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Summary. The reflection, refraction and scattering of inhomogeneous plane waves of SH type by an 
interface crack between two dissimilar viscoelastic bodies are investigated. The singular integral equation 
method is used to reduce the scattering problem into the Cauchy singular integral equation of first kind 
by introduction of the crack dislocation density function. Then, the singular integral equation is solved 
numerically by Kurtz's piecewise continuous function method. The crack opening displacement and 
dynamic stress intensity factor characterizing the scattered near-field are estimated for various incident 
angles, frequencies and relaxation times. The differences on crack opening displacement and stress inten- 
sity factor between elastic and viscoelastic interface crack are contrasted. And the effects of incident 
angle, incident frequency and relaxation time of the viscoelastic material are analyzed and explained by 
the features of phase lag and energy dissipation of the viscoelastic wave. 

1 Introduction 

Interaction of waves with an interface crack is an interesting topic and received considerable 
attention due to the increasing use of composites in engineering. Interface plays an important 

role in composites as well as in bonded materials. The defects such as micro-cracks and 

debonded zones on the interface may cause stiffness degradation, and thus influence the inte- 
grative properties of composites. Both the detection of interface defects and dynamic failure 

of the interface are relevant to the interaction of waves with defects. The defects on the inter- 
face are generally modeled as interface cracks. Interaction of elastic waves with interface 
cracks has been studied extensively in the past three decades. For example, Srivastava [1J, [2] 

studied both a two-dimensional interface Griffith crack and three-dimensional interface 

penny-shaped crack. Yang and Body [3] considered the scattering problem of an interface 
crack in a layered half-space. Bostrom [4] studied the scattered far field of SH elastic waves. 
Qu [5], [6] solved the scattered near-field and far-field of a finite Griffith interface crack in 
case of an incident plane P wave by using the Fourier transformation and vectorial Cauchy 
singular integral equation methods. 

The waves that propagate in a dissipative medium, for example, viscoelastic materials 
such as high polymer matrix in composite materials, are different from elastic waves. The 
natures of attenuation, dispersion, and coupled motion (the trajectory of motion of a particle 
is elliptical for P or SV waves) require the introduction of a complex wave number and com- 
plex amplitude. The plane wave with complex-valued wave vector and amplitude is generally 
called inhomogeneous plane wave. Not only the amplitude attenuates in the process of propa- 
gation, but also the planes of constant amplitude are not parallel to the planes of constant 
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phase. The reflection and refraction of inhomogeneous plane waves were studied firstly by 
Lockett [7]. It was found that reflection and refraction waves would be fan-shaped sections if 
incident waves were compound waves with various frequencies. The investigation on the same 
problem by Cooper [8], [9] has identified the phase shift phenomena between reflection or 
refraction wave and incident wave. Schoenberg [10] studied the reflection and refraction of an 
SH wave and the associated energy flow. Borchert [11] studied the reflection and refraction of 
P and S waves and the critical angle of the incident wave. But the investigations on the scatter- 
ing problem of an inhomogeneous plane wave, in particular, by a crack, were rare to be pre- 
sented in literature. 

In this paper, the scattering problem of an inhomogeneous plane SH wave by an interface 
crack between two dissimilar viscoelastic bodies is considered. The Fourier transformation 
and Cauchy singular integral equation method are used. And the numerical results are 
obtained for the rheology model of a standard linear solid. The crack opening displacement 
along crack faces and the stress intensity factor at a crack tip are estimated for various inci- 
dent angles, incident frequency and relaxation time of the viscoelastic material. The procedure 
in this paper can also be extended to deal with the scattering problems of inhomogeneous 
plane P and SV waves which lead to two coupled singular integral equations representing the 
coupled behavior of stress fields near the interface crack. The details on scattering problems 
of P or SV waves by an interface crack will be provided in another paper. 

