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Abstract

In this paper, a multiscale model that combines both macroscopic and microscopic analyses

is presented for describing the ductile fracture process of crystalline materials. In the macro-

scopic fracture analysis, the recently developed strain gradient plasticity theory is used to

describe the fracture toughness, the shielding effects of plastic deformation on the crack

growth, and the crack tip field through the use of an elastic core model. The crack tip field

resulting from the macroscopic analysis using the strain gradient plasticity theory displayes

the 1/2 singularity of stress within the strain gradient dominated region. In the microscopic

fracture analysis, the discrete dislocation theory is used to describe the shielding effects of dis-

crete dislocations on the crack growth. The result of the macroscopic analysis near the crack

tip, i.e. a new K-field, is taken as the boundary condition for the microscopic fracture analysis.

The equilibrium locations of the discrete dislocations around the crack and the shielding

effects of the discrete dislocations on the crack growth at the microscale are calculated. The

macroscopic fracture analysis and the microscopic fracture analysis are connected based on

the elastic core model. Through a comparison of the shielding effects from plastic deformation

and the discrete dislocations, the elastic core size is determined.

� 2005 Elsevier Ltd. All rights reserved.

Keywords: Discrete dislocation theory; Strain gradient plasticity theory; Bridging model; Macro/micros-

copic fracture process; Energy release rate
0749-6419/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijplas.2005.04.003

* Corresponding author. Tel.: +86 10 62648721; fax: +86 10 62561284.

E-mail address: ywei@lnm.imech.ac.cn (Y. Wei).

mailto:ywei@lnm.imech.ac.cn


2124 Y. Wei, G. Xu / International Journal of Plasticity 21 (2005) 2123–2149
1. Introduction

The fracture behavior of a structured material is governed by processes occurring

over a diverse range of length scales. Most models of the fracture processes, however,

usually focus on the process over a limited range of length scales. Continuum models
based on elastic, elastic–plastic, and recently developed strain gradient constitutive

relations are appropriate for the analysis of the macro/microscopic mechanical re-

sponse of solids, but they do not accurately represent the underlying fundamental

deformation mechanism of crystal defects such as nucleation and motion of discrete

dislocations and slip of grain boundaries. On the other hand, the discrete/continuum

models, such as the discrete dislocation theory, may be capable of accounting for the

fundamental dislocation mechanisms in the deformation and fracture process, but at

the present stage of the development, this kind of model is limited to the consider-
ation of nominally elastic behavior (i.e. relatively small or non-existent dislocation

densities) at very small scale. The multiple-scale approaches toward materials mod-

eling have led to a wealth of understanding of materials mechanical behavior within

each domain of the model�s applicability. However, it is still of central importance to

address the linkage between the models at the different length scales in order to de-

velop mechanism based modeling of mechanical behavior of materials.

In this paper, we develop a multiscale model that builds upon the recently devel-

oped elastic–plastic and strain gradient models for plastic deformation at the macro-
scale and the discrete dislocation for plastic deformation at the submicron scale. In

our model, we attempt to establish the linkage between these two models to address

the large disparity between the relevant length-scales involved in the ductile fracture

processes at the crack tip.

Ductile fracture processes have been modeled extensively based on both contin-

uum mechanics and discrete dislocation dynamics theories. In continuum mechan-

ics-based models, stress fields of elastic–plastic crack tips have been solved based

on the conventional elastic–plastic theory by using asymptotic methods and finite
element methods, and fracture criteria have been developed (Betegon and Hancock,

1991; O�Dowd and Shih, 1991; Xia et al., 1993; Tvergaard and Hutchinson, 1993;

Wei and Wang, 1995a,b; Khan and Khraisheh, 2004). These results indicate that

during crack growth the crack surface separation strength near the crack tip is about

4–6 times the yield strength of the material. This strength, however, is relatively lower

and not consistent with the result from microscopic fracture analyses (Hong et al.,

1994; Raynolds et al., 1996; Evans et al., 1999). Recently, elastic–plastic crack tip

fields which reflect strain gradient effects have been presented. The results show that
the separation strength of near-tip crack surface undergoes a considerable increase

(Wei and Hutchinson, 1997a; Jiang et al., 2001; Chen and Wang, 2002). This seems

to set up a hope to link the macroscopic fracture analysis to the microscopic fracture

analysis. However, a question still remains: what is the lower limit beyond which the

strain gradient theory will not be suitable? On the other hand, at the atomistic scale,

the competing mechanisms between cleavage crack growth and dislocation emission

have been studied considerably (Rice and Thomson, 1974; Lin and Thomson, 1986;

Rice, 1992; Xu and Argon, 1995; 1997; Wang, 1998; Yang et al., 2001). Furthermore,
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the brittle–ductile transition and crack growth considering the discrete dislocation

shielding effect have been investigated (Hsia et al., 1994; Giessen and Needleman,

