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Abst ract : The problem of a Griffith crack in an unbounded orthotropic functionally graded

material subjected to antipole shear impact was studied. The shear moduli in two directions

of the functionally graded material were assumed to vary proportionately as definite

gradient . By using integral transforms and dual integral equations , the local dynamic stress

field was obtained. The results of dynamic stress intensity factor show that increasing shear

moduli’s gradient of FGM or increasing the shear modulus in direction perpendicular to

crack surface can restrain the magnitude of dynamic stress intensity factor .
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I nt rod uction

In recent years , great attentions have been paid to the research of Functionally Graded

Materials ( FGM ) . From the viewpoints of applied mechanics , FGM are non- homogeneous

solids. The non- homogeneity of FGM has a great influence on their mechanical behavior ,

especially when the components made of FGM involve some flaws . There has been a considerable

bulk of studies concentrated on this influence[1～3 ] . However , most of the studies are mainly

concentrated on static problems . Reports on dynamic fracture mechanics of FGM are very few[4 ] .

In fact , the components made of FGM would be inevitably subjected to time dependent loadings .

Therefore , the knowledge of the dynamic fractural behavior of this kind of components is essential

156

Applied Mathematics and Mechanics
( English Edition , Vol . 21 , No. 6 , Jun 2000)

Published by Shanghai University ,
Shanghai , China

Ξ Receive d dat e : 1999-01-18 ; Revise d dat e : 1999-12-15

Foundation it e m : the National Natural Science Foundation of China (19772029) ; the National

Natural Science Key Project Foundation of China (19891180)

Biograp hy : Li Chunyu (1965～) , Associate Prefessor , Dorctor



to achieving an in- depth understanding of the failure mechanisms of FGM.

On the other hand , up to now , most of the existing solutions to crack problems related to

FGM usually assume that the material is isotropic elastic . However , the nature of the techniques

used in processing the FGM are seldom isotropic . For example , processing by a plasma spray

technique usually leads to a lamellar structure and processing by electron beam physical vapor

deposition generally lead to a highly columnar structure[5 ] . Thus , it is necessary to consider the

anisotropic character of the FGM. Recently , Ozturk and Erdogan studied the mode I static crack

problem in an inhomogeneous orthotropic medium[5 ] . The model in their paper was an

exponential form. The singular integral equation technique was used in their study.

In this paper , we studied the problem of a finite crack in an orthotropic FGM subjected to

antipole shear impact by applying the method of integral transforms and dual integral equations .

The main objective is to obtain the local dynamic stress field and to investigate the effects of

material non- homogeneity and orthotropy on the dynamic stress intensity factor .

1 　Mate rial Prop e rty Model

Due to the mathematical complexity , some simplifications are necessary for the tractable

analysis of non- homogeneous materials under impact loadings . However , because of the difficulty

in solving ordinary differential equations , the models have been proposed and extensively used to

describe the variation of the shear modulus , such asμ( y) = μ0 exp (γy) [1～3] andμ( y) = μ0 (1 +

c | y | ) [6 ] , can not be applied to the problems of dynamic response . After deep- going

consideration , we find that the application of following model can solve the problem.

μx ( y) = (μx) 0 (1 +α| y | ) 2

μy ( y) = (μy) 0 (1 +α| y | ) 2

Fig. 1 　A crack in an orthotropic funct-

ionallygraded material subjected

to antipole shear impact

Consider an unbounded functionally graded

material as shown in Fig. 1. The coordinates x and y

are assumed as the principal axes of orthotropy. The

shear moduliμx andμy are assumed to be functions of

y only , and vary proportionately as

μx ( y) = (μx) 0 (1 +α| y | ) 2 , (1)

μy ( y) = (μy) 0 (1 +α| y | ) 2 , (2)

whereαare constant (α > 0) . (μx) 0 and (μy) 0 are

the shear moduli at y = 0.

For present consideration , it is assumed that the

mass density of FGM is constant .

2 　For m ulation of t he Proble m

As shown in Fig. 1 , assume a finite crack of

length 2 a is situated in y = 0 plane and subjected to antipole shear impact . Let the components of

the displacement in the x , y and z directions be labeled by ux , uy and uz , respectively. For

antipole shear motion , ux and uy vanish everywhere and uz is a function of x , y and t , i . e . ,

ux = uy = 0 , 　uz = w ( x , y , t) , (3)

where t is time . The two nonvanishing stress componentsτxz andτyz are
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τxz = μx
5w
5 x

, 　τyz = μy
5w
5 y

, (4)

where the shear moduliμx , μy are assumed to be expressed by Eqs . (1) and (2) .

The equation of motion can be written as

52 w
5 x2 +

μy ( y)

μx ( y)
52 w
5 y2 +

μ′
y ( y)

μx ( y)
5w
5 y

=
ρ

μx ( y)
52 w
5 t2 , (5)

where μ′
y ( y) is the derivative of μy ( y) andρis the mass density of the FGM.