2 Statements of the problem 

Consider an interface Griffith crack of length 2a between two dissimilar, homogenous, isotro- 
pic, and linearly viscoelastic half-spaces. A Cartesian coordinate system is assumed in such a 
way that the x-axis is along the crack face and the y-axis is perpendicular to crack faces, as 

shown in Fig. 1. 
The Boltzmann's model of a viscoelastic solid material can be represented through the 

constitutive equation 

CO 

= f a < )  - (1) 
o 

where the fourth-order tensor G(t) is called the relaxation function. G(0) is called the instanta- 
neous elastic modulus that governs the instantaneous response to changes in strain, and G(oo) 
is called the equilibrium elastic modulus. For an isotropic viscoelastic solid, the relaxation ten- 
sor function can be represented by two scalar functions only, i.e. #(t) and A(t). The shear 
relaxation functions of the viscoelastic bimaterials in the problem studied are assumed as 
#1 (t), #2 (t), respectively. And their densities are denoted by L)I, 42, respectively. 

When an oblique incident inhomogeneous plane SH wave travelling from infinity in a 
viscoelastic solid reaches the interface, reflection, refraction and scattering waves will be 
generated. The total displacement field can be expressed as 

{ y < o  (2) 
u =  v > 0 '  

where U~, U{ and U~ are the incident, reflection and refraction displacement fields, respec- 
tively, for a perfect interface without crack. U{ and U~ are the additional scatter displacement 
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Fig. 1. lnhomogeneous SH plane wave 
impinging on the interface with crack 

fields due to the existence of a crack. The boundary  conditions of  the problem are given as 

~ ( ~ ,  o ~, e) = ~ ( ; ,  0 - ,  e) - oo  < .~ < + o o ,  (a .2 )  

u ( ~ , 0 + , t )  = ~ ( ~ , 0 - , t )  Ixl > ~, (3.a) 

U~(z,y,t) = 0 x , y  -~ oc ,  (3.4) 

3 Reflect ion and refraction waves from perfect interface 

In case that  the incident wave is an inhomogeneous plane SH wave, no conversion of mode 
appears, i.e. reflection and refraction waves are inhomogeneous plane SH waves, as shown in 
Fig. 2. The incident inhomogeneous plane SH wave can be generally expressed as 

U~ = i exp ( iP  i .  I")exp (iwt) = i expi(P~ �9 x + P:~. y) exp ( i c o t )  W 1 W 1 . (4) 

where P~ = P~ + iP} is the complex wave vector with real part  PR and imaginary part  P~ 

is the complex ampli- being the propagat ion  vector and attenuation vector, respectively, w~ 

tude in the z-direction; P,~, and Pv are the complex projections of  complex vector pi  in the x-, 

y-directions, respectively; r = x �9 x + y- y is the position vector, co is the incident frequency. 
Similarly, the reflection and refraction waves can be expressed respectively as 

- -  ~J1  (5) 

b~ = w~ exp (iP ~. r) exp(icct) = w[ exp i(P.t~.x +Ptv. y) exp (icot) (~) 

The displacement fields U~, U{, U, t satisfy the Hetmholtz wave equation with complex wave 
number  

V2U k" + k2sU ~ = 0 (superscript k = i ,r ,~),  (7) 

where ks = co/c,(w) is the complex-valued wave number;  c, = ~ - ] 7  is the complex wave 
oo 

speed. #(co) = t*o + f I/(t) e i~e dt is the complex shear modulus of  the viscoelastic material. 
0 

inserting the expression of displacement fields U~, U~ and U~ into Eq. (7) yields 

P'R"/~R - P~z" P~ = Re (k~l) (superscript k = 4, r ) ,  (8.1) 
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Fig. 2. The reflection and refraction of 
inhomogeneous SH plane wave on per- 
fect interface. 

p ~ .  P,~ : -Ira (k~l), (8.2) 

e ~ .  e ~  - ~ .  P~ = Re (k~2), (8.8) 

P~.  P} = - I ra  (k~2) . (8.4) 

Obviously, the propagation vector and the attenuation vector of the incident, reflection and 
refraction wave can be uniquely determined by material parameters only if the directions of 
propagation and attenuation of the incident inhomogeneous plane wave are given. 

