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Abstract

The aim of this paper is to study disclinations in the framework of a second strain gradient elasticity theory. This second
strain gradient elasticity has been proposed based on the first and second gradients of the strain tensor by Lazar et al. [La-
zar, M., Maugin, G.A., Aifantis, E.C., 2006. Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43,
1787-1817]. Such a theory is an extension of the first strain gradient elasticity [Lazar, M., Maugin, G.A., 2005. Nonsin-
gular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157—
1184] with triple stress. By means of the stress function method, the exact analytical solutions for stress and strain fields
of straight disclinations in an infinitely extended linear isotropic medium have been found. An important result is that the
force stress, double stress and triple stress produced by wedge and twist disclinations are nonsingular. Meanwhile, the cor-
responding elastic strain and its gradients are also nonsingular. Analytical results indicate that the second strain gradient
theory has the capacity of eliminating all unphysical singularities of physical fields.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical elasticity breaks down at small distances from crystal defects like dislocations and disclinations
and leads to unphysical singularities. As an extension of the classical elasticity, strain gradient elasticity (Kro-
ner, 1963, 1967; Kroner and Datta, 1966; Green and Rivlin, 1964a,b; Mindlin, 1964, 1965; Mindlin and Eshel,
1968) can be used to eliminate singularities.

Gradient elasticity and other theories were used to calculate the stress and the strain fields produced by
dislocations and disclinations (Aifantis, 2003; Gutkin and Aifantis, 1996, 1997, 1999; Gutkin, 2000; Lazar
and Maugin, 2004a,b, 2005; Lazar, 2003a,b,c,d). The gradient elasticity solutions have no singularity in both
the stress and the strain fields. On the other hand, in first gradient elasticity the double stresses of twist discli-
nations, €.g. T xx, T2y, €tC., still have singularities at the defect line (Lazar and Maugin, 2005). Recently, Lazar
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et al. (2006) proposed a special second strain gradient theory and calculated the stress and strain fields produced
by edge dislocations and screw dislocations. In which, the force stress, double stress and triple stress are all
nonsingular. In this paper, we want to extend second strain gradient theory to investigate disclinations.

The plan of the paper is as follows. In Section 2, the framework of the second strain gradient elasticity is
introduced. In Section 3, the classical solutions of wedge disclination are presented first and subsequently its
elastic stress, double stress and triple stress in second strain gradient elasticity theory are calculated. The Sec-
tion 4 treats twist disclination, and its structure is same as in Section 3. These fields in the framework of second
strain gradient elasticity have no singularities within the disclination core region. Therefore, it regularizes all
elastic fields within the framework of this theory. In Section 5, a concise conclusion has been provided.

2. Framework of the second strain gradient elasticity

In this section, the framework of second strain gradient elasticity will be introduced, and the details can be
found in references [e.g., Lazar et al. (2006)]. £;; denotes the symmetric elastic strain, and it is incompatible in
continuum theory of defects (deWit, 1973; Kroner, 1981; Mura, 1982). The double and triple strains are
defined by

PP a El”v
’/Iljk kij (21)
1’]1:]«/(] = alékEij.

They fulfill the following compatibility conditions:
€m0 = 0, (2.2a)
€my,1€quanaqf7ijk[ =0. (22b)

Herein ¢ denotes the permutation tensor.
For a linear elastic solid, the potential energy function, W, is assumed to be a quadratic function in terms of
elastic strain, double strain and triple strain (Lazar and Maugin, 2005; Polizzotto, 2003)

W= W(EU-? Mijies nijkl)' (2.3)

Since the strain Ej; is incompatible, we deal with an incompatible strain gradient elasticity which is valid for
defects in linear elasticity. Then

ow
O-ij = a?ij’ J,‘j = O'j[, (24)
ow ow
Tik = e =~ — = Tijk = Tjiky 2.5
" 0(0kEy)  Omyy e 23)
ow ow

(2.6)

Tijkl = = y o Tkl = Tkl = Tijik = Tjilk
a(a/akE,-j) 6111.jk1

are the response quantities with respect to the elastic, double and triple strains. 7;; and 7, are called the dou-
ble and triple stresses, respectively.

