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SUMMARY

This paper presents a numerical simulation of steady two-dimensional channel �ow with a partially
compliant wall. Navier–Stokes equation is solved using an unstructured �nite volume method (FVM).
The deformation of the compliant wall is determined by solving a membrane equation using �nite
di�erence method (FDM). The membrane equation and Navier–Stokes equation are coupled iteratively
to determine the shape of the membrane and the �ow �eld. A spring analogy smoothing technique
is applied to the deformed mesh to ensure good mesh quality throughout the computing procedure.
Numerical results obtained in the present simulation match well with that in the literature. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow in a compliant channel is related to many physiological applications. For example,
blood �ow in arteries and veins, urine �ow in the urethras and air �ow in the lungs. The
compliance of the wall has a great in�uence on the transport of �uid, and thus will elicit
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important biological e�ects on the living body. Human snoring and wheezing are two of the
phenomena related to the oscillation of walls in human airways.
Motivated by the fundamentals of physiology, this area has attracted many researchers dur-

ing the past 30 years. Experimental studies date back to the 1960s and 1970s (e.g. References
[1, 2]). Large amount of literature references were found from the 1980s and 1990s [3–10].
In the standard experiment, a segment of rubber is mounted at its ends on a rigid tube. These
two tubes are placed in a chamber where the pressure could be independently controlled.
The behaviour of the system is studied by adjusting the controlling parameters such as the
ambient pressure both in the chamber and at the outlet, the material property of the compli-
ant tube such as the tension and the �ow rate. A steady �ow was obtained in certain range
of the controlling parameters. Beyond this range, however, complicated phenomena such as
�ow-induced oscillations occurs.
The early theoretical studies were based on ad hoc one-dimensional models, e.g.

References [11–14]. These works did explain some phenomena observed in experiments. In
order to perform more realistic simulations, Pedley [15] �rst studied a steady two-dimensional
�ow with collapsible wall at low Reynolds number using Stokes approximation for the �uid.
Later, two-dimensional simulation by solving full Navier–Stokes equations was done by Luo
and Pedley [16, 17] for steady and unsteady �ows. The wall was modelled as an elastic mem-
brane of zero thickness. In this model, the wall only moves vertically, the longitudinal stretch
and bending sti�ness of the material are neglected. Heil [18, 19] performed a three-dimensional
simulation of �ow through a collapsible tube using Stokes approximation for the �uid and
a shell model for the wall. Recently, a more realistic model was proposed by Cai and Luo
[20], in which a plane strained elastic beam with large de�ection and incrementally linear
extension was used to replace the membrane. Bathe and Kamm [21], Shim and Kamm [22]
solved the two-dimensional Navier–Stokes equation for the �uid and two-dimensional equi-
librium equation for the solid elastic wall. In these simulations mentioned above, the e�ect of
certain control parameters on the �uid–solid system was studied by carrying out ‘numerical
experiments’.
In almost all these numerical studies, �nite element method (FEM) was chosen as their

numerical scheme, Reference [23] was the only exception in which �nite di�erence method
(FDM) was used. Our paper presents an alternative approach to tackle this problem: �-
nite volume method (FVM) is used to solve the �uid equation and �nite di�erence method
(FDM) is used to solve the membrane equation. Although FVM is the most popular nu-
merical method in the area of computational �uid dynamics (CFD), in research areas where
the �uid and structure interaction (FSI) is involved, FEM still dominates. This is because
FEM is traditionally the only choice for structural analysis. It is only recently that FVM
has begun to play a role in this area. Demirdzic and Martinovic [24] and Demirdzic and
Muzaferijia [25] presented a stress analysis using FVM. Slone et al. [26] even presented
a solution strategy of using FVM for both the �uid and the structure. The
advantage of FVM lies in its simplicity of formulation and attractive local conservation
properties.
This paper presents an investigation of the compliant channel �ow problem using FVM–

FDM approach. Section 1 gives the governing equation and numerical schemes for the �uid.
Section 2 focuses on solution of the membrane equation. Section 3 explains how the solution
to the �uid and membrane are coupled. Section 4 gives the numerical results and discussions.
Conclusions and future work plan are given in Section 5.
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2. SOLUTION TO THE FLUID DOMAIN

2.1. Governing equations

The motion of the �uid is governed by the following conservation laws written in an integral
incompressible form.

