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Thermocapillary Flow in a Jet of Liquid Film Painted on a
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In the present paper, a liquid (or melt) film of relatively higher temperature ejected from a vessel and
painted on the moving solid boundary is analyzed. The thermocapillary flow is driven by the temperature
gradient on the free surface of a liquid film, because of the heat transfer from the liquid with higher
temperature to the environmental gas with relatively lower temperature. The thermocapillary flow changes
the height profile of the liquid film. The analysis is based on the approximations of lubrication theory and
perturbation theory, and the equation of liquid height and the process of thermal hydrodynamics in the

liquid film are solved for a given temperature distribution on the solid boundary.

1. Introduction

The processing of film and polymer requires the
understanding of the hydrodynamic process, such as the
temperature, pressure, flow field, and diameter or height
distributions; see, for example, refs 1—3. The temperature
of the liquid or the melt, ejected from the nozzle of a
manufacture vessel, is relatively higher in comparison
with the environmental gas temperature, and then, there
is a strong heat exchange, especially in the region near
the exit of vessel. The heat transfer from the liquid film
to the environmental gas forms a temperature gradient
and then the surface tension gradient on the free surface
and induces thermocapillary flow, which will, of course,
change the cross section of the jet liquid. The Barus effect
or Die Swell effect on the change of cross section in a
polymer jet is often observed in the processing and is
explained usually by the rheology property of the polymer
melt. However, there are many suggestions on the
viscoelastic constitutive relationships and the rheology
properties of the polymer, and suitable and acceptable
descriptions on the relationships and properties are still
open problems that need to be studied in the future.*

It is known that thermocapillary flow is induced in a
thin liquid layer which lays on a solid wall with nonuniform
temperature distribution and the heat transfer process
will result the nonuniformity of the liquid thickness. By
using the approximation of lubrication theory, an ordinary
differential equation of liquid thickness and its solution
for given boundary temperature were obtained for un-
steady cases in a thin liquid layer.> A similar method was
applied to discuss the steady cases where a smooth
condition at the symmetric cross section was improved.®

* To whom correspondence should be addressed at the Chinese
Academy of Science.

T Chinese Academy of Science.

* Kyushu University.

(1) Tucker, C. L. Computer Modeling for Polymer Processing;
Hanser: New York, 1989.

(2) Kennedy, P. Flow Analysis of Ejection Models; Hanser: New York,
1995.

(3) Silagy, D.; Demay, Y.; Agussant, J. F. Stationary and stability
analysis of the film casting process. J. Non-Newtonian Fluid Mech.
1998, 79, 563.

(4) Leonov, A. I. Visoelastic constitutive equations and rheology for
high-speed polymer processing. Polym. Int. 1995, 36, 187.

(5) Pimputkar, S. M.; Ostrach, S. Transient thermocapillary flow in
the thin liquid layers. Phys. Fluids 1980, 23, 1281.

10.1021/1a991563v CCC: $19.00

® T=T,
<
Vessel x=0
[ANNNNNNNNNNY Free Surface z = h(x
Melt or Liquid Liquid Film Jet
L
=g x
te T=Tyx) x=1
N

Figure 1. Schematic diagram of the physical model of a jet
liquid film.

The problem of motionless and infinitely extending solid
boundary was studied in refs 5 and 6. Furthermore, the
solutal capillary flow induced by the surfactant of the
liquid may increase the thickness of the liquid layer.”

In the present paper, the change of cross section due to
the thermocapillary convection in a two-dimensional and
steady model is discussed for the case of jet liquid film
painting on a moving solid boundary, and the similar
approximation of lubrication theory is assumed. In the
case ofasmall geometrical aspect ratio and small capillary
number, the perturbation method is applied. The first-
order solutions of the problem can be obtained analytically,
and a fourth-order ordinary differential equation of the
liquid layer height can be demonstrated. Four boundary
conditions are given to solve the equation of liquid height,
and the solution clearly shows the effect of thermocapillary
convection on the thickness variation of the liquid layer.
The conclusion of this paper suggests that a large
enlargement of the cross section, which is usually ex-
plained by the rheology property of the liquid, may be due
to the thermocapillary effect in the liquid jet of a
Newtonian fluid.

