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Simple lattice Boltzmann model for simulating flows with shock wave
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We propose a lattice Boltzmann model for compressible Euler equations. The numerical examples show that
the model can be used to simulate shock wave and contact discontinuity. The results are compared with those
obtained by traditional methods.@S1063-651X~98!13012-X#

PACS number~s!: 47.10.1g
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I. INTRODUCTION

In recent years, the lattice Boltzmann method~LBM ! has
developed into an alternative and promising numeri
scheme for simulating fluid flows and modeling physics
fluids. Unlike traditional numerical methods which solv
equations for macroscopic variables, the LBM is based
the mesoscopic kinetic equation for the particle distribut
function. The fundamental idea of the LBM is to construc
simplified kinetic model that incorporates the essential ph
ics of microscopic or mesoscopic processes and the ma
scopic variables, and obeys the desired macroscopic e
tions @1#. The kinetic nature of the LBM has three importa
features that distinguish it from other numerical metho
First, the convection operator of the LBM is linear. Secon
the incompressible Navier-Stokes equations can be obta
in the incompressible limit. Third, the LBM uses a minim
set of velocities. Since only a few moving directions a
used, if we fix the direction, saya, the lattice Boltzmann
equation is a one-dimensional iteration, and the code
greatly simplified.

As important progress, the simple collision model
Bhatnagar-Gross-Krook~BGK! was applied to the lattice
Boltzmann equation, yielding the lattice BGK model@2–4#.
However, this method is limited to a range of low Mac
number as an image gas@5,6#. This is due to the following
two reasons.~i! There exist nonlinear deviations, i.e
]2ruiujuk /]xj]xk . ~ii ! In the momentum equation there is
compressible factor Di j 5(]/]xj )h@ui]r/]xj 1uj]r/]xi
1d i j uk]r/]xk1 5

3 rd i j ]uk /]xk# ~see Ref.@6#!.
It is a challenge to use pure lattice Boltzmann method

simulate the compressible Euler equations, especially for
problems which contain shock waves and contact disco
nuities. Recently, there are some studies on the compres
flows, but the results are only for the situations of we
compressible and isothermal flows@4,5#.

In this paper, using a square lattice, we will propose
three-speed-three-energy-level lattice Boltzmann model f
compressible perfect gas. This model is based on the foll
ing ideas@7#.

*Present address: Department of Mathematics, Jilin Univers
Changchun 130023, China.
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~1! The fundamental framework and method are the sa
as those used in the standard LBM.

~2! The particles moving along every link are separa
into two kinds with two different energy levels, and the re
particle possesses another energy level.

~3! Besides the conservation conditions of mass, mom
tum, and energy, the equilibrium distribution must satisfy t
flux conditions of momentum and energy.

~4! In this model one can choose the speed of mov
particles.

Numerical results show that this model works quite w
for the simulation of strong discontinuity phenomena.

In Sec. II of this paper, based on a square lattice, a lat
Boltzmann model will be proposed. In Sec. III three famo
test problems are calculated to examine this model. The
sults are satisfying.

II. LATTICE BOLTZMANN MODEL FOR COMPRESSIBLE
EULER EQUATIONS

We use a square lattice with eight links that connects
center site to eight nearest neighbor nodes, that is, four
centers and four vertices~Fig. 1!. We assume that the par
ticles moving along the link with velocityea are divided into
two kinds,A and B, with two different energy levels«A(a
51,...,8) and«B(a59,...,16), and the rest particle (a50)
possesses energy level«D . So it is actually a 17-bit mode
with three speeds 0,c,&c, wherec is the speed of particles
at the face centers.

The following identities of velocity moments are nece
sary for the derivation of the model@8#:

(
a

ea iea j

5 Hbc2d i j /D ~a51,3,5,7 or 9,11,13,15!
2bc2d i j /D ~a52,4,6,8 or 10,12,14,16!, ~1!

(
a

ea iea jeakeam

5 H2c4d i jkm ~a51,3,5,7 or 9,11,13,15!
4c4D i jkm28c4d i jkm ~a52,4,6,8 or 10,12,14,16!,

~2!
y,
454 ©1999 The American Physical Society
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whereb54, D is the space dimension,d i jkm51 if i 5 j 5k
5m, otherwise d i jkm50, D i jkm5(d i j dkm1d ikd jm
1d imd jk).

(1) The definition of the macroscopic variables.The
single particle distribution in the ‘‘shooting-in’’ state at sitex
and time t is denoted byf a5 f a(x,t) (a50,...,16). The
mass, momentum, and total energy per site are defined

r5(
a

f a , ~3!

rui5(
a

f aea i ~ i 51,2!, ~4!