The continuity equation: ∫
@S
(v − vm) · n dS=0 (1)

The momentum equation:

@
@t

∫
V
v dV +

∫
@S

[
v(v − vm) · n − 1

Re
(∇v) · n

]
dS= −

∫
@S
Pn dS (2)

where V is an arbitrary volume occupied by the �uid, P is the pressure. dS is the bounding
surface. v is the velocity of the �uid, vm is the velocity of the mesh. n is the unit normal
vector on surface dS. Here Equations (1) and (2) are in a non-dimensional form. Re is the
Reynolds number which is de�ned as

Re=
�∗u∗L∗

�∗ (3)

where �∗ is the density of the �uid and �∗ is the dynamic viscosity. u∗ and L∗ are the
characteristic velocity and length, respectively. The details of the dimensionless formulation
and the choices of the characteristic variables are given in the Appendix.

2.2. Numerical scheme

An unstructured FVM is used to discretize the �uid equations. The method described in
References [27, 28] is followed with some modi�cations. The discretization procedure will
only be summarized brie�y, for the details, please refer to these papers.
In order to obtain a discrete solution of Equations (1) and (2), the solution domain is

discretized into a �nite number of contiguous control volumes (CVs) or cells. Only CVs of
triangular shape are used in this paper. All dependent variables are stored at the cell centres,
i.e. a collocated arrangement is adopted.
The discretization procedure for the momentum equation (2) is explained in the form of a

transport equation of an arbitrary variable �:

@
@t

∫
V
� dV +

∫
S
[�(v − vm)− ��∇�] · n dS=

∫
S
Q� dS

Rate of change Convection Di�usion Source

(4)

Here � represents the velocity components vi (i=1; 2); �� is the di�usive coe�cient (1=Re)
and the source term is Q�= − Pni. Body force is not included in all the solution procedures
below.
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The rate of change is discretized by a backward Euler (fully implicit) scheme:

@
@t

∫
V
� dV ≈ 1

�t
[(�V )n − (�V )n−1] (5)

where ‘n’ and ‘n− 1’ are the time step counters.
The convective term is discretized as∫

S
�(v − vm) · n ds≈ ṁj�̃j (6)

where mj is the volume �ux across face j. It is de�ned as

ṁj=
∫
Sj
(v − vm) · n dS ≈Aj(ṽj − vm) · nj (7)

where Aj is the area of face j; ṽj is the face velocity. The mesh velocities vm are chosen in
such a way that they satisfy the space conservation law (SCL). They could be computed by
coupling with membrane displacement and mesh smoothing computations. However, if only
steady solution is sought, they could also be set to zero for simplicity, although the inclusion
of them may improve convergence.
�̃j is the variable interpolated to face j using a blending scheme

�̃j=�
(1)
j + ��(�

(2)
j − �(1)j ) (8)

Here the superscript ‘(1)’ and ‘(2)’ denote �rst- and second-order interpolation, respectively.
The �rst-order interpolation is just a simple ‘upwind’ scheme. The second-order scheme uses
the gradient of variable � and Taylor expansion to evaluate the value of � on the face centres.
In this paper, the gradient of � is constructed using a least-squares approach. �� is a blending
factor which is set to 0.95 in this paper.
The di�usion term is discretized as∫

Sj
−��∇� · n dS ≈ − ��j AjLj ((�Pj − �P0) + [(∇�)Pj · �1 − (∇�)P0 · �2]) (9)

Here Lj is the distance from the centre of cell P0 to that of cell Pj projected to the normal
direction on face j. �1 and �2 are two vectors on the tangential direction of face j (see
Figure 1). The �rst term on the RHS of (9) is the ‘normal di�usion’ and the second term is
the ‘cross di�usion’ which is a correction for non-orthogonal meshes.
Linear systems are obtained as a result of the discretization of the two velocity components:

aCP0�P0 =
3∑
j=1
ajP0�

j
P0 + bP0 (10)

Here superscript ‘C’ denotes the diagonal element of the coe�cient matrix and ‘j’ denotes
the neighbouring cells which share a common face with cell P0. The contributions to the
coe�cient matrix are: the mass matrix, upwind di�erence of the convective term, the ‘normal
di�usion’. The source term bP0 in (10) has three contributions, the pressure gradient, the ‘cross
di�usion’, and the departures of the convective �ux from the upwind di�erencing (deferred
correction).
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face center 

P0

Pj

1τ

2τ

cell center 

Figure 1. Cells used in the discretization. The dashed line is perpendicular to the cell face. It makes
an angle (not necessarily 90◦) with the line connecting cell P0 and P1.