Suppose that the material is initially at rest . At time t = 0 , an antipole shear stress of

magnitudeτ0 is suddenly applied to crack surfaces and maintained at the same constant value

thereafter . Hence , the boundary conditions are given as follows :

τyz ( x ,0 , t) = - τ0H( t) , 　　0 ≤| x | < α; t > 0 , (6a)

w ( x ,0 , t) = 0 , | x | ≥ a ; t > 0 , (6b)

where H( t) is the Heaviside unit step function. The initial conditions are zero.

3 　De rivation of I ntegral Eq uation

The standard Laplace transform on f ( t) is

f 3 ( p) =∫
∞

0
f ( t) e - ptd t , (7a)

whose inversion is

f ( t) =
1

2πi∫Br
f 3 ( p) e ptd p , (7b)

where Br denotes the Bromwich path of integration , which is a line on the right- hand side of the

P-plane and parallel to the imaginary axis . Applying Eq. (7a) to Eq. (5) yields the transformed

equation

52 w 3

5 x2 +
μy ( y)

μx ( y)
52 w 3

5 y2 +
μ′

y ( y)

μx ( y)
5w 3

5 y
=

ρp2

μx ( y)
w 3 . (8)

Considering the symmetry , it suffices to consider only the first quadrant of the x-y plane Forward ,

the Fourier cosine transform defined by

f c ( s) =∫
∞

0
f ( x) cos ( sx) d x , (9a)

f ( x) =
2
π∫

∞

0
f c ( s) cos ( sx) d s , (9b)

is applied to the space variable x . Let

w 3 ( x , y , p) =
2
π∫

∞

0
U ( s , y , p) cos ( sx) d s , (10)

then the Eq. (8) can be transformed into

μy ( y)

μx ( y)
52 U ( s , y , p)

5 y2 +
μ′

y ( y)

μx ( y)
5 U ( s , y , p)

5 y
- s2 +

ρp2

μx ( y) U ( s , y , p) = 0. (11)

Substituting Eqs . (1) and (2) into Eq. (11) , we obtain

52 U ( s , y , p)

5 y2 +
2α

1 +αy
5 U ( s , y , p)

5 y
- S2 +

ρp2

(μy) 0 (1 +αy) 2 U ( s , y , p) = 0 , (12)
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where S = s (μx) 0/ (μy) 0 . By defining

X = S (1 +αy) , 　Y = (1 +αy) 1/ 2 U. (13)

Eq. (12) can be rewritten as

d2 Y
d X2 +

1
X

d Y
d X

-
1
α2 +

β2

X2 Y = 0 , (14)

where

β =
1
4

+
ρp2

(μy) 0α
2 . (15)

Eq. ( 14 ) is a modified Bessel differential equation. From the solution of Eq. ( 14 ) and

considering the regularity condition at y →∞, the solution of Eq. (12) can be expressed as

U ( s , y , p) = A ( s , p) (1 +αy) - 1/ 2 Kβ (1 +αy) S/α , (16)

where Kβ( 　) is the modified Bessel function of the second kind.

Substituting Eq. (16) into Eq. (10) , we obtain

w 3 ( x , y , p) =
2
π∫

∞

0
A ( s , p) (1 +αy) - 1/ 2 Kβ (1 +αy)

S
α cos ( sx) d s . (17)

Substituting Eq. (17) into the Laplace transform of the stressesτyz andτxz in Eqs . (4) , we obtain

　　　　τ3
yz ( x , y , p) = μy ( y)

2
π∫

∞

0
A ( s , p) -

α
2

(1 +αy) - 3/ 2 Kβ (1 +αy)
S
α +

S (1 +αy) - 1/ 2 K′
β (1 +αy)

S
α cos ( sx) d s , (18a)

　　τ3
xz ( x , y , p) = - μx ( y)

2
π∫

∞

0
A ( s , p) (1 +αy) - 1/ 2 ×

Kβ (1 +αy) S/α sin ( sx) sd s . (18b)

In the Laplace transform domain , the conditions on the plane y = 0 becomes

τ3
yz ( x ,0 , p) = - τ0/ p , 　　0 ≤ x < a , (19a)

w 3 ( x ,0 , p) = 0 , 　　　　x ≥ a. (19b)

From Eqs . (17) , (18a) and the conditions Eq. (19) , a pair of dual integral equations are obtained as

　　　　　　∫
∞

0
B ( s , p) cos ( sx) d s = 0 , 　　x ≥ a , (20a)

　　　　∫
∞

0
sB ( s , p) G( s , p) cos ( sx) d s =

πτ0

2 (μy) 0 p
, 　　0 ≤ x < a , (20b)

where

B ( s , p) = A ( s , p) Kβ S/α , (21)

G( s , p) =

α
2

Kβ
S
α - S K′

β
S
α

s Kβ
S
α

. (22)

The dual integral Eqs . (20) can be solved by applying the method of Copson[7 ] , the solution of

