ELSEVIER

Journal of Biomechanics 38 (2005) 587—-594

JOURNAL
OF

BIOMECHANICS

www.elsevier.com/locate/jbiomech
www.JBiomech.com

An inhomogeneous and anisotropic constitutive model
of human dentin
Bo Huo*

Institute of Mechanics, Chinese Academy of Science, No. 15 Beisihuanxi Road, Beijing 100080, China
Accepted 24 March 2004

Abstract

Dentin constitutes the major part of human tooth. It is composed of a large number of tubules with both variational radii and
radially parallel pattern. In addition, peritubular dentin surrounds each tubule lumen and has a higher elastic modulus than the
matrix of dentin, i.e. intertubular dentin. Considering the above microstructural characteristics, a micromechanics model is used in
this paper to evaluate the overall elastic properties of dentin. Five independent effective elastic parameters in transverse isotropic
elasticity matrix can be expressed analytically by the material parameters of peri- and intertubular dentin and the volume fraction of
tubules. To determine the effectivity of this theoretical model, a finite element (FE) model simulating a longitudinal tooth slice in
moiré fringe testing of Wang and Weiner (J. Biomech. 31 (1998) 135) was performed. Furthermore, the FE model was developed
incorporate modeling of variation of tubule’s diameter and softer characteristic of intertubular dentin near the dentin—enamel
junction and around the pulp chamber. It turned out that the isoline figure of longitudinal displacement by FE calculation has very
similar patterns to the moir¢ fringe results. However, the FE results of displacement by traditional stress—strain models which regard
dentin as a homogeneous and isotropic material show an obviously different strain distributions as compared to published moiré
fringes results. Thus the inhomogeneous and anisotropic model developed in this paper more accurately reflects the true physical

nature of human dentin.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In dentin, fluid-filled microscopic tubules extend
through the entire dentin from the pulp wall to the
dentin—enamel junction (DEJ) or the cementum. In the
longitudinal section of dentin (Fig. 1a), the tubules in
the root of tooth are approximately parallel, but the
tubules in the crown of tooth are radial. In the
transverse section (Fig. 1b), the tubules are also radially
oriented. The peri- and intertubular dentin represent the
mineralized portions in dentin. The peritubular dentin
encircles the tubules and is characterized by its high
mineral content (Mjor and Fejerskov, 1986). The
intertubular dentin occupies the volume outside of
peritubular dentin and contains more collagen and less
mineral than the peritubular dentin (Fig. 1c).

*Tel.: +86-106-263-5235; fax: +86-106-261-3540.
E-mail address: huobo@imech.ac.cn (B. Huo).

0021-9290/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jbiomech.2004.03.028

As dentin is examined closer to the pulp cavity, the
diameters of tubules increase gradually, and moreover,
the numerary density of tubules also has an increasing
trend, although the total number of tubules remain
constant (Ketterl, 1961; Tronstad, 1973; Garberoglio
and Brannstrom, 1976; Schilke et al., 2000). The above
structural characters of dentin should lead to an
inhomogeneous and anisotropic stress—strain relation.
In fact, the effects of tubules on the mechanical
properties of dentin were considered in the pioneer
work of Peyton et al. (1952), but no effects were
observed due to the unavailability of micromechanical
methods at that time. This led to dentin being treated as
a homogeneous and isotropic elastic material.

More recently, several groups have recognized that
the presence of dentinal tubules may influence the
mechanical properties of dental tissues, e.g. bond
strength of restoration (Phrukkanon et al., 1999; Ogata
et al.,, 2001). Microhardness (Pashley et al., 1985;
Meredith et al., 1996; Wang and Weiner, 1998) and
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Fig. 1. Schematic figures of a premolar and the microstructure of its
dentin: (a) the longitudinal section of the premolar; (b) the transverse
section of the dentin; (c) a representative volume element (RVE). A—
intertubular dentin, B—peritubular dentin.

cementum

nanoindentation (Kinney et al., 1996, 1999) have been
adopted to determine the microstructure and physical
properties of dentin. Others have reported changes in
different chemical components of dentin along the
tubules (Wentrup-Byrne et al., 1997).

