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Abstract—In the short crack regime of the fatigue process, grain boundaries in steels are barriers against
crack growth. In this paper, we use: (1) a method involving crack density; and (2) a method of dimensional
analysis, to evaluate the effects of grain size and grain-boundary resistance on short crack behaviour and
fatigue life. The results show that the fatigue life increases with a decrease in grain size and an enlargement
in the obstacle effect of a grain boundary. An experimental investigation is consequently performed and
four groups of stainless steel specimens are used with different grain sizes. The experimental measurements
show the dependence of fatigue properties on grain size, which are in good agreement with the
theoretical results.
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NOMENCLATURE

A(c)=non-dimensional crack growth rate
A*=characteristic crack growth rate
Ad=crack growth rate at c=1

c=non-dimensional crack length
c1=the maximum crack length in the long-crack regime
ccr=critical crack length characterizing the termination of the short-crack regime
d=non-dimensional grain diameter

d0=average grain diameter
d:=normalized grain diameter (=d/Ad)
D=damage variable

D0=total number of cracks or zero-th order of the damage moment
D1=first order of the damage moment
G=cohesive energy of material
M=parameter related to elastic modulus and Poisson’s ratio of the material

n (c, t)=crack density
n*=characteristic crack density

nN(c)=crack nucleation rate
n*N=characteristic crack nucleation rate
Nf=number of loading cycles to fracture
Ng=non-dimensional coefficient= (n*NΩd/n*ΩA*)
P=parameter with respect to energy dispersion
Q=energy release rate of the damage system
r= linear correlation coefficient
t=time

tcr=critical time characterizing the termination of the short-crack regime
c=non-dimensional factor
s=effective stress

s0=nominal stress
s*=threshold stress for fatigue crack growth

smax=maximum stress in cyclic loading

INTRODUCTION

It is known that during the primary stage of the fatigue process in most metallic materials,
fatigue damage is dominated by the behaviour of short cracks where the length of such cracks is
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comparable with a microstructural dimension, e.g. the grain size of the material. The importance
of research on short fatigue cracks is due to two aspects. First, the behaviour of short cracks
cannot be interpreted by conventional theories; and secondly, the period of short-crack damage
may be 80% or more of the total fatigue life.

One distinct phenomenon of short crack growth has been reported, i.e. the deceleration and
acceleration patterns, which has been attributed to the interaction of crack-tip plastic zone with
microstructural barriers to plastic flow [1–4]. The published results of observations and the
discussion of short crack behaviour are in the majority based on the monitoring of a few isolated
short cracks.

However, the fatigue damage process involving short fatigue cracks in metallic materials may
present collective evolution characteristics [5–10], i.e. that the damage progression may result
from the initiation and growth of a large number of dispersed short cracks. One of the essential
characteristics of collective damage is that the number of short cracks increases with increasing
number of fatigue cycles. Since the length of short cracks is comparable to grain size, the dimension
of grain diameter and the extent of the grain-boundary obstacle effect against short crack growth
considerably affect the process of the collective evolution of short cracks. Such effects have been
investigated to some extent in the literature, e.g. [2,5,11–14], but there is still a lack of theoretical
models and systematic experiments concerning the effects of grain size and grain boundary barriers
on short crack behaviour.

To deal with these two aspects of the problem, we use a new method that considers the
equilibrium of crack density (ECD), in which the crack density is the number of cracks within a
unit area and unit length. The concept of the model is that the total number of short cracks of a
certain given length and at a given time contains the cracks that are produced by crack nucleation
and growth. Consequently, we also use the method of dimensional analysis to study the evolution of
fatigue damage. Both the methods mentioned above give similar analytical relationships between
fatigue life and grain size. An experimental investigation was then performed, in which the test
material was a stainless steel for which four groups of specimens were made having different grain
sizes. The experimental results exhibit a dependence on the fatigue threshold stress and the fatigue
life on grain size, which is in good agreement with the theoretical analyses.