The SIMPLE algorithm is used to calculate the pressure. A pressure-correction equation
is derived from the continuity equation (1)

3∑
j=1

(
1
aCP0

)
j

(∇p′)jAjnj=
3∑
j=1
ṁj (11)

where p′ is the pressure correction and (—) stands for arithmetic averaging from cell to face.
The LHS of (11) is a Laplacian operator and is treated similarly as the di�usive term in the

momentum equation. Some corrections for the mesh non-orthogonality are also considered.
After obtaining the pressure correction p′, pressure and velocity are corrected by

pm =pm−1 + �pp′m

vm = vm−1 − 1
av0

3∑
j=1
p′m
j Ajnj

(12)

Here �P is a relaxation factor for pressure, Ferziger and Peric [29] suggested that �p=0:2
for �uid; m is the pressure-correction loop counter at time step n. After the corrections, the
coe�cient matrix and source term in (10) are computed using the newly updated p and v. A
new velocity is obtained by solving (10) again. This velocity is then substituted into (11) to
compute a new pressure correction. This pressure-correction procedure is repeated until the
convergence criterion is satis�ed. Solutions to subsequent time steps are obtained following
the same procedure. A steady solution of the �ow �eld is achieved by time marching until
the transient term is negligibly small.
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Attentions are to be paid to the face velocity ṽj which is used to calculate the volume
�ux. This velocity cannot be obtained by a simple average of the values in the neighbouring
cells. Instead, a Rhie-Chow interpolation which introduces some dependency on the pressure
is used. More details can be obtained from Reference [27].

2.3. Boundary and initial conditions

A schematic sketch of the problem under consideration is shown in Figure 2. Four di�erent
types of boundary condition are prescribed on these boundaries. They are:

(1) Inlet: The velocity is prescribed as the solution of a two-dimensional Poiseuille �ow, i.e.

v1 = 6y(1− y)
v2 = 0

(13)

The normal gradient of pressure is set to zero.
(2) Outlet: The pressure is set to a constant (zero). In order to satisfy the continuity

constraint, the velocity is corrected using the gradient of pressure correction in a manner
similar to (12). This issue has also been addressed in Reference [29].

(3) Solid and compliant wall: On the solid walls, all velocity components are zero. For
the compliant wall, velocity equals to the velocity of the moving membrane, however,
if only steady solution is sought, it could just be set to zero for simplicity. On both
the solid wall and the compliant wall, normal gradient of pressure is set to zero.

The initial velocity is the same as (13) and the pressure is a linear function of x, i.e.

P=
12
Re
(L1 + Lc + L2 − x) (14)

L1, Lc and L2 are dimensions of this problem that are shown in Figure 2.

D 

Pe 

x 

y 

L1 LC L2

rigid wall compliant wall 

inlet 

outlet 

P1 P0

Figure 2. Geometry con�guration and boundary types.
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3. SOLUTION TO THE MOTION OF THE COMPLIANT WALL

The compliant wall is modelled as a thin membrane. The governing equation is written in a
non-dimensional form as

− Tf′′

(1 + f′2)3=2
+ (P − Pe)=0 (15)

where f is the membrane displacement (in y-direction), P and Pe are the �uid and ambient
pressure acting on the membrane. T is the tension of the membrane.
In this model, the inertia of the membrane is neglected. It is also assumed that the lon-

gitudinal variation of tension is negligible, so that T could be treated as a constant. The
explanations for these assumptions are given in References [17, 30].
The ODE in (15) is discretized using FDM. Central di�erence is used to discretized the

second derivative. The �nal form is written as

�i+1

�i +�i+1
fi+1 − fi + �i

�i +�i+1
fi−1 − �i�i+1

2
(Pe − P)
T

[
1 +

(
fi+1 − fi−1
�i +�i+1

)2]3=2
= 0 (16)

Here ‘�’ denotes the distance of two neighbouring nodes projected to the x-direction:

�i= xi − xi−1 (17)

The Newton–Raphson method is used to solve the non-linear equation (16). The iterative
procedure will terminate when the residual of (16) satis�es the following convergence criteria:

‖Rk(f)‖¡�1 (18)

Here k is the iteration number.