Furthermore, Kinney et al. (1999) and Huo and
Zheng (1999) created micromechanics models of dentin.
In Kinney’s model, the effects of peri- and intertubular
dentin on anisotropic properties of dentin were con-
sidered. They measured the elastic modulus of the
peritubular dentin as 30 GPa and that of intertubular
dentin as 15 GPa. They presented a theoretical model in
which the tubule lumen lined by a peritubular dentin
cuff was assumed to be an isotropic cylindrical inclu-
sion. That assumption may not be appropriate if the
composite made up of tubule and peritubular dentin
behaves as anisotropic material.

In the authors’ previous work (Huo and Zheng, 1999),
a varying transverse isotropic stress—strain relation of
dentin was established. That theoretical model can
reflect the effect of tubules on the inhomogeneous and
anisotropic properties of dentin. In that model, how-
ever, the peri- and intertubular dentine were regarded as
materials with same elastic properties. In this paper the
previous model is extended by considering the different
mechanical properties of peri- and intertubular dentin,
and then a numerical simulation is presented and
compared with the previously published moiré fringe
testing results (Wang and Weiner, 1998).

2. Materials and methods
2.1. Theoretical model

A representative volume element (RVE) was taken
out from the dentin (see Fig. 1c). The RVE was small

enough so that the dentin tubules in it could be regarded
as being parallel and diameters of the tubules as being
invariant. The RVE should also be large enough to
contain many tubules so that it can represent the
transversely isotropic dentin material in both the local
and macroscopic sense. A Cartesian coordinate system
{x1, x», x3} was used, with the x-axis along the dentin
tubule direction, the privileged direction of the trans-
verse isotropy.

Using the one-index notations t; = 011, T4 = 023, 75 =
€, Y5 = 2¢31, etc., instead of the usual second-order
symmetric stress tensor ¢; and strain tensor g; the
overall elastic stress—strain relationship can be written
into the matrix form

y = Dr, (1)

where the components of elasticity compliance matrix D
can be expressed as

D= I/E/, Dy, = D33 =1/E,

Dy =(+0v)/E, Dss= D¢ =1/2G

Diy =Dy = D3 =Dy = —V'/E/,

Dy3 =Dy = —v/E, (2)

other components vanish. The E, v, E’, v/ and G’ are the
five independent effective elastic parameters of the
transversely isotropic material. E is the Young’s
modulus along the direction of tubule. £ and v are the
Young’s modulus and Poisson’s ratio within the
isotropic plane, respectively. G' and v/ are the shear
modulus and Poisson’s ratio in the plane of x;x, or x;x3,
respectively.

Assuming that the peri- and intertubular dentin are
homogeneous and isotropic, corresponding elasticities
are denoted by C and C', Young’s moduli by E, and E;,
Poisson’s ratios by v, and v;, respectively. The transverse
shapes of tubule and peritubular dentin are supposed to
be similar and coaxial circles and their transverse areas
within the RVE are denoted by 4; and A,, respectively.
The transverse area of the intertubular dentin within the
RVE is denoted by 4;.

When an ellipsoidal inclusion which contains another
ellipsoidal inclusion is embedded in an infinite matrix
material, the double-inclusion method can present the
overall elasticity of the double inclusions (Nemat-Nasser
and Hori, 1993, p. 352). Here a tubule and its
surrounding peritubular dentin are considered as the
double inclusions, which are assumed to be ellipsoidal
with an infinitely long axis parallel to the tubules in
RVE. It is considered that in RVE (Fig. 1¢) an inclusion
(peritubular dentin) including another cavity (dentin
tubule) is embedded in matrix material (intertubular
dentin). So the overall elasticity of the tubule—peritubule
composite is given by

CP = C[I + (S — DAJI + SA) !, (3)



B. Huo | Journal of Biomechanics 38 (2005) 587-594 589

where the matrix form of Eshelby’s tensor S is given
with their components,

Sy =831 =4ui/P, S»p=Sn=4v—-1)/P,
Sy =833 =(5—4v)/P, Su =23 —4v)/P,
Sss = Se6 = 4(1 — v;)/P, 4)

other components vanish, in which P = 8(1 — vy).
Eshelby’s tensor is an important fourth-order tensor in
the averaging scheme of micromechanics and it reflects
the effect of the eigenstrain within an inclusion with
ellipsoidal shape on its surrounding matrix. This tensor
depends on the shape of inclusion and the properties of
the matrix materials and is independent of the material
properties of inclusion. Here the tubule and its
surrounding peritubular dentin are assumed to be
concentric circles, so their Eshelby’s tensors are same.
In (3), A is defined by

A=fi-S) '+ (1 - fp(C' —C)'C' =8, (5)

In the above expression, fi, = A¢/(4i+ Ap) and 1
denotes the unit matrix. Note that the elasticity of
tubules is null in definition (5).