2. Model of Jet Liquid Film

A simplified model is suggested as shown in Figure 1,
where the liquid layer with the height h, is ejected from
a nozzle of a melt or liquid vessel and then attached to a
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moving solid film. This model avoids the complexity in
detailed proceedings and emphasizes the influence of the
thermocapillary convection on the height variation. The
Cartesian coordinate system (X, y, z) is adopted, the
problem is assumed two-dimensional, and 3/dy = 0. The
melt or liquid flows in a distance | far from the exit of the
vessel, and there is a small geometrical aspect ratio ¢ =
ho/l < 1. The liquid temperature T, at the vessel exit is
higher than the environmental gas temperature T4 and
the temperature T,at x = 1. Amoving solid film is touched
smoothly with the lower boundary of the vessel and moves
with the same velocity u, of the liquid at the lower
boundary of the vessel exit. This assumption idealizes the
model to avoid mathematical complexity at the contact
and is beneficial to analyze the thermocapillary effects.
The heat transfer between moving solid film, liquid jet,
and environmental gas results in a large temperature
gradient on the free surface, especially near the exit of
the vessel, and then, the thermocapillary flow will be
driven in addition to the jet flow.

The liquid is assumed to be incompressible and New-
tonian with constant kinematics viscosity v and thermal
diffusivity «. The relationships of the mass conservation,
the momentum conservation, and the energy conservation
will be given as

ou , ow _
o g 0 (2.1)
au u_ 1 ap au
Yox tw Woz = p OX ( w2 oz ) (2:2)
w

ua_w Wa_w _ 19p Pw
X 0z p 0z

v|— + (2.3)
x> 822)
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8X + w r K(BXZ 322) (2.4)
where (u, 0, w) is the velocity vector and p, p, and T are
respectively the density, pressure, and temperature of
the liquid.

The boundary condition of the liquid layer may be
summarized as follows:

z=0:
u=u, w=0 T=T,X) (2.5)
z = h(x):
32 w (2.6)
PR GOl i Rl et v
(831 + T ) 2.7)

_ 2pv [fow U\ ,
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: h
[0, + o (T — T*)]m (2.8)
oT _ _
k% =—-H(T-T,y) (2.9)
X =0:
U=Uuy(z) w=w,(z) T=T,2) (2.10)
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Here the superscript prime denotes the differential such
as h' = dh/dx, n is the unit vector in the normal direction,
T, is a constant reference temperature, and k and H are
respectively the thermal conductivity of liquid and the
heat transfer coefficient in the gas. Conditions (2.5)—(2.8)
describe respectively the free surface z= h(x) as a stream
surface, the viscous stress in the tangent direction
balancing with the thermocapillary force driven by the
surface tension gradient, the momentum conservation in
the normal direction, and the heat transfer across the
free surface where the radiation effect is omitted. In
addition to boundary conditions (2.4)—(2.9), the
boundary conditions for the height of liquid layer should
be given. And the problem of jet liquid film may, then, be
solved.

Nondimensional quantities and parameters may be
introduced on the basis of lubrication theory as follow:®

(2.11)

Here the typical temperature T, and the typical velocity
v, are adopted respectively as

T,=T,0) v,=—eo/T,/pv (2.12)

The basic feature of the lubrication problem is that there
are two typical scales of different orders of magnitude;
that is, one of the typical scales | is much larger than the
another h,, and then, other quantities have differentorders
of magnitude. The nondimensional parameters in this case
are the Reynolds number Re and Peclet number Pe:

vl vl

Re=— Pe=— (2.13)

14 K

The Prandtl number and Marangoni number may be given
as

Re =PrMa Ma = —o;'T,llkv = ePe

Nondimensional equations and boundary conditions may
then be written as

% + % =0 (2.14)

Ree (U—g + W_C) —% + G;CU +e 2882'2’ (2.15)
Ree (U%ingWa%) ?)FC) +e zang-i- 4382’2’ (2.16)
Pee (U% + W%) = 832?@2) 6238%(? (2.17)

and the boundary conditions are listed as follows:
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c=0:
U =U,(const) W=0 0O =0,%) (2.18)
&=n(&):
n(0) =1
W(E.n) = n'U(Em)
U | oW _ 20U (W 8V _ 2 W] _
ae e ) e -G "ol
_ € n"' 2 [(AW _ aU
- C 1+ 627],2)3/2 + 1+ 6217,2[( ac n BC)
J AW | L0U
|
% - 6277’% = —Bi(© - ©)( + A2 (2.19)
E=0:
U=U/[() W=W, ) ©=0,5 (2.20)

where the Capillary number C = —o'1T,/0, is usually much
smaller than unity and the nondimensional Boit number
is defined by Bi = Hhy/k.