1995; Mao and Evans, 1997; Xin and Hsia, 1997; Mao and Li, 1999; Argon,

2001). Although these models reveal the local physical mechanisms of fracture pro-

cesses, they cannot practically incorporate the large scale plastic deformation sur-
rounding the crack tip to precisely predict the macroscopic mechanical behavior

of materials. The elastic–plastic continuum theory and discrete dislocation theory

are obviously two different methodologies in simulating the shielding effects on the

crack growth. One is built upon the micron-scale analysis, the other one is built upon

the macro-scale analysis. Additionally, some bridging models related to the detailed

fracture process characterizations at small scales have been presented (Needleman,

1987; Suo et al., 1993; Beltz et al., 1996; Lipkin et al., 1996; Wei and Hutchinson,

1999), and related to the ductile damage of polycrystalline materials have been pre-
sented more recently (Bonfoh et al., 2004). Specifically, the model of the elastic core

zone (dislocation-free zone) near a growing crack tip has been defined and presented

by Suo, Shih and Varias (1993, usually called the SSV model) and the zone size has

been estimated by Beltz et al. (1996) from the dislocation point of view. In the pres-

ent research, we attempt to develop a macro-/micro-scale bridging model for describ-

ing a complete fracture process accounting for the shielding effects, i.e., at the small

scale, the discrete dislocation theory is used to model the shielding effect of discrete

dislocations on the crack growth, while at the large scale, the continuum theory
(strain gradient plasticity theory) is adopted to model the shielding effect of plastic

deformation on the crack growth. We establish the condition to link these two

models.
2. Model descriptions

A linkage model between the macroscopic and the microscopic fracture analysis is
presented, as shown in Fig. 1. The entire description of a material fracture process

should consist of both the macroscopic fracture process and the microscopic fracture

process. These fracture characteristics can be described by using the continuum
Fig. 1. The sketch of the macro-/micro-scale bridging model.
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model and the discrete dislocation model, respectively, as sketched in Figs. 1(a) and

(b). In Fig. 1(a), the material fracture behavior within the micron-scale level which is

larger than a micron can be predicted by using the conventional continuum model,

i.e., the conventional elastic–plastic theory and recently developed strain gradient

theory. In this scale, there exist three regions around the crack tip with loading:
the elastic zone far away from the tip, the strain gradient dominated zone very near

the crack tip and the plastic zone between the elastic zone and the strain gradient

zone. Actually, within a small scale which is smaller than a micron, the material frac-

ture behavior can be predicted by using the discrete dislocation theory, as shown in

Fig. 1(b). With increasing load, dislocations nucleate and emit from the crack tip,

and discrete dislocations exist (in equilibrium) within the region. The key problems

noted here are: (1) what is the discrete dislocation number in equilibrium or in limit

equilibrium for a given material under a given loading condition? (2) what is the
effective size of the discrete dislocation region? and (3) in addition, what are the

macro/micro-scale linkage conditions, i.e., the outer boundary conditions of the dis-

crete dislocation model, or the inner boundary conditions of the conventional con-

tinuum model? In the present study, the macroscopic analysis results will be taken

as the outer boundary conditions for the microscopic problem. The key point is to

determine the intersection radius between the microscopic problem and the macro-

scopic problem. We shall study the problems in the present research.
3. Fracture analyses using the continuum model

For simplicity, a case of a semi-infinite length crack growing under steady-state,

plane strain and the mode I loading conditions will be considered. For describing

the multi-scale problem clearly, an elastic core model, or a modified SSV model is

adopted here, as shown in Fig. 2. This model is an improvement over the conven-

tional SSV model (Suo et al., 1993), which assumes that near the growing crack
tip and the crack surface a dislocation-free zone strip with infinite length exists.
Fig. 2. Elastic core model for mode I crack case.
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Suo et al. (1993) noted that a sharp crack could grow slowly by cleavage along a

gold/sapphire interface (Reimanis et al., 1991), a copper/sapphire interface (Beltz

and Wang, 1992) as well as a niobium/alumina interface (O�Dowd et al., 1992),

etc. They presented an elastic core model for crack growth within a ductile material

or along a metal/ceramic interface based on the mechanism of dislocation emission
and motion. According to the model, a growing crack tip is always kept in an elastic

region. Based on the elastic core model (or the SSV model), Beltz et al. (1996); Wei

and Hutchinson (1997, 1999) and Tvergaard (1997) studied the crack growth within

a ductile materials or along an interface of metal/ceramic. In the present research, we

use a modified SSV model to describe crack growth process in macroscopic scale.

Under steady-state growth conditions, a semi-infinite elastic strip around the crack

surface is left behind the crack tip. The radius of the elastic core (or thickness of

the elastic layer), t, can be taken as a model parameter (referring to Wei and Hutch-
inson, 1997b, 1999).