From the continuity of displacement and shear stress across the interface 

U~ + ~ : U~ y = 0, (9) 

0 [ ~  + ~1 : ~2(~) 0 ~(~) N N u~ y = o (lO) 

the reflection and refraction factor and interface shear stress are given by 

~ ~2(~) p~ + al(~) P~, 

W t 2#1 (03) P~ (12) 

0 
T~(x, O, w) = #1(co) -~g (U~ + U D -- #l(c~) wi(1 -/9~) P~ . exp ( iP  2 . x) . (18) 

It is known that the particle motion of an SH type inhomogeneous plane wave is linear 
and perpendicular to the plane that propagation and attenuation vector constitute, although 
it is elliptical for P or SV type inhomogeneous plane waves. Equations (11) and (12) imply 
that the reflection and refraction waves are SH type inhomogeneous plane waves only if the 
incident wave is an SH type inhomogeneous plane wave. 

4 Scattering wave from interface crack 

4.1 Dual integral equations of  crack opening displacement 

The crack opening displacement (COD) is defined as: 

u~(~, o+,~)- u~(~,o ,~) = ~ zx~(~,~) 
Ixr < a .  

o Ixl > a k 
(14) 
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The scattered displacement field U~(x, y) satisfies the Helmholtz wave equation (7) and radia- 
tion condition (3.4). By using the Fourier integral transformation, the scattered displacement 
fields can be obtained in the transformation domain, i.e. U~(s, y). Then, employing the displa- 
cement and stress boundary conditions, i.e. (3.1) and (3.3), leads to the dual integral 
equations in terms of the crack opening displacement 

(15) 
F-1  ~ l ( C O ) ~ - ~ / / ~ / s l  - 82A'uJ = - -Tyz (x ,O ,co )  Ixl < a ,  

where ~(s,w) =/~2(~) x/~z2 - 82/~1(a)) ~ 2 s 2 1  - -  82, A~)(8, C0) = F[Aw(x,oJ)], and F[ ] and 
F- l [  ] denote the Fourier transformation and inverse Fourier transformation, respectively. 

4.2 Singular integral equation of crack dislocation density 

The crack dislocation density function is defined as 

O Aw(x, w) (16) �9 (x,~) = ~ 

Applying the Fourier integral transformation on x in Eq. (16) yields 

~(s, co) = (is) A~(s, co). (17) 

Then, substituting Eq. (17) into Eq. (15) yields 

] ~(x, ~) d~ = 0 ,  (18) 

27ril #1((,0 ) ~13 ~(U) ei"~d e-i'Zds = -Tyz(x,O,~) Ix I < a. (19) 
-oo 

Considering 

t3 ~ 1 _ #1(w) #2 (c~) sign(s) (20) 
, ] i ~  #1 (02) ~ V ~sl --  8~ S //1 (t.O) JF ' 2  (a J) 

and 

; e ~s(~-x) sign (s) ds -- , 2i 
~t - -  X 

co 

Equation (19) is reduced into the Cauchy singular integral equation of first kind 

/ / ~ : ( ~ ) ~ ( ~ )  i ~-(~-ff) d ~ +  K ( ~ , ~ ) , ~ ( ~ , ~ ) ~  : - < ~ ( ~ , 0 , ~ )  lxl < a (21) ,1(~) + ~(~)  ~ ~ - ~ 
--a --a 

where the known integral kernel is represented as 

K ( u , w ) -  1 ] [ [  ~ 2 2 2Tci - - ~ # 1 ( @ ~ - ~ ~  1 Pa(w) p2(w) . , ,l 
--OO 