3. Perturbation Method

The nondimensional equations and boundary conditions
show the relationships of the orders of magnitude, and
the perturbation method can be applied by the expansion
based on the small parameter ¢. Due to the order of
magnitude analysis (OMA), it requires that

Re=0(1) Pe=0(1) Bi=0(1) C=é/a=0()
(3.1)

where a is a constant. It is noted that definitions of the
Reynolds number and the Peclet number in (2.13) are ¢
times smaller than the usual definitions, because the
typical velocity v, is € times smaller than the usual typical
thermocapillary velocity. The quantities are expanded as
follows:

U=Su w=Sew @ =
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0
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If one substitutes relations (3.2) into the equations and
boundary conditions, the problem can be solved order by
order.

The zero's order relationships can be written as

U (0) avv(o)
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and the boundary conditions are

c=0:

u9=u, w9=0 e%=06 @37
£=n"
wO = U(O)n(o)' (3.8)
WO 500 g4y He©
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(3.12)

E=1:
7% = iy, (3.13)

where 7, is the height at the cross section z = | and is
adopted typically as »n, = 1. Basic equations (3.3)—(3.6)
of the zero's order of magnitude are similar to the ones
given in refs 4 and 5.

Equation (3.6) means that the temperature is a linear
function of £ and may be obtained as follows by using
boundary condition (3.11):

Bi(©, — ©,)

00 =0, —
° 1+Biy®

¢ (3.14)

Relationship (3.14) shows that the heat transfers from
the solid of temperature O to the free surface of tem-
perature ©O)(&, ©) and then to the gas of temperature
Q4. The temperature in the liquid film will be uniform if
the solid boundary ¢ = 0 keeps a uniform temperature the
same as the environmental gas temperature. In this case,
there will be no thermocapillary flow in the liquid layer.

Equation (3.5) implies that the pressure is a function
of £ only, and then condition (3.10) at the free surface
gives

P(O)(E) — _ad_%ﬁ
d&?

Substituting (3.15) into equations (3.3) and (3.4) and using
free surface condition (3.8), the velocity field in the liquid
layer may be written as

(3.15)

©_ _ody™”

377(0) )
2 g8 C+AG)L+ U, (3.16)
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and the function A is

4,0
wo =897 s 10A. (3.17)

od® _ d
dg8  d§| c
Relationship (3.16) shows that longitude velocity con-

sists ofamain jet velocity U, in addition to the contribution

Bi(®,— 6
_ MW(O) (3.18)

A =
&)= 1+ Bin®
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of the cross-section variation and the thermocapillary

effect. By using solutions (3.16) and (3.17), a stream
function W(&, &) may be easily obtained as

d377(0)

IP(S!C) :% d§3 (37](0) _ C)gz _
li — M 0)] =2

where W, is an integral constant and may be selected as
zero. Solutions (3.14)—(3.17) depend on the height of the
liquid layer, which equation is determined by boundary
condition (3.9).

The velocity and temperature boundary conditions in
(3.12) and (3.13) cannot be given arbitrarily, and must
satisfy the distributions of general solutions (3.14), (3.16),
and (3.17).

4. Height Equation and Its Solution

By substitution of solution (3.14), (3.16), and (3.17) into
boundary condition (3.9) at the free surface, the height
equation of the liquid layer is demonstrated as

dfo oxd®n® _ AG) o2 _ 0
dle” PE 5 1 Un~|=0 (41)

The heightequation is afourth-order ordinary differential
equation, and its solution needs four boundary conditions
on the height. The initial integration of eq (4.1) gives a
third-order ordinary differential equation including an
integral constant.