1
2 ru21rE5(

a
f a«a ~«a5«A ,«B ,«D!, ~5!

whereE is the internal energy per unit mass.
(2) The updating rule of particle distribution.According

to Refs.@2,3#, the distributionf a8 of the ‘‘shooting-out’’ state
after collisions is determined by the BGK-type lattice Bo
zmann equation

f a85 f a2
1

t
~ f a2 f a

eq! ~a50,...,16!, ~6!

f a~x1eaDt,t1Dt !5 f a8 ~x,t !, ~7!

where t is the single relaxation time, andf a
eq is the local

equilibrium distribution. Equations~6! and~7! are actually a
finite-difference scheme which is not for macroscopic va
ablesr,rui ,E but for ‘‘mesoscopic’’ variablesf a .

(3) Equilibrium distribution. We assume that the equ
librium distributionsf a

eq in Eq. ~6! have the same expression
as those in Refs.@2, 3#,

f 0
eq5D0r1D3ru2,

f a
eq5A0

1r1A1
1ruiea i1A2

1ruiujea iea j1A3
1ru2

~a51,3,5,7!,

f a
eq5A0

3r1A1
3ruiea i1A2

3ruiujea iea j1A3
3ru2

~a52,4,6,8!, ~8!
-

f a
eq5B0

1r1B1
1ruiea i1B2

1ruiujea iea j1B3
1ru2

~a59,11,13,15!,

f a
eq5B0

3r1B1
3ruiea i1B2

3ruiujea iea j1B3
3ru2

~a510,12,14,16!,

where the symbols1, 3 mean odd and even direction num
ber a. Here, coefficientsAi

1 ,Bi
1 ,Ai

3 ,Bi
3 ,D0 ,D3 are deter-

mined by a set of reasonable requirements. These req
ments consist of the conservation laws of mass, moment
energy, and the flux conditions of momentum and energ

(
a

f a
eq5r, ~9!

(
a

f a
eqea i5rui , ~10!

(
a

f a
eq«a5 1

2 ru21rE, ~11!

(
a

f a
eqea iea j5ruiuj1pd i j , ~12!

(
a

f a
eq«aea i5~ 1

2 ru21rE1p!ui , ~13!

wherep is the pressure of the perfect gas,

p5~g21!rE. ~14!

Substituting Eq.~8! into Eqs.~9!–~13! and using the iden-
tity ~1! and~2!, we obtain the system of linear equations f
determining these coefficients,

D01b~A0
11B0

11A0
31B0

3!51, ~15!

bc2

D
@A0

11B0
112~A0

31B0
3!#5~g21!E, ~16!

«DD01b«A~A0
11A0

3!1b«B~B0
11B0

3!5E, ~17!

bc2

D
@A1

11B1
112~A1

31B1
3!#51, ~18!
FIG. 1. A square lattice of the 17-bit model,~a! type A, ~b! type B.
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bc2

D
@«AA1

11«BB1
112~«AA1

31«BB1
3!#5 1

2 u21gE,

~19!

A2
11B2

154~A2
31B2

3!, ~20!

A2
31B2

351/8c4, ~21!

bc2

D
@A3

11B3
112~A3

31B3
3!#14c2~A2

31B2
3!50,

~22!

D31b~A3
11B3

11A3
31B3

3!1@~A2
11B2

1!

12~A2
31B2

3!#bc2/D50, ~23!

«0D31b«A~A3
11A3

3!1b«B~B3
11B3

3!

1
bc2

D
@«AA2

11«BB2
112~«AA2

31«BB2
3!#5

1

2
.

~24!

First, if the requirements are reasonable, the system of e
tions should be consistent. Second, if the system has m
unknowns than equations, as we see in Eqs.~15!–~24!, we
have to propose some man-made complementary condit
We introduce an assumption to eliminate the coefficie
Ai

3 ,Bi
3 to get a system of equations with unknow

Ai
1 ,Bi

1 . Using a simpler method, we let

Ai
35Ai

1 , Bi
35Bi

1 ~ i 50,1,3!, ~25!

A2
35 1

4 A2
1 , ~26!

«A1A2
11«BB2

15l
2D

3bc2 . ~27!

Here,l is a chosen parameter, called the separating fac
which may be taken as a contribution of each type particle
f a

(eq) ~or per energy level!. If «A5«B5 «̄, then this model
becomes a standard lattice Boltzmann model~9-bit model!,
thenl53b«̄/4Dc2. If «AÞ«B , then the meaning ofl is the
coefficient of the equilibrium distribution by modifying th
energy levels. Therefore all coefficients can be solved ea
Inserting the expressions of coefficientsAi

1 ,Ai
3 ,Bi

1 ,Bi
3 ,Di

into Eq. ~8!, we can obtain the final form of equilibrium
distribution.

