particle is treated as an elastic material with Young's modulus Ep 
and Poisson's ratio up. 

The parameter dependence of the stress-strain relations of the PMMC can be written as 

z vp1/   
~rya---c-c = F ec, ~ - ,  fp, x, n, --,az u, up, - ~ - 1  / ' (47) 

where E, n, u are the Young's modulus, the strain hardening exponent and Poisson's ratio of  
the matrix material, respectively. 

In the present paper, we take (E/av, u, up) = (300, 0.3, 0.3) as the same as [20], where ~ry 
is the yield stress of the matrix material. Vp1/a/ll is a parameter. We know that while the 
value of Vp1/a/ll is big and the value of ll keeps constant, it means that the particle size is 
large; Conversely, when the value is small, the case corresponds to the small particle. 

3.4 Mesh division 

In the present paper, the element form adopted is shown in Fig. 2. The number of nine-node 
elements is 720. For comparison, meshes for the two kinds of particles, i.e. spheroidal and 
cylindrical particles are shown in Fig. 2a and b. 

4 Results for the spheroidal particle case 

In this section, composites reinforced by spheroidal particles are investigated with different 
particle volume fractions, different particle sizes, different Young's modulus ratio of particle 
and matrix and different aspect ratios (the ratio of  width to height of particle). In all calcula- 
tions Poisson's ratio is 0.3 for both the particle and the matrix material. 
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Fig. 3. The dependence of stress strain 
curves of the composite on the particle 
volume fractions and the particle sizes, 
while the other parameters are fixed 
and Young's modulus ratio of the par- 
ticle and matrix material is unity. 

Fig. 4. The dependence of stress strain 
curves of the composite on the particle 
sizes and Young's modulus ratio of the 
particle and matrix material, while the 
other parameters are fixed 

Figure 3 shows the stress strain curves o f  the composites for different particle volume frac- 

tions and different particle sizes when Young's  modulus values of  both particle and matrix 

are equal and the particle aspect ratio is 0.3. From Fig. 3, one can find that both the particle 
volume fraction and particle size have strong effects on the composite strength. The larger the 
particle volume fraction, the larger the P M M C  strength, and the smaller the particle size, the 

larger the P M M C  strength. 

Figure 4 depicts the dependence of  the stress strain relations on the Young 's  modulus 

ratios for spherical particles. From Fig. 4, one can find that the stress strain curves are not 
sensitive to the Young's  ratio while the Young 's  ratio is near to one. But it is very sensitive to 
the particle sizes, with Young's  modulus ratio increasing. 

Figure 5 demonstrates that the stress strain curves also depend on the strain hardening 
exponent of  the matrix material. Larger strain hardening exponent, larger the overall compo- 

site stress. While the strain hardening exponent increases, the effects of  the particle size 
become stronger. 

The results in Fig. 6 include three cases of  the aspect ratios: x = 0.1, 1.0, 10. x = 0.1 means 
the particle shape is rather thin; x = 1.0 corresponds to the spherical shape and x = 10.0 
represents the flat particle shape. When the particle volume fraction is fixed, the composite 
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Fig. 5. The dependence of stress strain 
curves of the composites on the par- 
ticle sizes and the strain hardening 
exponents, while the other parameters 
are fixed 
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Fig. 6. The dependence of stress strain 
curves of spheroidal particle reinforced 
composites on the particle sizes and 
the particle aspect ratio, while the 
other parameters are fixed 

strengthening is the smallest for the spherical particle case. When the aspect ratio is very large 
or very small, the composite stresses are almost the same. For  the same aspect ratio, the stress 
is larger while the particle size is smaller, which tends to explain the phenomena  found in the 
experiments [5] - [9]. 