GRAIN SIZE EFFECT USING ECD MODEL

The equilibrium equation for the crack density in non-dimensional form [14] is

∂
∂t

n(c, t)+
∂
∂c

[A(c)Ωn(c, t)]=NgΩnN(c) (1)

This equation describes the equilibrium of crack density in the corresponding phase space. The
second term on the left side of Eq. (1) represents the flow of crack density, which is attributed to
crack growth, while the term on the right side represents the influence made by crack nucleation.
Let n(c, 0)=0 and the initial crack length before growth is zero, then the theoretical solution of
Eq. (1) is [15]:

n(c, t)=
1

A(c) P c
g(c,t)

NgΩnN (c∞) dc∞ (2)

where g(c, t) means that a crack with length g at t=0, will grow to a length c at time t under the
growth rate of A(c).

Taking into account the deceleration–acceleration growth of short cracks, we construct the
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expression for A(c):

A(c)=G1− (1−Ad )c (c∏1)

d: Ωc (c>1)
(3)

where the normalized grain size d: is the ratio of the non-dimensional average grain size d to Ad ,
the latter being the non-dimensional crack growth rate at c=1. Also, according to experimental
observations [7,16], we propose the formula for crack-nucleation rate:

nN (c)=G1− c

2
(c∏2)

0 (c>2)

(4)

Figure 1 shows the results of n(c, t) versus c for different time stages. The curves were plotted
based on the calculations of Eq. (1) and on the conditions given by Eqs (3) and (4). The results
reveal that there is a saturation tendency in the evolution process of collective short cracks (dashed
curve). The saturation curve presents the stable distribution of crack density. As the fatigue process
progresses, the distribution of crack density gradually tends to the saturation curve from a small
to a large value of crack size.

It is assumed that the upper boundary of the saturation area c* is the maximum crack length
cmax(t). This assumption implies that only the crack density in the region of c<c* exhibits a
saturation distribution. The fulfilment of the criterion c*=cmax=ccr is equivalent to the statement
that a crack with an initial length of zero develops to a crack of critical length ccr . The evolution

Fig. 1. Variation of crack density n (c, t) with crack length c Fig. 2. The critical time tcr as a function of parameters Ad
for different time stages, the dashed curve representing the and d: [refer to Eq. (3)].
saturation distribution. The curves were calculated under
the conditions of Ad=0, and d:=1 [refer to Eq. (3)]. The
non-dimensional time t=t∞ΩA*/d∞, with t∞, d∞ and A* being
the real time (fatigue cycles), the real grain diameter and the
characteristic crack growth rate, respectively. For example,
when d∞=50 mm and A*=10−3 mm/cycle, then t∞=5×104

for t=1.
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of cmax is

cmax=c*=G 1

1−Ad
{1−exp[−t(1−Ad )]} (t∏t0 )

b0Ωexp(d: Ωt) (t>t0 )
(5)

where

t0=
1

d:
ln

1

b0
and b0=Ad:/(1−A

d
)d .

Note that the total number of cracks is

D0= P2

0
n(c, t) dc=a0Ωt (6)

with

a0= P2

0
NgΩnN(c, t) dc (7)

Substituting Eq. (6) into Eq. (5), one can show:

cmax=G 1

1−Ad
C1−expA− 1−Ad

a0
ΩD0BD (t∏t0 )

b0ΩexpAd: ΩD0
a0 B (t>t0 )

(8)

Equation (8) illustrates the variation of cmax with Ad and d: . It is obvious that ccr is greater than
1. Hence, the critical time tcr for the termination of the short-crack regime can be derived from
Eq. (5):

tcr=t |
c
max

=c
cr

=
1

d:
ln

ccr
b0

(9)

Figure 2 shows the relationship between tcr and the parameters of Ad and d: based on Eq. (9). It
is seen that the value of tcr increases with a decrease in the values of Ad and d: , suggesting that the
tolerance of collective short-crack damage is enhanced if the material is of small grain size and
there is a large obstacle effect of the grain boundary against crack growth.

Apparently, Eq. (9) shows that tcr is linearly proportional to 1/d: . Considering that short-crack
regime covers a large portion of fatigue life, we estimate that fatigue life is also proportional to
1/d: . Replacing d: by d0 , we may write

Nf=b1+b2
1

d0
(10)

where b1 and b2 are parameters related to applied fatigue loading excursions.