In order to connect the higher gradient elasticity with the nonlocal isotropic elasticity proposed by Eringen
(1992, 2002), the double and triple stresses are just simple gradients of the Cauchy-like stress tensor multiplied
by two gradient coefficients:

O'” = Ci/'k/Ekh (27)
Tijk = SZC,-qu@kqu = 826k0','j,
Tt = 7' CiipgOr1OE g = 710,043

Both ¢ and y are gradient coefficients with the dimension of a length, and ¢ > v/2y. For simplicity and gen-
erality, ¢ > v/2y is considered in the paper. The corresponding stress functions under & = v/2y have also been
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given in Appendices A and B for wedge and twist disclinations, respectively. In the isotropic case, Cy;, the
elasticity tensor reads

Cijkl = }~5zj/5k1 + H(5ik5ﬂ + 5;‘15‘1'/{)7 (2~10)
where /1 and u are the Lamé’s constants.

The force equilibrium condition (the body forces excluded) follows from the variation of W with respect to
the displacement vector u;:

8_,-(0,,« — akfijk + Glékrijk,) =0. (21 1)
Eq. (2.11) takes the form
0,00, =0 (2.12)

if we define the total stress tensor
O'g = 0jj — akfijk + a[akffjkh (213)

a?j may be identified with the “classical’ stress tensor. Substitution of Egs. (2.8) and (2.9) into (2.11), yields the
expression

— & + 'y 'O-[' fr— s .
1 —&4+9*44)8,6, =0 2.14
herein 4 denotes the Laplacian. Considering Eq. (2.13), Eq. (2.14) is rewritten as
—&d4+y g;; = 0. .

1 —&4+9'44)0, g 2.15
Moreover, for the elastic strain, the stress function f, etc., they have the same form

(1—-&4+9*44)E; = E),, (2.16)

(1 —&4+y*24)f = f°. (2.17)

Herein, Eg and f° denote the “classical” elastic strain and the “classical” stress function, respectively. The ba-
sic equations in second strain gradient elasticity like Eqgs. (2.15)—(2.17) are typical inhomogeneous bi-Helm-
holtz equations.

3. Wedge disclination
3.1. Classical solutions

Here, we consider a straight wedge disclination inside an infinitely long cylinder with outer radius R. The
z-axis is along the disclination line and coincides with the axis of the cylinder. For a wedge disclination, the
Frank vector is parallel to the disclination line, Q = (0,0, Q).

In absence of body forces, the force equilibrium condition can be identically satisfied by using the stress
function (Hirth and Lothe, 1982). To the plane problem, we use the classical stress field of a straight wedge
disclination in terms of the Airy stress function f° (Lazar, 2003c)

2 2
G Ay L

o= -l s 0 | (3.1)
0 0 vAf°
Here 4 =02, + G;y and v the Poisson’s ratio. In addition, the strain is given in terms of the stress function as
2 0 0 2 70
0,,f" —vAf =0,/ 0
0 _

Ey=a,| -0 & -var o (3.2)

0 0 0

The stress function of a ““classical” wedge disclination is given by
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1—4v uQ
Y=4r{lnr — 57—~ — A=—""—
4 r{nr 2(1 - 20) C}’ dn(l —0)’

herein > = x* + y°. In the case of C = 0, the stress function reproduces the stress of a wedge disclination given
by deWit (1973). Notes

(3.3)

B—— 72(11__42017),4, B — A{_72(11_—4201;) - c} — B— AC. (3.4)
Substitution of Eq. (3.3) into (3.1), yields the classical stress (Lazar, 2003c)
a?,,—A{2lnr+A+ZB,}, (3.5)
%y :A{2lnr+w}, (3.6)
. :4vA{lnr+A—;B,}. (3.7)
Similarly, the classical strain can be gotten by using Egs. (3.2) and (3.3)
E(r)o :E(r)z = Egz = E(z)z =0, (3.8)
Egzz’iﬂ{[z_@} nr 4 U _4”)/1;(2_4”)3'}, (3.9)
Egozj;u{(2—4v)lnr—|—(34U)AZ(24U)BI}. (3.10)
For satisfying the boundary condition, ¢°.(R) = 0, there is
B’:—%[lJernR} (3.11)
and
CzlnR—i—l_Uzv. (3.12)

3.2. Nonsingular solutions in second strain gradient elasticity

In this subsection we want to consider the wedge disclination in second strain gradient elasticity to find
modified solutions without the classical singularities.
We make a hypothesis in terms of unknown stress function f which has the same form as the classical stress
field
2 2
a}yf _axyf 0
o=\ -0 &f 0 | (3.13)
0 0 vAf
In addition, the strain is given as