& _ 3 [@ _ Bi(©, — 6y ¢;]
d2  20p9@ +Bip®)| 9 1+ Biy® dE
3U c
(10 (10)2 +$ (4.2)
n n

where integral constant c; may be given by the boundary
condition at £ = 0O:
3U,  d%(0
—_—° 77(3 ) —
a dé
3 [dey0) Bi(t - @y dy(0)
20(1 + Bi)l d& 1+ Bi dé

Cy

, (4.3)

Here the boundary conditions #©(0) = 1 and ©¢(0) = 1 are
used.

Four boundary conditions of the liquid layer height at
the exit of the melt vessel £ = 0 and at the longitudinal
exitcross section £ =1 may be selected by different options
and then give different distributions of the height. In the
present paper, the boundary conditions are given as
follows:

dy©©) _  d*%“0) _

PO=1 ==~

p (1) =1
(4.5)

Here v is the expansion angle of the jet and f is the
inclination variation of the expanding angle at the exit of
melt vessel. Different selections of (y, ) on the variation
of height are analyzed for understanding the main feature
of the thermocapillary effect in the jet liquid film. The
first and last conditions in (4.5) require that the cross
sections are the same at the exit of melt vessel £ =0 and
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Figure 2. Influence of the expending angle gradients on the
height profiles of the jet liquid layer for cases n®(0) = 1, dy©-
(0)/d& =0, O(1) =1, and U, = 4. The profiles relate to 3= 0.7,
1.0, 1.5, and 2.0 respectively from bottom to top.

at the longitudinal exit position £ = 1. The last condition
in (4.5) is reasonable, and relates to a specified value of
d3y(0)/d&3. This condition has no limitation in discussing
the general features and may be easily changed to a given
value, which may be designed by the engineering con-
sideration.

The temperature ©4(&) on the solid boundary ¢ = 0
should be obtained by analyzing the heat transfer process
between liquid layer, solid film, and environmental gas,
and this process is coupled with the process in the liquid
layer. For simplification, the temperature at the solid
boundary will be given, for example, as follows:

1_ —
0,=1- (- 0y o Y

Here 1/n denotes a typical scale of heat transfer. The heat
transfer and the temperature decrease are relatively large
in the region near the vessel exit and then become slower
afterward if the melt temperature T, at the vessel exit is
larger than the environmental gas temperature T4 and
the temperature T, at x = |. Distribution (4.6) shows that
the temperature on the solid film changes from the exit
value T, at x = 0 to the temperature T, at x = |, and the
most important change appears in the region 0 < x < I/n.

Substituting temperature distribution (4.6) into height
eq (4.4), the determined solution of eq (4.4) under boundary
conditions (4.5) may then be obtained. Typical parameters
in eq (4.4) are adopted as

(4.6)

a=0.5 G)g =01 ©6,=01 Bi=05 n=5 (4.7)
and, then, the equation is reduced as

d%© _ ¢ 6,
P
ne " L1 e " — e "dy®

1—e" 249@ 1-¢" d§

(4.8)

where the integral constant c; is determined by the last
condition of (4.5).

Ordinary differential eq (4.8) under the boundary
condition and parameter conditions is solved by using the
Runge—Kutta method, and the last condition of (4.5) is
satisfied by an interaction process. The cases of zero
expanding angle y =0 are interesting sometimes. In these
cases, the influence of gradient of expanding angle on the
height distribution is shown in Figure 2 for U, = 4. The
larger the gradient of expanding angle at the vessel exit,
the larger the height in the jet film. In the case of the zero
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Figure 3. Influence of the expending angles on the height
profiles of the jet liquid layer for cases 7©(0) = 1, d%;©)(0)/d&?
=0, 70(1) = 1, and U, = 4. The profiles relate to y = 0.2, 0.4,
0.6, 0.8, and 1.0 respectively from bottom to top.
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Figure 4. Influence of jet velocities on the height profiles of
the jet liquid layer for case #@(0) = 1, dy©@(0)/d¢ = 0, d?;©-
(0)/d&? = 1.0, and #©(1) = 1. The profiles relate to U, = 0, 4.0,
8.0, and 16.0 respectively from top to bottom.

gradient of expanding angle g = 0, the influence of
expanding angle y at the vessel exit is given in Figure 3.
The larger the expanding angle y, the larger the height.
The results show that the influence of expanding angle
is relatively more directand important in comparison with
the one of the gradient of expending angle. The influence
of jet velocity U, is summarized in Figure 4 for the case
y =0and = 1.0. There is only thermocapillary flow and
no jet flow in the special case of zero jet velocity U, = 0,
and the liquid film with thermocapillary flow persists on
a motionless solid film.