Choosing time stepDt as small perturbation parameter«,
which plays the role of the Knudsen number@8#, we use the
multiscale technique and Chapman-Enskog expansion

]

]t
5

]

]t0
1«

]

]t1
1«2

]

]t2
1¯ , ~28!

f a5 f a
eq1« f a

~1!1«2f a
~2!1¯ . ~29!

Then the macroscopic dynamics equations of mass, mom
tum, and energy can be derived from the scheme~6!–~8!.
The leading order terms are the Euler equations of per
gas with the truncation errorsRi5O(«).
a-
re

ns.
s

r,
o

ly.

n-

ct

]r

]t
1

]rui

]xi
5R11O~«2!, ~30!

]rui

]t
1

]ruiuj

]xj
1

]p

]xj
d i j 5R21O~«2!, ~31!

]

]t S 1

2
ru21rED1

]

]xi
S 1

2
ru21rE1pDui5R31O~«2!,

~32!

where

R150, ~33!

R25«S t2
1

2D S ]2p i j
~0!

]t0]xj
1

]2Pi jk
~0!

]xj]xk
D , ~34!

R35«S t2
1

2D S ]2Qj
~0!

]t0]xj
1

]2Rjk
~0!

]xj]xk
D , ~35!

where p i j
(0)5(a f a

eqea iea j , Qj
(0)5(a f a

eq«aea j , Pi jk
(0)

5(a f a
eqea iea jeak , Ri j

(0)5(a f a
eq«aea iea j . This scheme has

the first order accuracy of the truncation errors@9#.

III. NUMERICAL EXAMPLES

In this section three famous test problems are calcula
to examine the performance of this model in the simulat
of aerodynamics.

Example (1).The Sod test@10# which consists of initial
data on the left and right side,

~rL ,uL ,pL!5~1,0,1!, x,0

~rR ,uR ,pR!5~0.125,0,0.1!, x.0.

Example (2).The Lax test@11# with initial data

~rL ,uL ,pL!5~0.445,0.698,3.528!, x,0,

~rR ,uR ,pR!5~0.5,0,0.571! x.0.

The comparisons between numerical and exact results
plotted in Fig. 2~for Sod’s test! and Fig. 3~for Lax’s test!.
They show the formation of shock waves, contact disco
nuities, and rarefaction waves. The widths of shock wa
are about three to four cells, the speed of shock waves c
cides with the theoretical predication. To sum up, the n
merical results are well consistent with the theoretical on
However, on the pressure profiles on the position cor
sponding to the contact discontinuities, we also found so
obvious errors which are not dissipation or dispersion. T
kind of errors has been found in some traditional schem
such as in Ref.@12#. Table I shows theL1 norm errors in our
lattice Boltzmann model and other schemes. Another pr
lem is that the ‘‘platform’’ between shock wave and conta
discontinuity in the Lax problem emerges quite late.

Example (3).The Roe test@13# with the following initial
data:

~rL ,uL ,pL!5~1,21,1.8!, x,0
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FIG. 2. Comparisons between numerical and theoretical results of Sod’s test. Exact solution~line! and simulation~circles! of r, p, u, and
E. Lattice size: 20032. Output at 120 time steps. Parameters:g51.4; c53; l51.75; 1/t51.51; «A52c2; «B50.6c2; «D50.13c2.
Fi
a

les.
eso-
t

~rR ,uR ,pR!5~1,1,1.8!, x.0.

The numerical results and exact solutions are shown in
4. The problem that should be mentioned is that two sm
g.
ll

tips emerge in the middle of the density and energy profi
This unusual phenomenon also appeared in some high r
lution schemes@14,15#. This is an interesting and difficul
problem. We think this is because the relaxation factort and
FIG. 3. Comparisons between numerical and theoretical results of Lax’s test. Exact solution~line! and simulation~circles! of r, p, u, and
E. Lattice size: 20032. Output at 240 time steps. Parameters:g51.4; c58; l51.05; 1/t51.62; «A52.5c2; «B50.6c2; «D50.13c2.
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TABLE I. Riemann problems,L1 norm errors. These results come from Ref.@13#, except the LBM.
Lattice size:Nx5200. The underlined results indicate the smallestL1 norm error in every column.