2 2 .
qf—vAf = f 0

Ei=7, —oLf  onf—vAf 0| (3.14)
0 0 0

Substitution of Egs. (3.1), (3.3), and (3.13) into (2.15) yields the results
(1 =4 +y*AA)f = A Inr + B'r*. (3.15)
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Eq. (3.15) is rewritten as

(1 —=cA)(1 —3A)f = Ar*Inr + B, (3.15)
with
"2 4 4yt
c% :H#7 (3.16)
2 Ay
e :%. (3.17)

Eq. (3.15) is an inhomogeneous bi-Helmholtz equation, and its solution can be expressed in the form (the
solution procedure has been given in Appendix C)

f= A{r Inr+4(c +cz)lnr+ 4 > { 4K0<c > —02K0< )]}+B’r2+4(A +B)(ct+¢c3), (3.18)
2 &)

herein K, denotes the modified Bessel function of the second kind and 7 is the order of this function. Eq. (3.18)
is the stress function under ¢; # ¢», and the corresponding one under ¢; = ¢, has been given in Appendix A.
Substitution of Eq. (3.18) into Eq. (3.13), yields the modified elastic stress

1 df 2B 42 +c3) 4 3 r
G = S {21nr+(1+7)+ 3 _r(c%—cg) K, . - ok | — o , (3.19)

& 28"\ 4(cf +¢)) 4 r
Y 4lom =) -2l 1K1 —) -k
oo (3 2) ST (7)o (1)
4 r
+m |:C%K2 (c1> — C2K2 <02>:| }, (320)

1of
T =— ar(rae) 0, (3.21)

A+ B 2 r r
. = vAf = 4vAS ] - K —) — K| —
oo =oaf =t inr+ 275 - e (£) -k (1)

aalnls) <)) o

Similarly, it has to satisfy the boundary condition, ,(R) =0, and there is

1 2(3+cd) 2 R R
B =4{—InR—-—-"1_2 SKi— ) =K (— 2
{ TR TRE-a) { () “ ()]} 52

The stresses in different theories are illustrated by Figs. 1-3, respectively. In these figures, ‘; =2 & o= =20,
v =3, and these particular values will be used to drawmg in this paper. In addition, all figures in the paper
are plotted according to the independent variable(s) as =, P and/or 2 . The “classical” stresses are singular
at the disclination line, but the “modified” stresses are nonsmgular and they have finite minimum values in
the disclination core region. In addition, the “modified” stresses change slowly near the disclination line com-
paring to the classical stresses, and they have little difference away from the defect line.

Similarly, the modified strains are expressed as follows

A (1-4v)A+ (2—4v)B'" 4(ci+¢3) 4v ) r r
ﬂ{[2—4v]lnr—|— y + 2 “Z-a K> o — 3K, | — o

isglin)-ae(2)]) oo

Err' =



S. Deng et al. | International Journal of Solids and Structures 44 (2007) 3646-3665 3651

2 T T T T T T T T

2t

= Classical: c"(r)
——— Firstgradient: _(r)

= Second gradient: r;"(r)

G

Fig. 1. The classical and “modified” a,,(r).
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r
o

Fig. 2. The classical and “modified” ggy (7).

4 3—4v)A+ (2—4v)B 4(ci+c3) 4—-8v [, r 3 r
E()g = 2'[1 {(2 41.7) lnr+ A 2 I"(C? — C%) CIK] Cl C2K1

A2lon) - )

Eg=E,=Ey=E,=0. (3.26)

The strains in different theories are plotted in Fig. 4. In which, the “classical” strains change quickly but the
“modified”” ones change steadily at the disclination line.

For linear isotropic media, the relations of the double strain and the double stress and the ones of the triple
strain and the triple stress are linear. Therefore, only the hyperstresses (double and triple stresses) are
investigated.

Substitution of Egs. (3.19), (3.20) and (3.22) into (2.8), yields the components of double stress

da, 2 8(ct+¢3) 4 r r
_ 290 5 )e 0l TG 2 2
Ty = € " £ A{r 3 + G 1K C1> K> 02> , (3.27)
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Fig. 3. The classical and “modified” o..(r).
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Fig. 4. The classical and “modified” E(r).

dogy 2 8(2+c2) 12 r r
— 2 — 2A = 1 2 2K I K
o =g T F {r st r(cd —3) atelc ) Tt

b))

el bl o)
[q[g( ) — 6K; (ciz)] } (3.29)

The double stresses are illustrated by Fig. 5. The figure shows that the double stresses have zero value at
disclination line, and they change quickly in the defect core region.
Similarly, the triple stresses are given
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The components of the triple stress are illustrated by Fig. 6, and they have finite values at the disclination
line (r = 0). Moreover, the triple stress goes to zero away from the disclination line.