The right-hand side of Eq. (21) is obtained from Eq. (13). Thus, the unknown function of the 
Cauchy singular integral equation (21) is the crack dislocation density function, i.e. ~5(u, co). 
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4.3 Numerical solution of the singular integral equation 

The singular integral equation has been extensively studied in [12]. The conventional method 
of solving a singular integral equation is based on the regularization of the singular operator 
through the application of another singular operator (usually the adjoint of the original sin- 
gular operator). By introduction of the fundamental solution of the singular integral equa- 
tion (21) 

w(~)  = (~ - ~)-v2(~ + x)-1/2 (2a) 

the unknown function in Eq. (21) can be expressed as 

+(5, co) = ~(x, co) w(x) .  (24) 

This method leads to a Fredholm integral equation in terms of a new unknown function 
qo(x, co) which is bounded and continuous in the interval Ixl < a. The fundamental solution of 
the singular integral equation preserves the correct nature of the singularity of the dislocation 
density function at the crack-tip. The real singular index implies that there is no oscillation 
singularity for interface cracks under anti-plane shear deformation. 

Because of the complexity of the integral kernel K(u,w), Eq. (21) can only be solved 
numerically. There are mainly two numerical methods: one developed by Erdogan [13] is 
based on the Jacobi or Chebyshev orthogonal polynomial; another developed by Kurtz [14] is 
based on the piecewise continuous functions. The first method decomposes the unknown 
function into a series of the form 

N N ]- ( 2 5 )  
~(~,co) = ~ a ~ ( c o ) p ,  l o,~)(~) = ~ ( ~ ) T ~ ( ~ )  (when ~ = ~ = 2 )  

1 1 

and reduces the singular integral equation in terms of the unknown function ~(x, co) into the 
algebraic equations in terms of the unknown coefficients an (co). The second method decom- 
poses the unknown function into a continuous function of low order in every subinterval, 

N 

~(*, ~) - E ~(* ,  ~),  (26) 
1 

% 

where ~e(x, co) = ~ kij(x)~ij(co) is an interpolation polynomial of n - 1  order in the sub- 
j = l  

interval [xi, xi+l], and reduces the singular integral equation in terms of the unknown function 
~(x, co) into the algebraic equations in terms of the unknown variables ~iy(co) which are the 
values of ~(x, co) at the j-th collection point in i-th subinterval. 

In this paper, the piecewise continuous function method is used for its convenience to 
evaluate the value of ~(x, co) at points x = ~a, and ki;(x) adopts the continuous function of 
second order. The details of the method are not repeated again here. After the crack disloca- 
tion density ~(x, w) is obtained, the crack opening displacement along the crack face and the 
stress intensity factor at crack-tip can be estimated as follows: 

LXw(x, co) = f +(x, co) dx = ] ~(x, w) W(x) dx, (27) 
a - a  

t 7  

u~(co) + .2(co) ~ ~ - x 
-t~ - g  

K~I~ = l i ~  v / 2 ~ ( x  - a) ~:~(. ,  O, co). (29) 
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Fig. 3. Crack open displacement along crack face Aw(x) for relaxation time ~- = co 

5 Numerica l  results and discussion 

The rheologic model describing the dissipative properties of  a viscoelastic solid can be repre- 
sented in terms of  various configurations of springs and dashpots. It generally leads to various 
kinds of  differential constitutive equations. Among them, the standard linear solid model is 
well-known and used in the numerical example. On the other hand, the Bottzmann's model of  
a dissipative medium based on fading memory generally leads to an integral constitutive equa- 
tion. The corresponding relaxation function of the standard linear solid model can be 
expressed as 

#i(t)=#oo,~[l+fiexp(-~)] (i=1,2), (30) 

where fi = p0~//Zooi - 1, and T,i is the relaxation time of  the viscoelastic materials. 
The stress intensity factor (SIF) indicates the intensity of  the scattered stress field at the 

crack-tip. And the crack open displacement (COD) indicates the magnitude of  the scattered 
displacement field at the crack faces. Both of SIF and COD are computed in this numerical 
example. Obviously, the crack opening displacement Aw and the stress intensity factor KI~ 
are both dependent upon not only the incident wave parameters, i.e. incident angle 0 i and 
incident frequency co or wave number k, but also on the viscoelastic material parameters, i.e. 
relaxation time 7- and modulus difference f.  In order to show the effects of  these parameters, 
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Fig. 4. Crack open displacement along crack face Aw(x) for relaxation time r = ls 

Table 1. 