DIMENSIONAL ANALYSIS OF FATIGUE DAMAGE EVOLUTION

We define a parameter P(c) which is a function of the energy dispersion due to the development
of cracks with length c. In the short-crack regime, the energy dispersion is dominated by the crack
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growth process [17], and the variables (d and Ad ) that affect crack growth rate are taken into
account in the analysis. In addition, P(c) is correlated with the effective stress level, which is a
function of the number of cracks [17]. Therefore, we may write,

P(0)=P(0) (c, d, Ad , s) (11)

where P(0) is a continuous function, and the superscript ‘(0)’ denotes that the validity of the
equation is within the short-crack regime. The previous result shows that the crack growth rate is
dependent on d and Ad . Hence, using the P-theorem [18], one may write the non-dimensional
form of Eq. (11) as

P(0)

sΩdΩAd
=g Ac

dB (12)

For the case of fatigue damage by long cracks, the total energy release rate (Q) caused by the
development of the damage system is predominately produced by long cracks, where the effective
stress is less sensitive to the damage progression [17]. Thus, Q is adopted to describe the damage
extent, i.e.

P(1)=P(1)(c, M, Q) (13)

where the superscript ‘(1)’ denotes that the validity of the equation is within the long-crack regime.
Again, using the P-theorem [18], one may write the non-dimensional form of Eq. (13) as

P(1)=
f2ΩQ

c
(14)

For the total fatigue damage, P(c) is composed of P(0) and P(1), and is derived by c�0 for the
short-crack regime and c�c1 for the long-crack regime:

P(c)=A1− c

c1B P(0) |
c�0+

c

c1
P(1) |

c�c
1

=A1− c

c1B f1sAdd+
c

c2
1

f2Q (15)

where f1=g(0). It is easy to see the two extremes, i.e. where P(c) tends to P(1) at c=c1 , and tends
to P(0) at c=0. Referring to the definition of Q and Eq. (15), we have

Q= P c1
0

P(c) dc= f *
1

sAddc1+ f *
2
Q (16)

or

Q=
f *
1

sAddc1
1− f *

2
(17)

in which, f *
1
= f1/2 and f *

2
= f2/2.

Invoking the relationship between the variables of the damage process proposed by Kachanov
[19], one may show

s=
s0

1−D
(18)

We also assume that

c1=aΩDb (19)
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where a and b are material constants. Substitution of Eqs (18) and (19) into (17) gives

Q(D)=
jΩDb

1−D
(20)

with j=af *
1
Adds0/(1− f *

2
).

On the other hand, the parameter of the damage moment which is a product of crack density
and crack length, can be used for the description of fatigue damage [17]. A series of damage
moments is generally defined as

D
m
=c P2

0
n(c, t)Ωcm dc (21)

where m=0, 1, 2, . . . . The first order of damage moment which represents the total crack length,
is

D1=c P 2

0
n(c, t)Ωc dc (22)

Comparing with Eq. (20), one may write

Q(D1 )=
jΩDb

1
1−D1

(23)

It is reasonable to consider that the evolution rate of D1 is linearly related to Q(D1 ), which may
be regarded as the damage evolution in the material according to Maugin et al.’s theory [20],
and that the damage accumulation is mainly produced by crack growth rather than crack nu-
cleation. Hence,

Ḋ1=
1

G
[Q(D1 )]=

j*ΩDb
1

1−D1
(24)

with j*=j/G. The development of D1 from 0 to 1 corresponds to the whole fatigue damage
process. Therefore, the fatigue life can be derived as

Nf= P 1
0

1

Ḋ1
dD1= P 1

0

1−D1
j*ΩDb

1
dD1=

k

dΩAdΩs0
(25)

where k=G (1− f *
2
)/[aΩf *1 (b−2) (b−1)]. Equation (25) indicates that Nf is inversely proportional

to the grain size d, which is consistent with the previous derivation of Eq. (10).