The elastic bend—twist may be determined from the condition that the dislocation density (disclination tor-
sion) has to be zero for a straight wedge disclination

l—v 1-v
Oy = 716}7Af — Kx = 07 0y = Wa‘CAf — K

Ii
e

(3.33)

The effective Frank vector of the wedge disclination is given by (see Fig. 7)

Q.(r) = ﬁ(xnﬁ + i, dy) = Q{l o i 3 [cHKl (C—rl> — oK, (c%ﬂ } (3.34)

From Fig. 7, we find that the “modified”” Frank vectors are no longer constants and they have zero value at
the disclination line. On the other hand, when r — oo, they approach to the classical Frank vector Q.

The contribution of double and triple stresses to strain energy density has been investigated. For simplicity,
strain energy density function in part 2 can be rewritten as

1 1 1
W = W(Eij, Nijes Nijra) = 5 {%Ei;‘ + o Tl + y_4flf/'k17lijkl}= (3.35)
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Fig. 6. The triple stress.

«Q
1} — -
081
06
0.4
Classical: Q(r)
First gradient: ((r)
0.2f Second gradient: £)(r)
0 .
0 5 10 15 20

Fig. 7. The effective Frank vectors.

and it has been illustrated in Fig. 8. In which, we can find that the contribution of double and triple stresses
changes quickly within the disclination core. Moreover, the effect of triple stress is neglectable out of disclina-

tion core. Certainly, the contribution of double and triple stresses will increase as the gradient coefficients ¢
and y increase.

4. Twist disclination

4.1. Classical solutions

In this subsection we present the “‘classical” stress field for a straight twist disclination in an infinitely

extended isotropic body by the help of the stress function method. We assume the disclination line is along
the z-axis and the Frank vector has the form, Q = (0,£,0).

The classical solution for the elastic stress field was given by deWit (1973) and Lazar (2003d)
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Fig. 8. The contribution of double and triple stresses to strain energy density.
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(4.1)
(4.2)
(4.3)
(4.4)
(4.5)

(4.6)

The components of the classical elastic strain have been given in Appendix D. Obviously, the expressions
(4.1)~(4.4) contain the classical singularity ~r~' and a logarithmic singularity ~ Inr in (4.6). For the situation
of the strain condition, E?. = 0, Eqgs. (4.1)(4.6) can be calculated by using the so-called stress function method

in the following form

In order to satisfy the force equilibrium the stress ¢°. has to fulfill the condition

The classical stress functions for the stress fields Eq. (4.7) are

2 0 2,0
0,/ =0,/
o= | -0 S
—0,F" 0.F"+0.¢°
vAf* = -0,8".
0 e
=yl
S = sy 2l
0 __ p<2
F 2n(l_u)xlnr,
0 Hv zlnr

—0,F"
0.F° +0.¢°

vAf?
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4.2. Nonsingular solutions in second strain gradient elasticity

After giving the classical solutions the twist disclination in second strain gradient elasticity theory will be
considered to find the modified solutions without the classical singularities.

In second strain gradient elasticity, the stress functions are related to the stress tensor (Lazar and Maugin,
2005)

2 2
aWi f —ax}, S —0,F
o;=| -0, O.f OF+0g (4.12)
—-0,F 0. +0.g vAf
with the relation
vAf = —0,8. (4.13)

Consequently, three inhomogeneous bi-Helmholtz equations for the unknown stress functions have been
obtained

Q
1= 24+ 9 40 f =(1 - (1 - EA)f = 0= —— 2 51 4.14
(1= 2+ 40)f ~(1=GA)(1 =) = f* = 2 (414
244 1PN — PN = — M
(1 —ed+9y"A)F =(1 — c;4)(1 — c;4)F = F 27t(I_U)xlnr, (4.15)
Q
(1 -4+ 44)g =(1 — EA)(1 — EA)g = ¢ = ﬁzlnr, (4.16)

where ¢? and ¢ are given by Egs. (3.14) and (3.15), respectively.
The solutions for the stress functions of a straight twist disclination are given by (its solution procedure is
same as in wedge disclination but more complicated, see Appendix E)