With substitution of boundary temperature distribution
(4.6) into the temperature distribution (3.14), the tem-
perature in the jet liquid layer may be demonstrated as

OV =1~ (- O -

Bi[(1-0)1-e™ - (1-0)1-e™)
1+ Big®)@ —e™

C (4.9)

The first two termson the right-hand side are independent
of ¢, and the third term is a linear function of ¢. On the
basis of the solutions of liquid layer height, if

n0E) =1+

where ¢ is a small quantity and satisfies the relation in
order of magnitude 6 = O(¢). By using parameters
adoptions (4.8) and taking U = 4 and n = 5, the equation
of temperature distribution (4.9) is reduced as

(4.10)

09(£,6) = (0.093895 + 0.906105e ) —
(0.302035e > — 0.002035)(1 — 0) & + O(6%) (4.11)
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Relationship (4.11) gives a linear temperature distri-
bution at the vessel exit ®©(0,f) = 1 — 0.3¢ and a uni-
form temperature at the longitudinal exit cross section
00)(1,8) = 0.1. These are the reasonable boundary
conditions required by (3.12) and (3.13). The tempera-
ture on the free surface is obtained as

09(£,79(&)) = 0.095930 + 0.604070e > + O(6?)
(4.12)

The nondimensional temperature on the free surface is
mainly dependent on the heat transfer process decreasing
from a value 0.7 at the vessel exit £ = 0 to a value 0.1 at
the solidification cross section £ =1 and is decoupled from
the jet flow in an accuracy of O(62).

Similar discussions may be applied to the flow fields,
which depend mainly on both thermocapillary effect and
the jet flow. By using height eq (4.8), the equation of the
stream function (3.19) is reduced to

o -5 de
491 +Bin®) €
Bi(©, — ©)(7 — £)&* ¢y©
491 + Bin@)?  d§
U279 = 00 - 92 a3y — £)&?

277(0) 617(0)3

WOl =

(4.13)

where the integral constant W, in relationship (3.19) is
adopted as zero. The stream functions W(£,0) = 0 and
P(E,nO()) = ci0/3 (constant) correspond to that both the
solid boundary ¢ = 0 and the free surface ¢ = (&) are
stream surfaces. With substitution of parameters (4.5)
and expression (4.6), the stream function is given as

5 (17 =02
722+ 59y

, 0 = 9T dy®

1O + Oy dé

Uo2n© = )@ - ¢ ¢,(3n9 - ©)¢°
277(0) 1277(0)3

wO(g #) = —4.530527¢

(0.453053e~% — 0.003052

(4.14)

In considerations of relationship (4.10) and the small
variation of liquid layer height |dy©@/d&| = O(9), the stream
function may be expanded as
© 5 2, Y
PH™(&,8) = —0.503363e (1 — §)¢° + 7(2 -O@1 -
c
o+ 1—;(3 -0+ {(0.05034e55 —0.00339)(1 —

z;)gzdd”—? + [0.167788e5§(2 55+ %(1 — e+

Cy 2
o+ Z(C - 2)](3} + O(6°) (4.15)

The field distributions may be calculated directly from eq
(4.14), and Figure 5 gives an example.
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Figure5. Velocity profiles in the jet liquid layer for case 7©(0)
=1, dy@(0)/dE = 0.5, d2y@(0)/d&? = 0, (1) = 1, and U, = 4
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Figure 6. Typical velocity profiles in the downward region of
jet liquid film.