The modified SSV model and the mechanism-based strain gradient (MSG) plas-

ticity flow theory (Gao et al., 1999; Huang et al., 2000; see Appendix A) allow the

relations of the normalized total energy release rate with the material parameters

and the model parameter under steady-state advancement of the crack tip to be ob-

tained through a dimensional analysis as,

Gss

G0
0

¼ f
E
rY

; m;N ;
l
R0

;
R0

t

� �
; ð1Þ

where the length parameter l describes the strain gradient effect, t is the elastic core

size, or intersection radius of the microscopic and macroscopic fields which is to be
determined. The total energy release rate Gss and the length parameter R0 are defined

as follows:

Gss ¼
K2

I ð1� m2Þ
E

; R0 ¼
EG0

0

3pð1� m2Þr2
Y

; ð2Þ

where KI is the stress intensity factor (applied external load). R0 is the plastic zone

size in small scale yielding. G0
0 is the macroscopic fracture toughness, or the crack

surface separation energy. Through finite element numerical simulation by using

the MSG strain gradient theory, the details of the parameter relation in (1) are given

in Fig. 3 for several parameter values. The numerical process is similar to that by Wei

et al. (2004). Fig. 3 shows that the variation of the normalized energy release rate is

very sensitive to the elastic core size and length parameter R0. For the typical metal-

lic materials, E/rY � 500, G0
0 ¼ 1 to 4 J m�2, rY = 200 MPa and m = 0.3, the value of

R0 is about one micron.

Therefore, when the elastic core size of the macroscopic model is taken to be

submicron, the normalized energy release rate is quite sensitive to the value of the

elastic core size.

In order to determine the remote boundary condition for microscopic fracture

analysis later, we need to investigate the characteristics of the stress field singularity

for macroscopic fracture problem. For this reason, the effective stress distribution



Fig. 3. Macroscopic fracture solutions of the normalized energy release rate based on the strain gradient

theory and the elastic core model (t is elastic core thickness).
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near the crack tip under the action of remote KI field (considering the mode I case)

will be calculated, and the normalized relation can be dictated as by dimensional

analysis to be

re

rY

¼ g
RP

r
;
E
rY

; m;N ;
l
RP

� �
; ð3Þ

where RP is defined as

RP ¼ K2
I

3pr2
Y

¼ EGss

3pð1� m2Þr2
Y

. ð4Þ

Figs. 4(a) and (b) show the variations of the effective stress ahead of crack tip. In

the figures, the relation of normalized effective stress with the distance away from
crack tip is plotted on a logarithmic scale for easy checking of the singularity. The

results shown in Figs. 4(a) and (b) correspond to the case N = 0.1 and the case

N = 0.2, respectively. In Fig. 4, for small values of RP/r (corresponding to small

external loading (small KI) or large r (the location far away from the crack tip)), con-

ventional (1/2) singularity is obvious. For large values of RP/r (corresponding to

large external loading exerted or small r (the location very near the crack tip)), the

material undergoes plastic deformation. For the conventional elastic–plastic case

(‘/RP = 0.0), in the plastic zone the effective stress has the (1/1 + N�1) singularity
(HRR field). As we further approach the crack tip, the strain gradient effect prevails

as shown in Fig. 4 and the stress singularity appears approximately to be (1/2) again

as in the elastic case. However, within the strain gradient zone the corresponding

stress intensity factor K 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG0

0=ð1� m2Þ
p

is considerably smaller than that acting

on the remote boundary, K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGss=ð1� m2Þ

p
, due to the fact that G0

0 � Gss, espe-

cially for small value of l/RP, as shown in Fig. 4(b). The value of K/K 0 corresponds

to the ratio of effective stresses at point 1 and at point 2, as shown in Fig. 4. For a

stationary crack, there are similar characteristics (Jiang et al., 2001; Chen and Wang,



Fig. 4. Effective stress distribution near growing crack tip based on the strain gradient theory. Within the

strain gradient dominated zone, solution behaves the 1/2 singularity.
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2002), as shown in Fig. 5; and the results shown in Fig. 5 come from Jiang et al.

(2001) for different horizontal coordinates. This implies that the boundary condition

of the microscopic model (see Fig. 1(b)) can be approximately taken as a K 0-field (we

refer to it as K 0-field in the present paper for the purpose of distinguishing it from the

macroscopic case in Fig. 3). Thus, the linkage conditions will include the stress level
from Figs. 4 and 5 and the following relation:

G0
0 ¼

K 02
I ð1� m2Þ

E
. ð5Þ

It is worth noting that in the analysis of a crack problem for a ductile material using

the discrete dislocation theory, if a K 0-field acting on the boundary is considered,

actually the K 0-field strength (stress intensity factor) must be much smaller than that

exerted on the remote boundary.