___me 2Aci+ea) 1 e (TN s (1
/= (1= 0) Zy{lnr t— @ ar 2¢1K; o 26K, o , (4.17)
ue 2(0% + c%) 1 3 r , p
F=—g——xil - 20K, (=) — 283K, (— 4.18
2n(1 — v)x{ nrt 5 (¢t =) atiig 2 ’ (4.18)
_ M 1 2 LR r
g_n(l _U)z{lnr+c%_c% [61K0<61) Ko o . (4.19)

Eqgs. (4.17)—(4.19) indicate ¢; # ¢,. The corresponding stress functions under ¢; = ¢, have been given in
Appendix B. By means of Eq. (4.12) and the stress functions (4.17)—(4.19), yields the elastic stress in Cartesian
coordinates

uQ 3y 20 12(a + ) 16(c? +¢3) 3y ) r 5 r
x — — - - 207 K5 | — | — 25K, | —
et R s e () -2k

e () (9))

pe x 20 4(cf+c3) 16(ci +¢3) 5 X 2 r 2 r
o= g e e O S (1) -2k

- 2n(1 —v 2
_ﬁ _201K3 (ﬁ) —26:K; (c—r) } (4.21)
o — _#Q_U)Z{:_z B 2);42 B 4(6%; c%)y+ 16(cfr6+ cﬁ)sz = _ycg)ﬂ {20%[{2 (g) 2k, (C_rz)]
—@fi%)ﬁ :2cl1<3 (;) 26K, Cz) } (4.22)
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. #Q_U) o { rlz 4 ;: ), = _1C§)r2 [2cf1<2 (Frl) — 20K, (C—r)} } (4.23)

o= _2n(;119_ . {(1 B 2v)lnr—|—2(c%r—2|— c3) +§_4(c%rj ) c%z_vcg {Cf&)(é) _C§K0<C{’2>}
(@) e @) e () 2@y e

R AR

The components of the force stress in classical, the first and second gradient theories are plotted in Figs. 913,
respectively.
When r — 0, there are Ko(%) — —[¢ +1In4], Ki(5) — ¢ and K»(5) — — % + 2%22, etc. Here ¢ denotes the Euler

constant, and thus g; goes to finite value. Moreover, Figs. 9-13 have also illustrated that all “modified” force
stresses are nonsingular, and the amplitudes of the stress in second gradient elasticity are less than the corre-

T T T T

o5

22 (1-v)

06

Classical: 5_(0.y) 1

— First gradient: nn(o,y)

Second gradient: o, (0.y) 1

04+ ]

S leo

Fig. 9. The classical and “modified” o, (0,).

03
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02+ 1
01r 1
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Calssical: oxy(x,O)
01+ First gradient: crxy(x,ﬂ) 1
Second gradient: cxy(x,o)
021 1
-20 -15 -10 -5 5 10 15 20

D lro

Fig. 10. The classical and “modified” a,,(x,0).
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Fig. 11. The classical and “modified” o,,(0,y).
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Fig. 12. The classical and “modified” o.,(x,0).

sponding ones in first gradient elasticity near the disclination line. Simultaneously, the elastic strain given in
terms of stress functions

of —vAf  —OLf —o,F
Ej= 2 —of  OLf—vAf OF +0og (4.26)
—0,F 0.F +0.g 0
is nonsingular, and its components are written as follows:
Q 1 4(ci+c3) 1 r r
Eo=——xpd—>——1 -2 20K, — | — 26K, — 4.27
4n(1 —v) xy{r2 A * (2 —c3)r? i c €222 ) ’ ( )
Q 3-20 2% 12(ct+¢c3)  16(ci+¢c3) , 2v r r
E.,=-— - Ki|—)—akK|—
> 4TC(1 — l)) Zy{ 2 o ! + 6 y + (C% — C%)}" C1K o CrK o

N Y ) R

1 2
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(Cf—cﬁ)r{ “ 1<Cl> e ]<02>] +(Cf—C§)r2 { “a 2<Cl> B 2<02>]} (#31)

Here, we have to emphasize that in first strain gradient elasticity only the components of the double stress
of twist disclinations Tyy-, Tyyz, Tayz, Tzzzs Toxas Tzxys Tzpy ad 7oy, are nonsingular. The other components 7y,
Type Txypws Tzzxs Ty Typys Txyy @D T2y, are singular at r = 0. Moreover, these components are zero at z= 0. On
the contrary, all components of the double and triple stresses in second strain gradient theory are nonsingular,
and the double and triple strains have finite values. For verifying this important result, we illustrate it by many

representative components
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These components are plotted in Figs. 14-18, and the figures have also illustrated that the components of

the double and triple stresses are regularized.
The effective Frank vector of twist disclination is defined by