5 Results for the cylindrical particle case 

In this section, composites reinforced by cylindrical particles are investigated with different 
particle volume fractions, different particle sizes, different Young 's  modulus ratio of  particle 
and matrix and different aspect ratio (the ratio of  width to height of  particle). In all calcula- 
tions, the results are similar to those for a spheroidal particle, and the composite  strength also 
depends on the particle size, the particle aspect ratio, Young 's  modulus ratio of  the particle 
and matrix materials and particle volume fractions, as well as the strain hardening exponent 
of  the matrix material.  

Figure 7 shows the comparison of  the results of  a spheroidal particle with those of  a cylin- 
drical particle when all other parameters  are fixed. F rom Fig. 7, one can find that  the flow 
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Fig. 7. Comparison of the stress strain 
curves between spheroidal particle 
reinforced composites and cylindrical 
particle reinforced composites, while 
the other parameters are fixed 
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Fig. 8. The dependence of stress strain 
curves of cylindrical particle reinforced 
composites on the particle sizes and 
the particle aspect ratio, while the 
other parameters are fixed 

stress for a cylindrical particle reinforced composite is larger than that for a spheroidal par- 

ticle reinforced composite, which can be found in the conventional composite calculations. 

The dependence of  stress strain relations on the particle aspect ratio is depicted in Fig. 8. 

The following conclusions are readily obtained: (i) the composite strengthening is the smallest 
for ~ = 1.0; (ii) When the particle ratio is very low or very high, the difference between two 
results with size effect considered disappears very quickly. 

The influences on the composite strength of  the other composite factors in the cylindrical 

particle reinforced metal-matrix composite show almost the same tendency as those in sphe- 
roidal particle reinforced metal-matrix composites. Here the results are omitted. 

6 Comparison with experiments 

In order to determine the internal material scales for a concrete composite, the calculation 
results will be compared with the experimental results. The above method has been used to 
analyze a special problem, and the results are compared with the experiment results given by 
Ling [9]. 
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Fig. 9. Comparison between the calcu- 
lation results and the experimental 
results given by Ling [9], and the ma- 
terial length scale is predicted, i.e., 
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A series of uniaxial compression tests of 17% volume fraction SiCp/2124A1 composites 
with different particle sizes were carried out by Ling [9]. According to [9], the material para- 
meters are E = 70 GPa, Ep = 420 Gpa, n = 0.1, ~rv = 200 MPa, ~ = 1.0, fp  = 0.17 and 
u = up = 0.3. The dependence of the compressive stress strain curves on the particie sizes 
for this lower particle volume fraction from experimental results and calculation results is 
shown in Fig. 9 for particle radii 3 #m and 37 #m. From Fig. 9, one can find that the present 
calculation results with length scale 11 = 6 #m agree with the experimental results by Ling 
[9]. The calculation has been done on a rectangular unit cell with spherical reinforcement, 
which is subject to uniformly prescribed boundary conditions; however, in the real experi- 
mental sample, the reinforcements have irregular shapes and particle-particle interaction 
poses a constraint far more complicated than in the simple model we have used. Particles 
also tend to form clusters, rather than being uniformly distributed as assumed here. These 
factors may all contribute to the discrepancy remaining between calculation and experimen- 
tal results�9 

7 Conclusions 

The results are different from those in [22], where the local deformation was mainly investi- 
gated. The results in the present paper provide some detailed quantitative information on 
the particle reinforced metal-matrix composites, and the macroscopic stresses are calculated 
with different composite factors. The results show the dependence of the composite strength 
on the particle size, Young's modulus of  the particle, particle aspect ratio and particle 
volume fraction, as well as the strain-hardening exponent of the matrix material. In addi- 
tion, the strength of the PMMC depends on the particle shapes, with the other parameters 
fixed. The strength of a cylindrical particle reinforced composite is larger than that of a 
spheroidal particle reinforced composite. Especially, while the particle aspect ratio is very 
small or very large, the difference between two results is very small, and while the particle 
aspect ratio is 1, the strength of PMMC is the smallest. Comparing with the experimental 
results, the material length scale is predicted, and the calculation results are consistent well 
with the experimental results. 
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