Sod’s testt50.1644 Lax’s testt50.16

Density Velocity Pressure Density Velocity Pressure
LXF 0.017 69 0.028 14 0.015 82 0.061 65 0.055 57 0.065 37
LBM 0.008 04 0.016 73 0.007 92 0.030 51 0.019 37 0.049 01
ORD 0.005 78 0.009 59 0.004 60 0.022 31 0.017 09 0.019 95
ULT1 0.004 37 0.008 20 0.003 62 0.014 77 0.010 94 0.012 06
STG2 0.002 97 0.004 94 0.002 28 0.011 51 0.008 49 0.009 8
STGU 0.002 91 0.004 03 0.002 16 0.013 02 0.013 06 0.011 2
STGC 0.001 72 0.002 76 0.001 53 0.006 47 0.008 36 0.008 23
ULTC 0.003 61 0.008 04 0.003 62 0.008 72 0.010 74 0.011 83
Roe 0.008 36 0.011 45 0.006 66 0.028 27 0.021 92 0.026 5
.
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time stepDt are unsuitable. In Roe’s test,Dt may be so
small that the distribution cannot reach equilibrium status
we choose a large time step, the scheme is not stable. S
reason the tips emerge is that the Knudsen number beco
small.

Recently several sophisticated finite-difference techniq
have been developed which are capable of capturing dis
tinuities more accurately. These include the essenti
nonoscillatory ~ENO! scheme@16# and the total variation
diminishing ~TVD! scheme and other high resolutio
schemes. TVD-type schemes have gained popularity for t
applications in compressible flow. In TVD schemes t
amount of this inherent numerical dissipation depends on
flux limiter user @17#. When these schemes are applied
shock tube problems, they produce very high resolution
If
the
es

s
n-
ly

ir

e

r

the shock. The widths of shock waves are about one to
cells, the widths of contact discontinuity are about three
four cells. The numerical results from the LBM do not com
pare well with these high resolution schemes. If we comb
the LBM with these high resolution techniques, the LB
would become a very interesting method.

IV. DISCUSSION AND CONCLUSIONS

We adopt the idea that the local equilibrium distributio
satisfies conservation conditions and flux conditions of ma
momentum, and energy. This allows the dynamics equat
of the perfect gas, especially the energy equation, to be ea
recovered. In the model, the particle speedc should be cho-
sen appropriately to meet the requirement of numerical
FIG. 4. Comparisons between numerical and theoretical results of Roe’s test. Exact solution~line! and simulation~circles! of r, p, u, and
E. Lattice size: 20032. Output at 60 time steps. Parameters:g51.4; c53; l51.75; 1/t51.35; «A52.0c2; «B50.6c2; «D50.13c2.
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bility ~such as the CFL condition@7,9#!. On the other hand
to define total energy and internal energy for the recovery
the energy equation, the total energy in Refs.@18–20# is
defined as the total kinetic energy of particlesET
5( f ac2/2, which corresponds to«A5«B5 1

2 c2, «D50 in
our model. However, in a one or two speed model it cau
two difficult problems:~i! it leads to g52 ~the so-called
ideal case!, ~ii ! the energy conservation can be derived fro
momentum flux conditions. To solve these problems, m
researchers use a multispeed model~e.g., Refs.@18–20#! or
introduce the concept of energy level~e.g., Ref.@21#!. We
utilize the merits of both of them. The present model is n
only multispeed but also multienergy level. As a result,
equations of the perfect gas are successfully included in
lattice Boltzmann model, and the ratiog of specific heats
appears as a chosen parameter~the so-called general case!.
The remaining problems are those of accuracy and nume
stability @9#. The other advantage is that the pressurep ~or
internal energyE! in this model is a statistical quantity inde
pendent ofr andrui , so that a wide range of sound spe
(cs5Agp/r) is allowable.

This square lattice has many spurious invariants in diff
ent time scales. We find the spurious invariants that relay
the moments of speedea . There are two types of invariant
in our model:~i! In scalet0 , other equations are equivale
to Euler equations;~ii ! there are some higher order momen
. A

u-
f

s

y

t
l
e

al

-
n

,

which may be spurious invariant, but the order is more th
O(«).

Compared with the standard lattice Boltzmann model,
model has some new assumptions, for example, additio
flux conditions, a three-energy-level assumption, parametc
being chosen freely. These assumptions cause the isothe
and low Mach limit to be removed, and the constraint ofg
52 to be relaxed. At last, the simulation of aerodynam
with strong discontinuities is realized by using the latti
Boltzmann method. Although the model may not be a h
resolution scheme, it is still attractive. This model preser
the main advantages of the available LBM model: noise-fr
simple code and high parallelism, etc. The drawback of t
model is that there are many parameters to be chosen an
result of Roe’s test is not good enough.
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