#0 #co T 9 

Material 1 1 268.0 (MNm -2) 634.0 (MNm -2) 0.1 (s) 1 200 (kgrn-3) 
Material 2 1 060.0 (MNm -2) 264.0 (MNm -2) 0.1 (s) 1 200 (kgm -3) 

numerical calculations are carried out for various 0 ~, k and r. Other viscoelastic material con- 

stants used in the numerical example are listed in Table 1. And the angle between propagation 

and attenuation vector of  the incident wave is assumed 7i = 20 o. 

The crack opening displacement A w  along the crack face for various incident angles 0 i 

and wave number k are shown in Fig. 3 and Fig. 4. The numerical results in the figures have 

been normalized by the crack open displacement at the center of  the crack. The case that the 

relaxation time approaches infinity, i.e. 7- = rl = T2 = OC, implies that the interface crack is 
located between two dissimilar elastic materials. Thus, the numerical results shown in Fig. 3 
correspond to an elastic interface crack. In Fig. 4, the case that relaxation time is finite, i.e. 
T = rl = ~-2 = l s ,  is considered. The case implies that the interface crack is located between 

two dissimilar viscoelastic materials. Thus the numerical results shown in Fig. 4 correspond to 

a viscoelastic interface crack. By comparing Fig. 4 with Fig. 3, the effects of  viscosity of  the 

material on the scattered displacement field can be seen clearly. 
In Fig. 5, the stress intensity factor K~I of  scattered stress fields around the crack tip, i.e. 

x = a, is shown for various wave numbers k in the case that the incident angle 0 i is equal to 
60 ~ . The numerical results corresponding to an elastic interface crack and viscoelastic inter- 
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face crack are shown together for convenience of contrast. The effects of the relaxation time ~- 
on the scattered stress field, in particular, on the peak value of the dynamic stress intensity 
factor Kui, are shown clearly. 

From the numerical results shown in these figures, it can be learned that both of the crack 
open displacement and the stress intensity factor are different apparently between an elastic 

interface crack and a viscoelastic interface crack. The amplitude, distribution and mode of the 
crack open displacement are changed. In the case of normal incident, the crack open displace- 
ment Aw is distributed symmetrically to the center of the crack, oblique incident makes the 

distribution of the crack open displacement along the crack face unsymmetric. Compared 
with that of the incident angle 0 i, the effects of the wave number k are much more complex. 

The effects of the wave number or incident frequency are connected with the amplitude, distri- 

bution and mode of the crack open displacement. The complexity caused by the incident fre- 
quency comes from the coupled effect of frequency and viscosity of the material. The stress 
intensity factor is dependent on the incident frequency and viscosity of the material. In a spe- 

cial frequency domain, the stress intensity factor shows resonance, and the peak value of reso- 
nance is controlled by the viscosity of the materials. The occurrence of the resonance can be 
explained as the constructive interference between the incident wave and the excited reflecting 
wave from the crack tip. Thus the appearence of resonance depends on the crack length and 
the material combinations. 