By substitution of relationships (4.6) and (4.7), rela-
tionship (3.16) for the velocity component in the jet
direction may be written as

U@ =u,+a¢ — b&? (4.16)
_ (7 d*® | 9.061052 s
2 d&  2+99
(5 - e,5)1.812211 dp® | _1d%9
@+ 77(0))2 d& 4 d§3

where the values of @, dy©/d&, and d3;©/d&® are given
by the solution of height eq (4.8). Then, the velocity
component as a second-order function of { may be obtained,
asanexample in Figure 5, which gives the velocity profiles
at cross section £ = 2.5, 0.5, 0.75, and 0.9 for the case y
=0.5, =0, and U, = 4. The results show that a return
flow is induced by the thermocapillary effect and cross-
section variation in addition to the jet flow U, in the region
near the exit of vessel. The values of a and b are listed as
follows:

EO0 0.25 0.50 0.75 0.90
a —0.006 323 —0.428 667 —0.759 072 —0.503 546 0.203 776
b 1.557014 0575915 0.425068 0.250218 —0.080 106

It could be seen that the last two terms in the bracket are
relatively smaller in the downward region of jet, and the
velocity component may be approximately written as

0 _ £ d* ).
4 d§3 >

UOE Q) = U, + 21 £>05 (4.17)

The typical velocity profiles are show in Figure 6.

If the temperature difference between T, at the vessel
exit x = 0 and Ty of the environmental gas or the
temperature T, at x = | is not large enough, the temper-
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(0)

Figure 7. Influence of expending angles on the height profiles
of the jet liquid layer for a linear temperature distribution (4.9)
at the solid boundary and #©(0) = 1, d?4©(0)/d&? = 0, and 7©(1)
=1

ature distribution Ts is better to be described approxi-
mately by a linear function of x such as

0,=1—-(1—-0) (4.18)

Substituting relationship (4.18) into height eq (4.2) gives

d*©@_ ¢ 6U, 1
T CERCER S PRI OO

1-&  dg©

@2 + )% dé

(4.19)

Ordinary differential eq (4.19) can be solved under
boundary conditions (4.5) and parameter conditions (4.7),
and similar conclusions are obtained. As an example,
Figure 7 gives the influence of the expanding angle on the
height distributions in the case of U, = 4 for temperature
distribution (4.18). The heights of the jet liquid film are
relatively larger, and their maximumes shift relatively into
the downward direction of the jet in the case of linear
temperature distributions (4.18) in comparison with the
results of Figure 3 for temperature distributions (4.6).

5. Discussion

The lubrication approximation and the perturbation
method are applied to discuss the problem of jet liquid
film, and the analytical solutions of temperature, pressure,
and velocity depending on the height of liquid film were
obtained. The determined problem of the liquid height is
described by a third-order ordinary differential equation
with an integral constant, and 4 boundary conditions of
liquid height are required to determine the 4 integral
constants. The problem of liquid height was solved by
using the Runge—Kutta method, and then, the temper-
ature, pressure, and velocity fields in the jet liquid film
were obtained. The results show that the influence of
thermocapillary effect may enlarge the cross section of
the jet liquid. The influence of typical parameters on the
height distribution is discussed specifically.

It should be noted that the approximations of lubrication
theory and perturbation theory have some limitations.
The Barus effect has a larger variation of cross section,
which may be two or three times, and the region of the
enlarging cross section is closer to the vessel exit. However,
the assumption of last relationship in (3.1) permits only
a small variation of cross section. Therefore, the results
of this paper show mainly the mechanism of the cross
section variation due to the thermocapillary effect and jet
flow. The larger variation of cross section needs to be
studied by omitting the assumption and should be studied
in the future.
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Newtonian fluid is assumed in this paper. Thermocap-
illary flow may increase the cross section of the liquid
layer on the basis of this assumption. This conclusion does
not imply that the rheology of the liquid layer is not
important. In fact, more attention should be paid to study
the rheology, the manufacture model, and the detailed
parameter region if the fiber processing is considered.
However, the main purpose of this paper is concentrated
in the mechanism study, which shows that the heat
transfer may induce thermocapillary flow, which will
increase the cross section even for a Newtonian fluid. An
experiment to check the results of this paper is important.
Usually, the thermocapillary effect will be coupled with
the effect of rheological properties during the die swell,
and both effects depend on the temperature gradient.
However, the thermocapillary effect may be nearly dis-
tinguished in an experiment from the effect of the
rheological effect if either the experimental condition is
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limited in the initial Newtonian region, and second
Newtonian region® or a modeling medium of Newtonian
fluid is adopted as the experimental medium. More studies
should be initiated, especially in connecting with the
experimental studies and the manufacture processing.
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