4. MESH SMOOTHING

The membrane displacement leads to the moving of mesh nodes on the �uid boundary. If the
nodes on the compliant wall are alone moved while the interior nodes are kept intact, poor-
quality or even over-lapping cells may appear. This could a�ect the accuracy of the numerical
algorithm or stop the calculation from proceeding. The objective of the mesh smoothing is
to smooth out the disturbance from these boundary nodes into the whole domain and ensure
a good mesh quality throughout the computing procedure. A spring analog model is used
to achieve this. In this numerical scheme, each face is replaced by a spring pulling its two
nodes towards each other. The mesh smoothing procedure is completed when all the nodes
reach a state of equilibrium. This method avoids the topology change thus is much easier to
implement than the point inserting and deleting technique. The movement of mesh nodes is
determined by

dr(i)

d�
=

nb∑
j=1
F(ij) =

nb∑
j=1
k(ij)(r(j) − r(i)) (19)

where r(i) and r(j) are the position vectors of node i and j, F(ij) is the pulling force exerted
on node i by spring ‘ij’, k(ij) is the sti�ness coe�cient of spring ‘ij’. ‘nb’ stands for all the
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Figure 3. Spring analogy model for the mesh smoothing.

neighbouring nodes which are connected to node i (see Figure 3). � is the pseudo-time. Since
r appears on both sides of Equation (19), an iterative approach is used to solve it.

5. COUPLING STRATEGY

The �uid and membrane equations form a coupled system. The �uid pressure on the membrane
is determined by solving the Navier–Stokes equation. The di�erence between the �uid and
ambient pressure on the membrane will determine the shape of the membrane through Equation
(15), similarly the shape of the membrane will also dictate the �ow �eld. The computational
domain for the �uid is modi�ed by updating the membrane shape. A steady solution is
obtained only when both the change in the �ow �eld and the displacement in the membrane
are negligibly small. An iterative scheme is implemented to capture this steady solution. This
scheme can be summarized as

(1) An initial membrane shape is chosen with an initial �ow �eld. A time marching is
performed on this geometry until a steady state is reached. The �ow �eld is considered
to have reached the steady state if the following condition is satis�ed:

‖pn − pn−1‖6�2 (20)

While within each time step, the convergence of the pressure-correction procedure is
determined by another condition:

‖Rmc ‖¡�3 (21)

Here Rc is the residual in the continuity equation. m is the iteration number of a
SIMPLE loop.

(2) Equation (16) is solved using the converged pressure �eld. After the nodes displace-
ment of the membrane is computed, these nodes are moved according to the displace-
ment.
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(3) The mesh is smoothed using (19) to improve the mesh quality. All the boundary nodes
(including those on the membrane) are intact in the smoothing procedure.

(4) A time marching is performed again on the new geometry; the solution on the old
geometry is used as a initial condition.

(5) This iteration procedure will terminate only when both the convergence criteria in (20)
for the �ow �eld and (22) for the membrane displacement are satis�ed:

‖fl − fl−1‖6�4 (22)

l is the iteration number for this ‘steady-state capturing’ scheme.

In this work, the convergence criteria for the pressure �eld and membrane displacement
are:

�1 = 1× 10−6; �2 = 3× 10−4; �3 = 3× 10−6; �4 = 5× 10−6 (23)

It is found that a very tight convergence criterion for the pressure �eld is not necessary as
the membrane shape is updated at frequent intervals, and the pressure is very sensitive to
the geometry of the computational domain. However, very loose convergence criteria for the
pressure will lead to divergence of the whole system or an inaccurate �nal solution. The
values in (23) are determined by numerical experiments. The �ow chart of this algorithm
used in the code is shown in Figure 4.
Other measures are also taken to avoid divergence or to make the computation converge

faster. Some of these measures are summarized as follows:

(a) When � is large (¿30), in order to capture the steady solution, one may start with a
smaller �; after the solution has converged to some degree (not necessary to satisfy
the condition in (22)), increase the value of � slightly. By doing it ‘step-by-step’, it
is much easier to obtain a solution then directly jumping to a large �.