Fig. 5. Effective stress distribution near stationary crack tip based on the strain gradient theory.

Obviously, within the strain gradient dominated zone, solution behaves the 1/2 singularity. From Jiang

et al. (2001).
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4. Fracture analyses using the discrete dislocation model

As discussed above, the macroscopic fracture process is accompanied by a micro-

scopic fracture process within the submicron zone near the crack tip. For the

microscopic fracture analysis, the discrete dislocation theory is adopted here. A sim-
plified presentation of the model has been given previously, in Fig. 1(b). In order to

present the problem completely, we need to discuss the remote boundary conditions.

The outer boundary of the microscopic problem is connected to the strain gradient

plasticity zone of the macroscopic fracture problem. Naturally, the solutions of the

strain gradient plasticity zone of the macroscopic fracture problem will be considered

as the outer boundary conditions. The continuum solutions discussed above (a K 0

field) which is obtained based on the strain gradient theory as shown in Figs. 4(a)

and (b), will be imposed on the outer boundary. The key problem here is how to prop-
erly select the radius of the outer boundary, t. The t value will be determined through

bridging the continuum result with the micro-scale analysis result after the discrete

dislocation analysis. In order to analyze the crack growth behavior at micro-scale

which influenced by the discrete dislocations, as usual, two typical kinds of the dis-

crete dislocation arrangements will be considered, as shown in Figs. 6(a) and (b)

which correspond to plane strain mode I and mode II cases, respectively. The possi-

bility of putting the greatest numbers of dislocations within the region 0 < r < t, will

be investigated (corresponding to the limit equilibrium state for each dislocation),
where r is the polar coordinate. The arrangement of the discrete dislocations is

according to the dislocation equilibrium status: �1 6 fd=f c
d 6 1 , where fd is

dislocation force, f c
d ¼ rfb is referred to as the lattice frictional resistance, rf and b

are the critical shear strength along the slip plane and Burgers vector, respectively.

When fd ¼ f c
d , a dislocation is in the limit equilibrium state. The limit equilibrium

state will be considered in the present research. Thus, the finite element method can



Fig. 6. Discrete distributed dislocation models for micro-scale problems.
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be used to compute the interaction of crack with discrete dislocations. The shielding

effect on crack growth by the discrete dislocations will be investigated. The dislocation

force can be calculated. It is worth noting that Lin and Thomson (1986) obtained the

dislocation force formulas (see Appendix B) and the dislocation shielding effect for-
mulations (see Appendix C) in complex form, so one can directly rely the Lin and

Thomson�s formulas to analyze the interaction of a crack with discrete dislocations.

In the present research, we shall adopt the Lin and Thomson�s formulas.

Firstly, we investigate the possibility of putting the greatest numbers of discrete

dislocations within the submicron region near the crack tip for a stationary crack

or for a growing crack. The analytical models we adopt are shown in Figs. 6(a)

and (b), respectively, for mode I and mode II. Secondly, the dislocation shielding

effects on the microscopic fracture behavior will be studied in detail.

4.1. Mode I crack case

The dislocation distribution along a single slip plane will be considered first.

Secondly, both the dislocation limit equilibrium location and the possible dislocation

number will be determined. For simplicity, we consider the case with one dislocation

first, and determine the limit equilibrium location. Lin and Thomson (1986) solved

the problem of the crack interaction with the dislocation and formulated the dislo-
cation shielding effect and dislocation force. Their basic formulas are reproduced in

Appendices B and C. In the present research, based on the Lin and Thomson�s
formulas the shielding effect and the dislocation limit equilibrium locations will be

calculated using the Newton Raphson method (see Appendix D). For the one-dislo-

cation case, the relation of the dislocation force with its limit equilibrium location is

shown in Fig. 7. In the figure, the results for two cases are plotted, respectively, one

for Eb/G0(1 � m2) = 50 and the other for Eb/G0(1 � m2) = 100. In both cases, the slip

plane direction is U = 60�. Note that G0 ¼ K2
0ð1� m2Þ=E is the material microscopic



Fig. 7. The location of a single dislocation in limit equilibrium for mode I crack case.
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fracture toughness. For each case in Fig. 7, there are two sets of results, correspond-
ing to whether the dislocation shielding effect is considered or not, respectively.

There are different limit equilibrium locations and different dislocation-free zone

sizes. The dislocation limit equilibrium locations for different cases are indicated in

Fig. 7 with solid dots. For the specific material parameters, there exists a peak value

on the dislocation force curve for the case without dislocation shielding effect (the

case was considered by Lin and Thomson, 1986), however a peak value does not ex-

ist when the dislocation shielding effect is considered. A probable equilibrium loca-

tion for a dislocation is determined through considering the condition when the
dislocation force is smaller than the lattice friction force, rfb in the slip direction.