When the elasticity of the matrix deviates consider-
ably from that of inclusion, the two-phase model can be
used to evaluate the interaction between inclusions and
matrix material (Nemat-Nasser and Hori, 1993, p. 343).
In this model, a typical inclusion is embedded in a finite
ellipsoidal region with matrix elasticity and then this
double-inclusion is embedded in an infinite solid. The
volume fraction of the inclusion in that subregion is
equal to the actual one of the inclusions in total
materials. So the average response of the above
subregion can be given to the overall moduli of the
two-phase material. Now consider the tubule—peritubule
composite as one inclusion with elasticity C'P which is
embedded in the matrix material of intertubular dentin,
then the overall elasticity of dentin can be given as
follows:

C!=C{I+/(S—D[(C —CP)'C' -8}
{I JrfpS[(Cl o Ctp)flci o S]fl}fl’ (6)

where f, = (A + Ap)/(A; + Ap + 4;). So the volume
fraction of tubule is fi = A(/(4i + Ap + 4i) = fip * fp.

Substituting (2)—(5) into (6) and solving the following
matrix equation:

D= (CY", (7

the five independent elastic parameters, E, v, E', ¢ and
G', can be expressed by the material parameters of E,,,
E;, vp, vi, fip, fp- Note that during the above derivations,
the inclusions within RVE are implied to be cylindrical,
but in fact the volume fractions f;,, and f,, vary with the
coordinate xy, i.e. fip = fip(x1), fp = fp(x1). In this paper,
the above expressions for RVE are assumed to still be
valid for whole dentin. The overall compliance matrix D

of dentin is dependent on x; and the stress—strain
relationship is varying transverse isotropic.

If the peri- and intertubular dentin are regarded as the
same material, i.e. E, = E; = Epn, vp = v = v, fip(x1) =
1, fo(x1) = fi(x1) = c(x1), the expressions of E, v, E', v
and G coincide with the previous results by Huo and
Zheng (1999).

2.2. The establishment of a 2D finite element model

Wang and Weiner (1998) cut a bucco-lingual section
2mm thick out of the central part of a human canine,
and applied a compressive force of 500 N to the top of
section. By means of a moiré fringe technique, they
presented the displacement distribution, which will be
referred to as Wang—Weiner image in this paper, and
calculated the strain distribution in the section. As their
experiment was simple and was easily simulated, a finite
element model was established with the same geometric
configuration as their work (Fig. 2a). The DEJ in this
FE model had same path as in the model of Wang and
Weiner (Fig. 5b). The bottom of the FE model was
fixed. A load of magnitude 500 N was uniformly applied
at the top of the model. The FE mesh was generated
with 4064 elements and 4183 nodes. All of the
preprocessing, calculating and postprocessing were done
with the software MSC.Patran 2003.

As the diameter of a human tooth is about 8 mm, a
2mm thick slice may be too thick for assuming a 2D
structure. However, building a 3D FEM model with
inhomogeneous and anisotropic constitutive model
requires adequate geometric data in the thickness
direction of slice, e.g. the orientation of tubules and
the position of DEJ, which entail more assumptions.
Considering that the tubules on the front and back

(b)

Fig. 2. (a) The finite element grid and (b) the definitions of
inhomogeneous and anisotropic material properties of the section of
a human tooth. The dentin is uniformly partitioned into six layers
along the tubules. The arrows represent the dentin tubule direction, i.e.
the privileged direction of the transverse isotropy.
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planes of slice are symmetrical to the mid-plane and
their angle diversity is not very great, it will not affect
the computation results greatly to neglect the geometric
information in the slice’s thickness.

Four FE models with different properties of dentin
were established for comparison with Wang—Weiner
image. The material properties of enamel for all FE
models were assigned a Young’s modulus of 80 GPa and
a Poisson’s ratio of 0.3 (Rees and Jacobsen, 1997). Most
researchers ignore the effect of tubules on the mechan-
ical properties of dentin and regard dentin as homo-
geneous and isotropic, that model will be called the HI
Model in this paper. In the HI Model, the elastic
modulus was assigned as 15 GPa and Poisson’s ratio as
0.31 (Rees and Jacobsen, 1997).

In the following, it will be described how to establish
an inhomogeneous and anisotropic FE model of dentin.