(b) A relaxation in the membrane displacement in needed when � is even large (¿90).
Instead of using (16), the following amendment is used to calculate the membrane
displacement:

f̃l= �fl + (1− �)fl−1 (24)

where f̃l is the displacement used to move the nodes and fl is the displacement
calculated using (16). � is a relaxation factor ranging from 0.1 to 0.9.

(c) One may need to pay some attentions to the convergence criteria �3 of the continuity
equation in the SIMPLE loop. A very loose one may cause an inaccurate solution
while a too tight one is a waste of computer time. It is found that a value from
1× 10−6 to 1× 10−5 is appropriate for the simulations in this study. It is also found
that the convergence behaviour of the SIMPLE algorithm is strongly associated with
the mesh quality. Convergence is much faster on a nearly orthogonal mesh than on a
highly skewed one.
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Figure 4. Flow chart of the algorithm used in the code.
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6. NUMERICAL SIMULATIONS AND DISCUSSIONS

6.1. Computer code and validations

The simulations in this paper are performed using UNCFV3D, an in-house research code
developed in Institute of High Performance Computing (IHPC). This code is a 2D=3D �nite
volume solver which uses the SIMPLE algorithm to solve incompressible Navier–Stokes
equation on an unstructured mesh. The basic numerical method is based on that described in
References [27, 28]. The code is still under development. At this moment, some validations
have been completed for 2D and 3D laminar �ows.
(a) Two dimensional Poiseuille �ow: Before solving the �uid–membrane problem, a two-

dimensional channel �ow with rigid walls is tested. The computational mesh is shown in
Figure 5. The stream-wise velocity pro�les at place x=10 for both the analytical and numer-
ical solutions are shown in Figure 6. Two numerical results are obtained, one using the mesh
in Figure 5 and the other using a more re�ned mesh (about twice the mesh number). From
Figure 6 one can see that both numerical solutions match very well with the analytical one.
In the analytical solution, it can be seen that the maximum velocity on the centre-line is 1.5
of the bulk velocity. Comparing this maximum velocity with numerical results, it is seen that
the error is 1.2% for the normal mesh and 0.7% for the more re�ned mesh. As a compromise
of CPU time and accuracy, the mesh in Figure 5 is used in all the subsequent simulations.

6.2. Control parameters in the �uid–membrane system

The parameters used in the simulation are the same as those in Reference [16]. They are
listed in Table I.

6.3. Numerical results

Three parameters Re, T and Pe are chosen as the control parameters. How the membrane
behaves with the variation of these parameters will be presented in the section. In order to
compare with the result in Reference [16], two new parameters � and � are introduced and

Figure 5. The mesh of the �uid domain with 2587 triangles and 4822 nodes: (a) mesh in the original
scale; and (b) zoom in near the compliant wall.
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Figure 6. Velocity pro�le at x=10 of a rigid channel solution. Solid line is the
Poiseuille solution; circle is the numerical solution using the mesh in Figure 5

and cross is the numerical solution using a more re�ned mesh.

Table I. Values of parameters used in the simulation.

�∗=1× 10−3 Pa s �∗=103 kgm−3 D=10−2 m

L∗
1 = 2× 10−2 m L∗

c =5× 10−2 m L∗
2 = 7× 10−2 m

P∗
e0 = 0:93 Pa T∗

0 = 1:61 Nm
−1 U0 = 1− 4× 10−2 m s−1

the tension and the pressure are converted to their non-dimensional form using Equation (25):

T =1× 107(T ∗
0 =�Re

2); Pe=1× 105(P∗
e0=�Re

2) (25)

where T ∗
0 and P

∗
e0 are the values listed in Table I. Now the control parameters are Re, �

and �. This formulation is also given in Reference [31]. For the derivation of (25), please
refer to the appendix.