Usually, the dislocation force is taken to be equal to the lattice friction force (the

limit equilibrium state). The results shown in Fig. 8 are for U = 30�. Peak values

on the dislocation force curves exist for both cases regardless of whether the shield-

ing effect is considered or not. The results shown in Fig. 9 are for the mode II case

and exhibit similar features.
Fig. 8. The location of single dislocation in limit equilibrium for mode I crack case.



Fig. 9. The location of single dislocation in limit equilibrium for mode II crack case.

Fig. 10. The numbers of discrete dislocations and the corresponding locations on a slip plane for mode I

crack case.
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The limit equilibrium locations when more dislocations are distributed along a

single slip plane are investigated here. Figs. 10(a) and (b) show the results corre-

sponding to E/rf(1 � m2) = 1000 and 400, respectively. The other parameters are

Eb/G0(1 � m2) = 100 and U = 60�. In Fig. 10(a), different dislocation groups

correspond to the different dislocation-free zone sizes. The more the dislocations,
the larger the dislocation-free zone size. From Fig. 10(a), when the dislocation

number reaches 12 along a slip plane, the discrete dislocation zone extends to the

submicron far away from the crack tip (r � 250 nm for b � 0.1 nm). In Fig. 10(b),

as the parameter E/rf(1 � m2) decreases, the dislocation-free zone size rDfz decreases,

and the dislocation density increases. The variations of the normalized dislocation-

free zone size with the distributed dislocation number are plotted in Fig. 11 for

several slip angles. Here, the dislocation-free zone size shows sensitivity to slip plane

directions and increases with increasing dislocation number when the slip plane angle
is roughly larger than 50 degree. Otherwise, it decreases with increasing dislocation

number. Fig. 12 shows the relations between the normalized dislocation-free zone
Fig. 11. Relations of the dislocation-free zone size with dislocation numbers for several slip plane

directions.

Fig. 12. Relations of the dislocation-free zone size with dislocation numbers for several composition

parameter values.



Fig. 13. Variations of energy release rate with dislocation numbers. Dislocation shielding contribution on

the crack tip fracture energy.

Fig. 14. Variations of energy release rate with dislocation numbers for several slip plane directions.

Fig. 15. Variations of energy release rate with dislocation numbers.
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size and the dislocation number for several values of Eb/G0(1 � m2). As figure shows,

the larger the composition parameter, the smaller the dislocation-free zone size. In

other words, the smaller the fracture toughness G0, the smaller the dislocation-free

zone size. Figs. 13–15 show the dislocation shielding effects on the crack for different

parameter values. Here G 0 = K
02(1 � m2)/E is applied energy release rate on the

boundary of the microscopic fracture problem. Figs. 13–15 show that the shielding

effects increase with increasing dislocation number. Fig. 13 shows that the shielding

effects also increase with decreasing value of E/rf (1 � m2), with increasing slip

plane angle (from Fig. 14) and with increasing value of parameter Eb/G0(1 � m2)
(from Fig. 15).

4.2. Mode II crack case

For mode II crack case, the dislocation distribution is along the symmetric line

ahead of crack tip, as shown in Fig. 6(b). In order to explore the limit equilibrium

location of dislocations, let us discuss the one-dislocation case first. The results in

Fig. 9 concern cases where the dislocation shielding effect is considered and is not

considered. The equilibrium locations for both cases are very near each other. For

the case with more dislocations, the dislocation-free zone sizes decreases as the dis-

location number increases, as shown in Figs. 16(a) and (b). This trend is opposite to

that for mode I case as seen in Figs. 10(a) and (b). The variations of the normalized
dislocation-free zone sizes with dislocation number are plotted in Fig. 17 for several

material parameters. With increasing Eb/G0(1 � m2), or with decreasing material frac-

ture toughness G0, the dislocation-free zone size decreases. This trend is similar to

that in the mode I case. The shielding effects in mode II case are plotted in Figs.

18 and 19 for several parameter sets. The influences of the composite parameters

E/rf(1 � m2) and Eb/G0(1 � m2) on the shielding effects are similar to that in mode I

case. A comparison of Figs. 18, 19 and Fig. 13–15 clearly shows that the shielding

effects in mode I case are stronger than those in mode II case.
5. Steady-state crack growth for mode I in microscopic fracture

5.1. The conditions of steady-state crack growth

The macroscopic fracture solutions for steady-state crack growth have been ana-

lyzed and obtained in Section 3. Here we shall focus our attention on the microscopic
fracture analysis. We have considered the possibility of discrete dislocations existing

along a slip plane within the submicron scale in above sections. Let us further inves-

tigate the possibility of dislocation being distributed as crack grows under the steady-

state condition, i.e. investigate whether the dislocation pattern can be kept around

the crack surface, accompanied by the new slip plane produced near the crack tip.