To reflect the variation in mechanical properties, the
elements of dentin were equally partitioned into six
layers along the tubules and these layers were assigned
different material properties according to the above
inhomogeneous and anisotropic (IA) stress—strain rela-
tion (Fig. 2b).

Fig. 3 shows the curves of three volume fractions,
Jip(x1), filx1) and f(x;), varying with the normalized
distance, x;/L, where L 1is the length of tubule.
Garberoglio and Brédnnstrom (1976) measured the
diameter and numerical density of tubules in different
locations in dentin. Based on their results, the values of
fiu(x) were calculated. Note that at the wall of the pulp
chamber, the value, f{(0) = 0.32, was directly measured
from the SEM photograph by Garberoglio and Br-
onnstrom (1976). Pashley (1989) assumed the area
occupied by peritubular dentin as three times that of
the tubules, so fp(x1) = 4fi(x1). Within the predentin,
which is close to the pulp cavity, however, there is only
intertubular dentin and no peritubular dentin (Mjor and
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Fig. 3. The curves of three volume fractions fip,, f; and f,, varying with
the normalized distance x;/L (refer to Garberoglio and Bréannstrom,
1976; Pashley, 1989).

Fejerskov, 1986), i.e. f,(0) = f;(0). Therefore, the volume
fraction f,(x;) may be overestimated when Xx; ap-
proaches zero. Now the area ratio of peritubular dentin
was directly measured, i.e. f,(0.5mm) = 0.31, based on
the SEM photograph after decalcification at the position
of 0.5mm from the pulp wall (Garberoglio and Br-
onnstrom, 1976). The values of fi,(x,) can be calculated
by the equation, fi(x1) = fip(x1) * fp(x1).

Kinney et al. (1999) measured the Young’s moduli of
peri- and intertubular dentin as 30 and 15GPa,
respectively. From the nanoindentation testing, Kinney
et al. (1996) showed that the intertubular dentin became
soft approaching either the pulp cavity or the DEJ, but
the hardness of the peritubular dentin remained
constant. This led us to assume the Young’s modulus
of intertubular dentin in layers 1 and 2 towards the pulp
cavity as 5 and 10 GPa and in layer 6 near the DEJ as
10 GPa, respectively. As there were no experimental
values for Poisson’s ratio of peri- and intertubular
dentin, they were assumed to be 0.3 and 0.4, respec-
tively. Poisson’s ratio of intertubular dentin was
assigned the larger value because there are more organic
components in it, e.g. collagen fibrils.

The six material parameters of every layer of dentin,
E,, E;, vy, vi, fip, fp, could be obtained through the above
procedure and then substituted into Eq. (7) to compute
the corresponding effective material parameters. This
FE model is called 74 Model in this paper.

Assuming that the peri- and intertubular dentine were
the same matrix material, Huo and Zheng (1999)
presented a varying transverse isotropic stress—strain
relation of dentin. Based on this theoretical model, the
elastic modulus of matrix material was concluded as
29.5GPa and Poisson’s ratio as 0.44 from their
experiments (Huo et al., 2000). The effective material
parameters of dentin can be calculated by the theoretical
model of Huo and Zheng (1999). This FE model is
called Huo—Zheng Model in this paper.

Kinney et al. (1999) presented a theoretical model in
which the tubule lumen lined by a peritubular dentin
cuff was assumed to be an isotropic cylindrical inclu-
sion. In their paper, the elastic modulus of inclusion, Ej,
was calculated as 22.5 GPa and Poisson’s ratio, v, was
assumed to be 0.25. The elastic modulus of matrix (i.e.
intertubular dentin), E,,, was measured as 15 GPa and
Poisson’s ratio, v, was assumed to be 0.4. Substituting
the above parameters into their theoretical model, the
effective material parameters of dentin can be calcu-
lated. This fourth FE model is called the Kinney Model
in this paper.

In the above four FE models, the I4 Model
considered all the features of dentin’s mechanical
properties based on the presently published experimen-
tal data. The Huo—Zheng Model and the Kinney Model
were both previously published where the former
neglected the difference of peri- and intertubular dentin
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Fig. 4. The effective elastic parameters of dentin at the different normalized distance x;/L for the varying Poisson’s ratios of peri- and intertubular
dentin, v, and v;. E—Young’s modulus in the direction of tubules; G'—shear modulus in the plane of x;x, or x;x3; E'—Young’s modulus within the
isotropic plane; G'—shear modulus within the isotropic plane (= E/[2(1 + v))).

and the latter simply assumed the lumen surrounded by
peritubular dentin as an isotropic inclusion. Now people
usually use the so-called HI Model, which does not
consider the microstructure of dentin at all.