EXPERIMENTS AND RESULTS

The material used in this study is a stainless steel with the chemical composition (wt%) of C=
0.098, Si=0.57, Mn=1.47, P=0.027, S=0.007, Cr=17.7, Ni=9.38. Four groups of specimens
were prepared using different procedures of heat treatment, in order to produce four groups
(A, B, C, D) of different average grain sizes: A=50 mm, B=72 mm, C=130 mm and D=207 mm.
Fatigue testing was performed in an MTS machine at room temperature and the type of specimen
is shown in Fig. 3. The stress ratio R=0.1 and frequency f=35 Hz were applied throughout the
fatigue tests. For each group of specimens, the number of loading cycles to fracture at a given
maximum stress level was recorded. The threshold stress s* is defined as the maximum stress (R=
0.1) experienced by a specimen withstanding 5×106 loading cycles. Figure 4 shows the results of
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Fig. 3. Geometry of specimen used in fatigue testing, dimen- Fig. 4. Fatigue life versus 1/d0 for four stress levels, dimen-
sions in mm. sion of d0 in mm.

Fig. 5. The fatigue crack growth threshold stress, s* versus Fig. 6. Maximum applied stress smax versus number of
d−1/20 for four groups of specimens, dimension of d0 in mm. cycles to failure for Group A specimens (#: d0=50 mm) and

Group D specimens (6: d0=207 mm). The solid curves
showing the relation of Eq. (31) and symbols with an arrow

indicating that no fracture occurred.

Nf versus 1/d0 at four maximum stress levels, and Fig. 5 shows the results of s* as a function of
grain size for the four groups of specimens. Figure 6 shows the results of the entire S–N data for
the two groups of specimens, one with the smallest grain size (Group A, d0=50 mm) and one with
the largest grain size (Group D, d0=207 mm). The data of Group B (d0=72 mm) and Group C
(d0=130 mm) are distributed within the datum band bounded by Group A and Group D, with
Group B being superior to Group C.

From Fig. 4, it is seen that the difference in Nf at the given range of stress levels (397–476 MPa)
becomes increasingly large as the grain size tends to the small side, and that at the same maximum
stress level, Nf is linearly proportional to 1/d0 . This result is in good agreement with Eqs (10) and
(25). Using the method of linear regression, we obtain:

Nf=−189×103+55.7×106
1

d0
(26)
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with r=0.98, for s=397 MPa;

Nf=−49.6×103+19.4×106
1

d0
(27)

with r=0.95, for s=410 MPa;

Nf=−19.1×103+9.63×106
1

d0
(28)

with r=0.98, for s=452 MPa; and

Nf=−6.44×103+5.33×106
1

d0
(29)

with r=0.98, for s=476 MPa.
From Fig. 5, we see that s* is linearly proportional to d−1/2

0
, and the following expression is

obtained by linear regression:

s*=a+bΩd−1/2
0

(30)

with a=210 (MPa), b=1275 (MPaΩmm1/2 ) and the linear correlation coefficient r=0.984.
From Fig. 6, it is seen that the distribution of Nf against smax exhibits a linear tendency in a

semilogarithmic scale:

1g Nf=a1+b1smax (31)

After the linear regression, we obtain a1=11.3, b1=−0.0135 and r=−0.975 for Group A
(397 MPa<smax<529 MPa); and a1=8.65, b1=−0.00934 and r=−0.980 for Group D
(310 MPa<smax<510 MPa). Comparing Eq. (31) with Eq. (25), and converting common logar-
ithm to natural logarithm, one finds that

k*=a∞d0smax exp(b∞smax) (32)

where a∞ and b∞ are parameters related to the fatigue resistance of the material.

CONCLUSIONS

Methods based on the equilibrium of crack density and a dimensional analysis were used to
study the short-fatigue-crack evolution and to evaluate the fatigue life as influenced by grain size.
The fatigue testing of four groups of specimens of a stainless steel, with grain sizes ranging from
50 mm to 207 mm, was performed to reveal the effect of grain size on fatigue resistance. The
following conclusions are drawn:

(1) The critical time tcr characterizing the termination of the short-crack regime is influenced
by the normalized grain size d: and the obstacle effect of the grain boundary Ad . The value
of tcr becomes larger with a decrease in d: and increases with a reduction in Ad .

(2) The formulae derived by theoretical analyses show that the fatigue life is inversely pro-
portional to grain size.

(3) Experimental results show a linear relationship between Nf and d−1
0

for a given maximum
stress level, which is in good agreement with the theoretical analyses.

(4) Experimental results show a linear correlation between s* and d−1/2
0

, and a linear correlation
between lg Nf and smax .
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