In case of periodical harmonic load, two salient features of a viscoelastic material are 

phase shift between stress and strain and the energy dissipation by intrinsical friction. Strain 
takes place at the instant that stress is loaded in the elastic material. But the phase shifts exist- 

ing in a viscoelastic material show that strain always lags behind stress. In order to describe 
the character of viscoelastic materials, the complex forms of stress, strain and elastic modulus 
are necessary. In general, the periodical harmonic stress ~(co) and strain g(co) are related by 
the complex modulus/~(co) 

/)(~o) ~ Ee 'i~ = = - -  = + ( 3 1 )  
C 

where 6 = tan -1 (/~2(co)/E~(co)) is known as phase shift which represents the phase lag of 
strain relative to stress. Usually, the phase shift is a function of frequency. For a standard 
linear solid model, it is proved that phase shift tends to be infinitesimal at very low or very 
high frequency and prominent only in a limited frequency domain. Another remarkable fea- 
ture is the energy dissipation that takes place in a viscoelastic material. The energy carried by 
the incident wave is transformed into kinetic energy and strain energy partly, and the rest is 
dissipated by intrinsic friction. For the spring-dashpot model of a linear viscoelastic material, 
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it is assumed that energy is "stored" in the springs and "dissipated" in the dashpots. The 
mean energy flux e in the incident wave can be expressed as 

e = < o .  fi > ,  (32) 

where < > indicates averaging the product of the stress tensor and particle speed vector 
over one cycle. Then, the following energy balance equation holds: 

< f Odv+O/wdV>=/(V.e)dV. (33) 

v v v 

For an inhomogeneous plane wave, the rate of dissipation by the medium per unit volume 
over one cycle can be expressed as 

< D > = - V .  e : 2e. P) .  (3~1) 

And the energy stored by the medium per unit volume, called energy density, can be expressed 

as 

< W > = ~ ~e . / '~e .  (35) 

It is clearly shown that the mean energy density depends on the component of energy flux nor- 

mal to the lines of constant phase, while the mean rate of dissipation depends on the compo- 
nent of  energy flux normal to the lines of constant amplitude. Because the energy carried by 

the incident wave is partially dissipated by intrinsic friction in a viscoelastic material, the 
stress intensity factor is damped down distinctively in contrast with that in an elastic material 

without energy loss. More energy is dissipated, more obviously the attenuation is. A dimen- 
sionless parameter defined to be the fractional energy loss per cycle is often used to express 
the attenuation and thus is called dissipation factor 

0_  1 _  < D >  _2__e 'P )  (36) 
< W >  co e.P/R ' 

Obviously, the dissipation factor is related with frequency and complex modulus. 

6 Conclusion 

The scattering problem of a crack is important in theory and engineering. The corresponding 
problems for an elastic wave without energy loss are studied extensively, but rare for an in- 
homogeneous plane wave with energy loss. Obvious differences can be learned by comparing 
the numerical results of an elastic and viscoelastic wave. In this paper, emphasis is given to 
the crack opening displacement and the stress intensity factor which characterize the scattered 
near-field. The difference on amplitude, distribution and mode of the crack opening displace- 
ment results from the phase lag between strain and stress, and the attenuation of the stress 
intensity factor results mainly from the energy dissipation by intrinsic friction of viscoelastic 
materials. The effects of frequency of the incident wave on phase lag and energy dissipation 
play an important role. Because the complex modulus that is related closely to the phase lag 
and the dissipation factor that is related closely to the energy dissipation are both functions of 
the incident frequency, thus, the effects of frequency become complex and often couple 
together with that of the material. The coupled effects can account for the complex difference 



Scattering of inhomogeneous wave by viscoelastic interface crack 225 

between crack open displacement  o f  an elastic and viscoelastic interface crack. Energy dissipa- 

t ion varies with frequency either. At  very low and high frequency, the energy dissipation can 

be neglected and is prominent  only at a special frequency domain  for a s tandard  linear solid 

model,  thus the a t tenuat ion  of  stress intensity becomes prominent  in a special frequency 

domain.  Relaxat ion  time characterizes the viscosity of  the material .  The shorter  the relaxation 

time is, the stronger the viscosity of  mater ia l  is and more  prominent  the a t tenuat ion  of  stress 

intensity is. 
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