3. Results

Poisson’s ratios of peri- and intertubular dentin, v,
and v;, cannot be measured directly, so its effect on the
effective elastic parameters of dentin should be exam-
ined. Four pairs of v, and v; were presented, i.e. 0.3 and
0.4, 0.1 and 0.4, 0.1 and 0.1, 0.4 and 0.1. The first pair
had been assigned to the /4 FE Model. Other pairs
represented some combinations of v, and v; with larger
difference. All of them were substituted into Eq. (7) to
calculate the effective elastic parameters of dentin at the
different distances from the pulp wall. It can be found
that all the elastic parameters have a similar trend, i.e.
being lowest near the pulp wall and then increasing up
to a platform, finally decreasing near the DEJ (Fig. 4).
This variation trend is very similar to the experimental
hardness result of Wang and Weiner (1998). It is shown
that Young’s moduli £ and E' are negligibly affected by
the different cases of Poisson’s ratios (Figs. 4a and b).

Little effect of Poisson’s ratio v, of peritubular dentin on
shear moduli G’ and G (= E/[2(1 + v)]) was found (Figs.
4c and d). However, the shear moduli obviously change
for varying Poisson’s ratio v; of intertubular dentin at
some positions with a maximum relative difference of
them about 25%. The effective Poisson’s ratio v’ in the
plane of x;x, or x;x3 is also dominated by v; and it
barely varies at the distance from the pulp wall, which is
not shown in the figure.

Fig. 5a is a copy of the fringe pattern of the
longitudinal displacement field from the Wang—Weiner
image. According to the two FE models, HI Model and
IA Model, the isoline images of longitudinal displace-
ment are shown in Figs. 5b and c. The corresponding
results of two micromechanics model, Huo—Zheng
Model and Kinney Model, are presented in Figs. 6a
and b. To compare the distribution pattern of long-
itudinal displacement computed by the different models
of dentin with the fringe image, the contour lines within
the dentin were plotted together (see Figs. 7a and b).

When using the HI Model, it was predicted that the
inner part of dentin had the same ability of transferring
incisal load as the outer part (Fig. 5b). Thus, the
distribution pattern reveals a very flat form in most
regions of dentin (Fig. 7a). Only when approaching the
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Fig. 5. (a) The fringe figure of the Wang—Weiner image (Wang and Weiner, 1998). The calculated compressive strain values (%, the negative sign for
the compressive strain was omitted) at different locations of the sample was given by Wang and Weiner (1998). The tip of tooth crown, which was not
displayed in the original paper, is redrawn by the dash line. The isoline images of longitudinal displacement are calculated by (b) HI Model and (c) I4

Model of dentin.

pulp cavity, is there a slight curving shape for the isoline
due to the effect of the pulp chamber.

The IA Model considered the more porous character
of dentin near the pulp wall and was constructed so that
the intertubular dentin near the DEJ and the pulp wall
had softer material properties. Approaching pulp cavity,
the IA Model predicted obvious curving patterns for
longitudinal displacement isolines within dentin (Fig.
5c). Futhermore, the displacement isolines for the 74
Model had a slight turn downwards in the dentin near
the DEJ. It can be found that the FE analysis for the 74

Model showed very similar fringe patterns to Wang—
Weiner image (Fig. 7a). These characters of isoline
pattern were not displayed by the HI Model.

When the stress—strain relation of dentin by Huo and
Zheng (1999) was used (Fig. 6a), the displacement field
had similar curving patterns to Wang—Weiner image
within the center part of dentin (Fig. 7b); but a turn
downwards of displacement isolines near the DEJ was
not predicted since the softer properties of intertubular
dentin near the DEJ was not considered. Being similar
to Huo—Zheng Model, the Kinney Model could not
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predict the turn downwards near the DEJ (7b). It was
significantly distinguished from Wang—Weiner image in
that the longitudinal displacement field of the Kinney
Model had a flat form in most regions of dentin.

The above FE results show that the /4 Model most
closely matched the physical properties of dentin shown
by Wang—Weiner image. Other models, such as HI,
Huo—Zheng and Kinney ones, ignored some features of
the mechanical properties of dentin more and less.
Therefore, these models gave different patterns of
longitudinal displacement from the moiré fringe image.