6.3.1. Di�erent membrane shapes with the variation of tension scaling factor �. The �rst
numerical result shows di�erent membrane shapes with the variation of �. The pressure scaling
factor � is set to unity and Re is set to 300. Figure 7(a)–(g) shows the mesh of a steady
solution for � ranging from 1 to 180. When � is small (T is large), the membrane deformation
is very small and a solution similar to that of a rigid channel �ow is obtained. With the
increase of �, the membrane is pushed further downwards and deformation increases. The point

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:635–655
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Figure 7. Meshes of a steady solution for di�erent tension scaling factors at Re=300 and �=1:0:
(a) �=1; (b) �=30; (c) �=60; (d) �=90; (e) �=120; (f) �=150; and (g) �=180.

of greatest constriction will move slightly downstream from the mid-point of the membrane
with the increase of �. At certain level of � (about 30), an in�ection point will appear at
the upstream half of the membrane. If � increases further, the membrane will bulge out at
the upstream half while the point of greatest constriction will continue to move downstream.
However, the minimum height of the channel will increase slightly with the increase of �. The
results match well with the prediction of Lou and Pedley [16]. In Figure 8, the membrane
shapes from the present simulation are compared with that in Reference [16] for selected
�. From this �gure one can see that the deformation predicted in this paper is slightly less
than that of Lou and Pedley [16] and the largest di�erence appears near the point of greatest
constriction. The y-co-ordinate of this point is plotted against � in Figure 9. Luo and Pedley’s
[16] prediction is also plotted in this �gure for comparison. For all cases computed, the largest
di�erence in deformation is about 5%. Further investigation on the solution using a more

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:635–655
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Figure 8. The membrane shapes at for di�erent tension scaling factor �=30, 60, 90. Solid line is result
of the present simulation and dash line is the result from Reference [16].

re�ned mesh (about twice the mesh number) shows that a mesh-independent solution has
been obtained. Thus the 5% di�erence is possibly not associated with mesh resolution. The
reason for this di�erence needs further investigation.

6.3.2. Di�erent membrane shapes with the variation of Re numbers. The Re number e�ect
on the membrane shape is studied in this section. Figure 10 shows the membrane shape at
Re number ranging from 1 to 400. The tension scaling factor � is 30 and pressure scaling
factor � is 1.0. For small Re numbers (1–100), the maximum displacement is located near
the mid-point of the membrane. The displacement of the membrane is almost symmetric. The
maximum displacement decreases slightly with the increase of Re number. With a further
increase of Re number to 200, the maximum displacement will increase and the moving of the
point of greatest constriction towards the downstream direction is observed. The membrane
shape greatly deviates from a symmetric one. If Re number increases from 200 to 400,
maximum displacement will decrease again and the point of greatest constriction will move
further downstream. Furthermore, an in�ection point will appear at the upstream part of the
membrane and this part of the membrane will become more open as Re number increases. A
bulging region in the upstream part of the membrane is also observed at Re number 400.
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6.3.3. The di�erent membrane shapes with the variation of �. The e�ect of ambient pressure
on the shapes of the membrane is also studied. Figure 11 shows the membrane shape at �
ranging from 0.8 to 4.0. The Re number for these simulations is 300 and the tension scaling
factor � is 30. It is observed in this �gure that a small � has the similar e�ect as a large �.
With very large � (3.0 or 4.0), or very smaller ambient pressure, the whole membrane will
bulge out. This result is reasonable and agrees with that of commonsense.

6.3.4. Pressure drop with the variation of Re and �. Pressure drop is closely related to the
�uid carrying capability in physiological �ows, and therefore is a very important parameter
which needs some investigation. Figure 12 shows the overall pressure drop (�P∗=P∗

1 − P∗
0 )

along the channel as a function of Re number at three di�erent � (10, 20 and 30). It is
observed that for almost all cases computed, the pressure drop for a compliant wall is higher
than that for a rigid wall at the same Re number and � (the case of Re=100 and �=20
is the only exception). For �=10, the pressure drop is linearly dependent on Re number,
similar to that of Poiseuille solution for a rigid channel but with slightly larger slope. For
�=20, the trend is almost the same as that of �=10, but in the Re number ranging from
50 to 100, a ‘�at’ region appears, this indicates that pressure drop remains the same as Re
number increase. For the �=30 case, the trend is the same as �=10 but the slope is much
higher.