If the crack grows under steady-state conditions, the model for the dislocation pat-

tern is shown in Fig. 20. Here we assume that the space between slip planes is equal

to L. A question exists as to what is the size of the slip plane space L? According to



Fig. 16. The numbers of discrete dislocations and the corresponding locations on a slip plane for mode II

crack case.

Fig. 17. Relations of the dislocation-free zone size with dislocation numbers for several composition

parameter values.
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Fig. 18. Variations of energy release rate with dislocation numbers. Dislocation shielding contribution on

the crack tip fracture energy (mode II case).

Fig. 19. Variations of energy release rate with dislocation numbers. Dislocation shielding contribution on

the crack tip fracture energy (mode II case).
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the experimental observation and measurement by Mao and Evans (1997), L is
about 1 micron. By calculating the forces for each dislocation or the dislocation

pattern, one can examine the stability of the dislocation pattern, i.e., check whether

or not j fd=f c
d j6 1 is met as crack grows. Figs. 21–24 show the distributions of the

dislocation forces near crack surface as crack grows under steady-state conditions

for several composite parameter values. In the figures, four dislocations on each slip

surface are considered. On the slip plane near the crack tip, the dislocations are

marked with the numbers 1, 2, 3 and 4, according to their distances to the crack

tip, from near to far. Figs. 21–24 show the distributions of dislocation forces on each
dislocation line (each line is parallel to crack surface). The results shown in Figs. 21–

23 are for the cases of three slip surface spacings or L/b = 600, 300 and 100,

respectively. The other parameters are taken as U = 60�, Eb/G0(1�m2) = 100 and

E/rf(1 � m2) = 1000. In Figs. 21 and 22 for the cases of L/b = 600 and 300, the



Fig. 20. Multi-slip plane model for the case of steady-state crack growth in the mode I case.

Fig. 21. Dislocation force distributions on area near crack surface for the case when four dislocations are

distributed on each slip plane.

Y. Wei, G. Xu / International Journal of Plasticity 21 (2005) 2123–2149 2139
dislocation forces in corresponding dislocation patterns are smaller than the critical

value. Therefore, both patterns are stable during crack growing. Near the crack tip,

the force changes from positive to negative, and it has a big value. At the location far

behind the crack tip, the dislocation force is small. In Fig. 23, when the slip plane

space L takes on a small value such as 100b, the dislocation force near the crack

tip is larger than the critical value, and the corresponding dislocation pattern is

unstable. For the purpose of investigating the effect of composition parameter
Eb/G0(1 � m2) and comparing with the results shown in Fig. 21, Fig. 24 plots the re-

sults for the case of Eb/G0(1 � m2) = 50. The features of the dislocation force distri-

butions are similar to those for the case of Eb/G0(1 � m2) = 100 shown in Fig. 21. As

crack grows step by step, the variations of the shielding effects (energy release rates)



Fig. 22. Dislocation force distributions on area near crack surface for the case when four dislocations are

distributed on each slip plane.

Fig. 23. Dislocation force distributions on area near crack surface for the case when four dislocations are

distributed on each slip plane.

Fig. 24. Dislocation force distributions on area near crack surface for the case when four dislocations are

distributed on each slip plane.
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are plotted in Fig. 25 for several material parameters and model parameters. In Fig.

25, when crack grows for 3–4 times the dislocation-free zone size, the steady-state

crack growth condition is approached. Fig. 25 also shows the variations of the nor-

malized energy release rates as a function of the distance of crack growth for several

slip plane spacing values. The smaller the slip plane spacing, the larger the normal-
ized energy release rate.

5.2. The selection of ‘‘elastic core’’ size

We can directly calculate the energy release rate with the selection of the ‘‘elastic

core’’ size t for the steady-state crack growth. By increasing the discrete dislocation

number along a slip plane, we can increase corresponding ‘‘elastic core’’ size. Fig. 26
Fig. 25. Variations of energy release rate as crack grows. Steady-state crack growth is easily realized.

Fig. 26. Variation of energy release rate with elastic core size and space between slip planes under steady-

state crack growth condition.
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shows the variations of the normalized steady-state energy release rate with increas-

ing ‘‘elastic core’’ size for several slip plane space values. The toughness ratio from

the microscopic theory increases with the ‘‘elastic core’’ size. However, this trend is

opposite to what is predicted by the macroscopic theory (from Fig. 3). In order to

conveniently compare both microscopic and macroscopic cases, the results shown
in Fig. 26 are replotted in Fig. 27 by adopting the same coordinate as that in Fig.