4. Discussions

Two averaging schemes, i.e. double-inclusion method
and two-phase model, are used in this paper. An
analytical expression of the overall elasticity of dentin
is obtained, but the solved expressions of the elastic
parameters are too long to be written out integrally in
this paper. In fact, the former method is the generalized
one of the latter. In the two schemes, the mathematical
derivation is exact. Interaction between the inclusions
and their immediate surrounding matrix material of

Fig. 6. The isoline images of longitudinal displacement are calculated
by (a) Huo—Zheng Model and (b) Kinney Model of dentin.

e Wang-Weiner image
SN e 1A model

g, — HI model
> : e\ ——-e—= Huo-Zheng model

..................... anney model

different elasticity is directly included in the models
(Nemat-Nasser and Hori, 1993, p. 340). The outmost
region, however, is assumed to be an infinite matrix
material for these two methods, so they may magnify the
overall elasticity of the composite when the volume
fraction of tubules is large. Therefore, the curvature of
displacement isolines close to the pulp cavity in the
actual case may be greater than that in the computation
results of this paper.

By this inhomogeneous and anisotropic theoretical
model of dentin, the FE analysis results of longitudinal
displacement were very similar to a previous moiré
fringe results in two aspects, i.e. highly curving close to
the pulp cavity within the central section of dentin and
slightly turning downwards near the DEJ. There are two
characters of material properties near the pulp cavity,
i.e. being more porous and softer, which contribute to
the curving patterns there. Ketterl (1961) measured the
value of 76% for incisors, while Schug-Kosters and
Ketterl (1973) obtained a larger value of 79%. However,
several reports gave much smaller volume fractions of
14% to 32% (Tronstad, 1973; Garberoglio and Br-
Onnstrom, 1976; Schilke et al., 2000). The width of
collagen and proteoglycan-rich predentin matrix at the
boundary of the pulp chamber is thought to be about
50 um thick. So it is believed that even if there are higher
volume fractions of tubules near the pulp chamber, their
influence fall off rapidly away from the pulp wall, due to
the need of enduring the occlusal loading. When
establishing the /4 FE Model, the elastic modulus of
intertubular dentin was defined as smaller values, up to
5 GPa close to the pulp wall and 10 GPa near the DEJ.
The softer material properties of intertubular dentin in
the above regions contribute to the curving patterns
near the pulp cavity and lead to turning downwards of
displacement isolines near the DEJ. When the softer
properties of peri- and intertubular dentin were ignored,
ie. E, and E; were assumed to be constant, a turn
downwards of displacement isolines near the DEJ
disappeared and the curvatures of them towards the

Fig. 7. The comparison of the contour lines of longitudinal displacement within the dentin computed by different FE models with the ones obtained

from the Wang—Weiner image.
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pulp cavity became less. So the inhomogeneity has
greater impact to the distribution pattern than the
anisotropy (also refer to Huo and Zheng, 2002).

The experimental data for the Young’s moduli of
peri- and intertubular dentin along the thickness of
dentin are still imperfect. Some macroscopic tests had
been done to study the hardness of dentin from the DEJ
towards the pulp cavity (Smith and Cooper, 1971;
Pashley et al., 1985; Watanabe et al., 1996; Lertchir-
akarn et al., 2001). Using these corresponding methods,
the mechanical properties of peri- and intertubular
dentin could not be separately determined. Owing to the
development of atomic force microscopy fitted with a
diamond stylus, however, one can look at the mechan-
ical properties of intertubular dentin separated from
peritubular dentin. Some studies showed that the
Young’s modulus and hardness of peritubular dentin
did not vary with depth and the hardness of intertubular
dentin in DEJ was higher than near the pulp (Kinney
et al., 1999; Marshall et al., 2001). But more detailed
testing for the Young’s moduli along the tubule’s
direction may still be necessary.

Poisson’s ratios of peri- and intertubular dentin have
not yet been experimentally determined because of their
small size, but an experiment may be designed by the
theoretical model developed in this paper. For example,
a small cube extracted from dentin can be compressed
parallel and perpendicular to the tubule directions by a
specially modified atomic-force microscope and the
corresponding load—displacement measurements can be
easily obtained. This would permit two Poisson’s ratios
to be obtained by solving the two parameter equations
along the directions parallel and perpendicular to the
tubule. The use of accurate Poisson’s ratio would
improve the FE simulations.
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