6.3.5. Separation bubbles. According to the discussions in Section 6.3.1, for small �, no
separation is possible as a result of very small membrane displacement. At certain level of
�, �ow separation is inevitable because of large displacement. For the case of Re=300 and
�=1:0, separation �rst appears at �≈ 20. This separation bubble is located at the downstream
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Figure 12. Pressure drop against Re number and tension scaling factor �.

end of the membrane, partially on the membrane and partially on the rigid wall. For the three
cases of very large � (120, 150 and 180), besides the downstream bubble, another slightly
smaller bubble also exists on the upstream part of the membrane. Two cases (�=30 and 180)
with �ow separations are shown in Figure 13(a) and (b), both the velocity magnitude contours
and streamlines are plotted. Figure 14 shows the location (x co-ordinate) of the separation
and reattachment point at di�erent level of � at �xed Re number and �. From Figure 14,
one can see that the size of the downstream bubbles are almost the same for the six cases
and the bubble centre moves slightly towards the downstream direction as � increases. As
to the small upstream bubbles, the size increases as � increases and the bubble centre also
moves towards the downstream direction. These observations to the �ow pattern may have a
signi�cant e�ect on the transport of the �uid (e.g. blood) and thus might be of great interest
to physicians.

7. CONCLUSION AND FUTURE WORK

In this paper, we have conducted a preliminary investigation on a 2D channel �ow with a
partially compliant wall through numerical simulations. All the computations are done using
an in-house CFD code developed at IHPC. The �nite volume–�nite di�erence approach is
implemented to solve a �uid–membrane coupled system. The formulation of this approach is

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:635–655



652 X. ZHANG ET AL.

Figure 13. Velocity magnitude contours and streamlines at Re=300 and
�=1:0: (a) �=30; and (b) �=180.

simpler than that of a fully coupled FEM. Compared with those in the literature, satisfac-
tory results are obtained using the present approach. Further studies regarding the numerical
accuracy are presently underway, especially the study of the in�uence of several converging
(stopping) criteria (see Sections 3 and 5) on the overall accuracy.
As an extension of the present work, unsteady analysis will be conducted. The unsteadiness

will require a more complicated �uid–structure interaction (FSI) model involving the inertia
e�ect of the membrane and the exchange of boundary information between the �uid and the
membrane. Furthermore, an ALE re-formulation of the Navier–Stokes equation is also required
due to the mesh movement. However, in the FVM, such re-formulation is straightforward by
adding a mesh moving velocity and is just a minor change in the governing equation of the
�uid. This feature is another advantage of this numerical method over FEM. There are also
some other avenues for further research. They may include the longitudinal variation e�ect
of the membrane tension and some more complicated models for the membrane, such as the
beam model.
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Re=300 and �=1:0. Two vertical lines indicate the span of the membrane.

APPENDIX A: DIMENSIONLESS FORMULATION

The non-dimensional governing equations for the �uid in a di�erential form are written as

@v
@t
+ (v · ∇)v − 1

Re
∇2v=−∇P

∇ · v=0
(A1)

The de�nitions of the non-dimensional variables are as following:

x= x∗=D; y=y∗=D; v= v∗=U0; t= t∗U0=D; P=P∗=(�∗U 2
0 ); Re=�∗U0D=�∗ (A2)

The ones with ∗ are the original (dimensional) variables. D is diameter of the channel and is
chosen as the characteristic length. U0 is the bulk velocity at the inlet and is chosen as the
characteristic velocity.
Similarly, the non-dimensional governing equation for the membrane displacement is

− Tf′′

(1 + f′2)3=2
+ (P − Pe)=0 (A3)

The de�nitions of the non-dimensional variables are:

f=f∗=D; T =T ∗=(�∗U 2
0D); Pe=P∗

e =(�
∗U 2

0 ) (A4)
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By a re-formulation of the non-dimensional pressure and tension and substituting the quantities
in Table I, the equations in (25) can be derived very easily.

Pe = P∗
e =(�

∗U 2
0 )= (P

∗
e =Re

2)(�∗D2=�∗2)=105(P∗
e =Re

2)

T = T ∗=(�∗U 2
0D)= (T

∗=Re2)(�∗D=�∗2)=107(T ∗=Re2)
(A5)
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