3 for R0/b = 5000. Simultaneously, the results in Fig. 3 are replotted in Fig. 27. Com-

paring the results of both microscopic and macroscopic analyses, we can see that

both sets of results are sensitive to the selection of the ‘‘elastic core’’ size t. If the se-

lected t value is too small, the Gss=G
0
0 value obtained from macroscopic theory will be

too large. Similarly, if the selected t is too large, the G0
ss=G0 value obtained from

microscopic theory will be too large. A proper selection of the ‘‘elastic core’’ size t
Fig. 27. Comparison of microscopic analysis results with macroscopic analysis results for energy release

rate under the steady-state crack growth condition.

Fig. 28. The determination of elastic core size t. From results shown in figure, R0/t � 6.
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should be such that both theories are relatively insensitive to the selected t value. For

seeking the proper selection of t, let us examine the following relation for the total

energy release rate normalized by the crack tip fracture toughness

Gss

G0

¼ Gss

G0
ss

G0
ss

G0

¼ Gss

G0
0

G0
ss

G0

; ð6Þ

where G0
0 ¼ G0

ss from present analysis. Fig. 28 shows the normalized total energy re-
lease rate as a function of the ‘‘elastic core’’ size for three values of R0/b. The curves

in Fig. 28 come from both the microscopic analysis results and the macroscopic anal-

ysis results shown in Fig. 27 by using formula (6). Around the value of R0/t approx 6,

the variation of the total energy release rate is insensitive to the selection of the value

for t, so the proper selection of the elastic core size is about t � R0/6, for conven-

tional metallic materials, R0 � 1 lm, so the elastic core size is around hundred

nanometers.
6. Concluding remarks

For a complete fracture process, two different scale fracture processes are in-

cluded, i.e., macroscopic fracture and microscopic fracture. In the present research,

the complete fracture processes have been studied. The macroscopic fracture process

has been analyzed based on the strain gradient plasticity theory. The fracture char-

acteristics, such as the crack tip field, crack tip fracture toughness, as well as the plas-
tic shielding effect, etc. have been investigated. Within the micron scale, the

microscopic fracture process has been analyzed based on the discrete dislocation the-

ory and the bridging model. In the bridging model, the macroscopic fracture solution

(crack tip field) is taken as the outer boundary condition of the microscopic fracture

problem based on the conclusion that the crack tip field of the macroscopic fracture

problem is with 1/2 singularity, but with a different magnitude. The shielding effect of

discrete dislocations on crack growth has been considered. The selection of the elas-

tic core size t, the intersection radius between macro-scale and micro-scale, is deter-
mined from the requirement that the total energy release rate be insensitive to the

value of t. If the selected t value is too small, the shielding effect from plastic defor-

mation is too large, while the shielding effect from discrete dislocations is too small.

If the selected t value is too large, the shielding effect from plastic deformation is too

small and the shielding effect from discrete dislocations is too large.

Fig. 3 characterizes the variation of the fracture toughness ratio with the elastic

core size for the modified SSV model based on the macroscopic analysis, while Fig.

28 can be interpreted as a modification of the results in Fig. 3 when the numbers of
discrete dislocations are included within the ‘‘elastic core’’ region. Fig. 28 shows that

the variation of the total fracture toughness ratio with t is complicated. At about

t � R0/6, the toughness ratio changes smoothly and takes its stationary value. As

t increases, the toughness ratio increases due to the strong dislocation shielding ef-

fect. As t decreases the toughness ratio increases due to the strong plastic shielding

effect.
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Appendix A. MSG strain gradient plasticity flow theory

The MSG flow theory has been derived by Qiu et al. (2003) and Wei et al. (2004).
The results are listed as follows:

_rij ¼ K _ekkdij þ 2l _e0ij � a0
3r0ij

2r
_ep

� �
; ðA:1Þ

_sijk ¼ c _gijk þ
1

2
ð _gkij þ _gkjiÞ þ

2K
l

� 4

3

� �
_gHijk

� �
� a0

c
1þ a

3r0
mn

2r2
ðr0

ki _gjmn þ r0
kj _gimnÞ

�

þ 1

1þ a
3

4r2
Gijkmn _r

0
mn �

e
1þ a

þ 3l
r

� �
3

4r2
Gijkmnr

0
mn _e

p

þ 3l
r

sijk �
Kl2e
6

gHijk

� �
_ep
�
; ðA:2Þ

_ep ¼ 1

1þ a
1

r
r0
ij _eij � a2lb

3

4g
g0ijk _gijk

� �
; ðA:3Þ

where the flow criterion is considered as (Gao et al., 1999; Huang et al., 2000)

re ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
0f 2

p ðepÞ þ 18a2l2bg
q

¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
p ðepÞ þ lg

q
ðA:4Þ

and

a0 ¼ 0 if re < r or re ¼ r and _ep < 0; a0 ¼ 1 if re ¼ r and _ep P 0.