() = f (e dx + Ky, dy)

with the components of the elastic bend—twist tensor
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1

Ky =% [afyF + az(afy S —vAf)], (4.38)
1

Ko =3, (OLF + 0.+ 0. f)- (4.39)

Substitution of Eqs. (4.17), (4.18), (4.19), (4.38) and (4.39) into Eq. (4.37), yields the expression

Q,(r) = 9{1 -2 - c% {clK] (i) — oK, (CLZ)] } (4.40)

The effective Frank vectors in different theories are plotted in Fig. 19. The “modified” Frank vectors have
zero value at the disclination line, and they approach to the classical Frank vector Q as r — oc.

5. Conclusions

In this paper, disclinations in the framework of the exceptional version of second strain gradient elasticity
theory (Lazar et al., 2006) have been solved. Using this theory, we have found new exact analytical solutions
for the stress and strain fields of straight wedge and twist disclinations, respectively. The solutions have no
singularities unlike the corresponding solutions in classical elasticity and first strain gradient theory. In addi-
tion, the double and triple stresses have been investigated, both quantities are nonsingular. Thus, singularities
of the double stress which appear in first gradient theory (see, e.g., Lazar and Maugin, 2005) are regularized.

Analytical solutions of wedge and twist disclinations in the framework of second gradient theory indicate
that stress and strain fields and their all first- and second-order gradients are nonsingular. Therefore, the sec-
ond strain gradient theory is self-consistent and gives good physical results (Lazar et al., 2006). Furthermore,
it shows that the second-order gradient theory is enough and the higher order gradient theory is not necessary.
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Appendix A. The stress function of wedge disclination under ¢ = /2y (¢; = ¢, = ¢)

For ¢; = ¢, =y = ¢, the stress function becomes
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f= A{r Inr+8c*Inr+ 8¢ KO( ) +2ch1( )}+Br2+8(A + B)c?

and the effective Frank vector is
2

r r r r
0,0 =241 -2K(2) = Ko ()
(r) { e/ 227 0\e
Appendix B. The stress functions of twist disclination under ¢ = V2y (1= ¢,=0)

For ¢; = ¢, = y = ¢, the stress functions become

f——2Tc('lllg_v)zy{lnrthc2 —ﬁIﬂ( ) +K0<Z>},

F:—h([fgz_l))x{lnr—i—tc 4CK1()+KO(Z>},
e+ D) + 5k ()}

Correspondingly, the effective Frank vector is

r r v 2 r
@) = Q{l 2K (G) =32k () }
Appendix C. The solution procedure of bi-Helmholtz Equation (3.15')

For solving Eq. (3.15’), we note
g = (1 - C§A>f7
and there is
(1—ciA)g = Ar*Inr + B'¥.
The solution of Eq. (C.2) is set as follows
g=4- KO( ) +ai?Inr+ ar? + ayInr + as,
C
substitution of Eq. (C.3) into Eq. (C.2), yields the results
g= A{KO( ) +7Inr+4c lnr} +B7r +4(4+B)ct
C1
Now, we substitute Eq. (C.4) into Eq. (C.1), and we use the following ansatz

f:A{ IKO(C ) +b2K0( )} +b3r2lnr+b4lnr+b5r2—|—b6.
(&)

Finally, we obtain the stress function

4
f= A{r 1nr—|—4(cl—|—cz)lnr+ {41(()( ) —c2K0< )]}+B/r2+4(A+B/)(c%+c§)
Cz C1 (&)

Appendix D. The classical elastic strain of twist disclinations

The classical elastic strain of twist disclinations is expressed as follows
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and they contain the “classical’’ singularities at r = 0.
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Appendix E. The solution procedure of bi-Helmholtz Equation (4.14)

The equation is rewritten as

(1—ciA)(1 —34)f =ylnr=rlnr-sin0,

where
g2, T 18 19
ox2 9y orr ror r?og?
Notes
g= (-4,

and there is
(1—ciA)g=rlnr-sin0,

its solution is given as follows

22
g=sinb- {rlnr—kﬁ—chK] (L)}
r C|

substituting Eq. (E.5) into Eq. (E.3) and using the following ansatz

7 =sing-{arnr+ 2w e (2) +a (2) ]
r C1 (&)

Finally, we obtain the stress function
2(c2 4 c2) 1 r r
=1 L2 _ 200K (=) —2aKi(— )| ¢-
£ B o e (1) -2
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