ðA:5Þ
The parameters and variables in the above relations are defined as

c ¼ ll2e
12

; a ¼ r2
0

3lr
fpf 0

p; e ¼
f 0
p

fp
þ
f 00
p

f 0
p

;

Gijkmn ¼ r0
kiðsjmn þ sjnm � smnjÞ þ r0

kjðsimn þ sinm � smniÞ; ðA:6Þ

where fp(e
p) is the function in the uniaxial stress–plastic strain relation determined

from uniaxial tension:

rI ¼ r0fpðepÞ; ðA:7Þ
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r0 is a reference stress; e
p is accumulative plastic strain; b is the Burgers vector; a is an

empirical coefficient in the Taylor model and is taken the value around 0.3 for the

conventional metals; K = E/3(1 � 2m) and l = E/2(1 + m) are the elastic bulk modulus

and shear modulus, respectively; le is the cell size, and from analysis of Gao et al.

(1999), Huang et al. (2000, 2004) and Qiu et al. (2003),

le ¼ 10lb=rY; l ¼ 18a2
l
r0

� �2

b; ðA:8Þ

l is the length scale parameter characterizing a strength of the strain gradient or the

geometrically-necessary dislocation (Gao et al., 1999; Huang et al., 2000; Shi et al.,

2004), according to the research for the MSG theory in Gao et al. (1999), the value of

the length parameter l falls the region of 1–10 microns for the typical metal materials;

g is the effective strain gradient and can be expressed by the components of strain
gradient gijk = uk,ij as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
g0ijkg

0
ijk

r
ðA:9Þ

and the deviatoric and volumetric components of gijk are dictated as (Fleck and

Hutchinson, 1997)

g0ijk ¼ gijk � gHijk; gHijk ¼
1

4
ðdikgjpp þ djkgippÞ. ðA:10Þ

A piecewise power law hardening stress–strain relation is considered to character-

ize the solid behaving at macro-scale,

rI ¼
Ee for e 6 rY

E ;

r0eN for e P rY
E ;

�
ðA:11Þ

where N is material strain hardening exponent. From (A.7) and (A.11), one has

r0 ¼ rYðE=rYÞN . ðA:12Þ
Appendix B. Dislocation force formulas from Lin and Thomson (1986)

fd ¼ fkd þ fd2 þ
X
j

fddj þ fext ðB:1Þ
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where, K = KI + iKII
nj ¼ 1� 1j; n�j ¼ 1� �1j; y ¼ 1

2i
ð1� �1Þ; yj ¼

1

2i
ð1j � �1jÞ. ðB:5Þ
Appendix C. Shielded crack

In plane strain elastic fracture K-fields which account for effects of discrete dislo-

cations, the dislocation fields contribute to the K-field and cause the local (crack tip)

stress intensity factor K0 to be composed of the applied K and the equivalent KD

from discrete dislocations as (Lin and Thomson, 1986)
K0 ¼ K �
X
j

KDðjÞ; ðC:1Þ
where
K
DðjÞ ¼ l

2ið1� mÞ
beðjÞffiffiffiffiffiffiffiffiffi
2p1j

p þ beðjÞffiffiffiffiffiffiffiffiffi
2p�1j

p þ
p�beðjÞð1j � �1jÞ

ð2p�1jÞ3=2

" #
; ðC:2Þ

K0 ¼ K0I þ iK0II; KD ¼ KD
I þ iKD

II ; beðjÞ ¼ b1ðjÞ þ ib2ðjÞ; ðC:3Þ
j = 1,2, . . ., N. N is number of total dislocations.
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Energy release rates can be obtained for the following cases:

Mode I case:

G0 ¼ K2
I ð1� m2Þ

E
¼ G0 1þ 1

K0I

X
j

KD
I ðjÞ

" #2
; ðC:4Þ

where

G0 ¼
K2

0Ið1� m2Þ
E

. ðC:5Þ

Mode II case:

G0 ¼ K2
IIð1� m2Þ

E
¼ G0 1þ 1

K0II

X
j

KD
IIðjÞ

" #2
; ðC:6Þ

where

G0 ¼
K2

0IIð1� m2Þ
E

. ðC:7Þ
Appendix D. Newton–Raphson method for determining the dislocation limit equilibrium

locations

Let F ðx1; x2; x3; . . . ; xN Þ ¼
X
i¼1;N

½fdðiÞðx1; x2; x3; . . . ; xN Þ � f c
d �

2
; ðD:1Þ

where (x1,x2,x3, . . ., xN) are the locations of dislocations. fd(i) expression has been

given in formulas (B.1)–(B.4) in Appendix B. When the right-hand side of (D.1) is

equal to zero, (x1, x2, x3, . . ., xN) are the equilibrium positions of dislocations. The

iterative formula of Newton–Raphson method for finding the dislocation limit equi-

librium locations can be obtained from (D.1) as

ðxðkþ1Þ
1 xðkþ1Þ

2 . . . xðkþ1Þ
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