Eqs . (20) is found as follows
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B ( s , p) =
πτ0 a2

2 (μy) 0 p∫
1

0
ξΦ3 (ξ, p)J 0 ( saξ) dξ, (23)

where J 0 is the zero- order Bessel function of the first kind. The functionΦ3 (ξ, p) is governed

by a Fredholm integral equation of the second kind ,

Φ3 (ξ, p) +∫
1

0
Φ3 (ξ, p) M (ξ,η, p) dη = ξ. (24)

The kernel function M (ξ, η, p) in Eq. (24) is

M (ξ,η, p) = ξη∫
∞

0
s G s/ a , p - 1 J 0 ( sξ)J 0 ( sη) d s . (25)

The Fredholm integral Eq. (24) can be solved numerically.

4 　Dyna mic St ress Fiel d A rou n d t he Crack Tip

Integrating B ( s , p) in Eq. (23) by parts , it gives

B ( s , p) =
πτ0 a

2 (μy) 0 p
1
s

Φ3 (1 , p)J 1 ( sa) -

∫
1

0
ξJ 1 ( saξ)

d
dξ[ξ- 1/ 2Φ3 (ξ, p) ]dξ . (26)

From Eqs . (26) , (21) and Eqs . (18) , we obtain

τ3
yz ( x , y , p) = γ

τ0 aμy ( y)
(μy) 0

Φ3 (1 , p)
p ∫

∞

0

(1 +αy) - 1/ 2 K′
β (1 +αy) S/α

Kβ S/α ×

J 1 ( sa) cos ( sx) d s + ⋯, (27a)

τ3
xz ( x , y , p) = -

τ0 aμx ( y)

(μy) 0

Φ3 (1 , p)
p ∫

∞

0

(1 +αy) - 1/ 2 Kβ (1 +αy) S/α
Kβ S/α ×

J 1 ( sa) sin ( sx) d s + ⋯, (27b)

where 　γ = (μx) 0/ (μy) 0 .

Noting that the integrands are finite and continuous for any given values of s , the divergence

of the integrals at the crack tips must be due to behavior as s →∞. Carrying out the expansion for

large s and considering the following asymptotic behavior of Kβ( x) and K′β( x) when x →∞,

Kβ( x) =
π
2 x

e - x 1 + O
1
x

, (28a)

K′
β( x) = -

π
2 x

e - x 1 + O
1
x

, (28b)

we obtain the lower- order terms of the stresses

τ3
yz ( x , y , p) = - γ

τ0 aμy ( y)

(μy) 0

Φ3 (1 , p)
p

(1 +αy) - 1∫
∞

0
J 1 ( sa) exp ( - Sy) cos ( sx) d s + ⋯ =

- γΦ3 (1 , p)
p

τ0 a (1 +αy)∫
∞

0
J 1 ( sa) exp ( - Sy) cos ( sx) d s + ⋯, (29a)

τ3
xz ( x , y , p) = -

τ0 aμx ( y)

(μy) 0

Φ3 (1 , p)
p

(1 +αy) - 1∫
∞

0
J 1 ( sa) exp ( - Sy) sin ( sx) d s + ⋯ =
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-
(μx) 0

(μy) 0

Φ3 (1 , p)
p

τ0 a (1 +αy)∫
∞

0
J 1 ( sa) exp ( - Sy) sin ( sx) d s + ⋯. (29b)

Define complex variable z0 = x + iγy , we obtain

∫
∞

0
J 1 ( sa) exp (i z0 s) d s = -

1

2 r1 a

1

cosθ1 + iγsinθ1

+ O ( r0
1) . (30)

The polar coordinates r1 andθ1 are defined in Fig. 1.

Note that the integrals in Eqs . (29a) and (29b) are

∫
∞

0
J 1 ( sa) exp ( - Sy) cos ( sx) ds = Re ∫

∞

0
J 1 ( sa) exp (i z0 s) d s , (31a)

∫
∞

0
J 1 ( sa) exp ( - Sy) sin ( sx) ds = Im∫

∞

0
J 1 ( sa) exp (i z0 s) d s . (31b)

Then we obtain the local stress field

τ3
yz ( r1 ,θ1 , p) =

K3
Ⅲ( p)

2πr1

Re
1

cosθ1 + iγsinθ1
+ O ( r0

1) , (32a)

τ3
xz ( r1 ,θ1 , p) = -

K3
Ⅲ( p)

2πr1

Re
iγ

cosθ1 + iγsinθ1
+ O ( r0

1) . (32b)

The Laplace transform of the dynamic stress intensity factor K3
Ⅲ( p) in Eqs . (32) is

K3
Ⅲ( p) =

(μx) 0

(μy) 0
τ0 πa

Φ3 (1 , p)
p

, (33)

in which Φ3 (1 , p) is the value of Φ3 (ξ, p) evaluated at the crack tip corresponding toξ = 1.

The dynamic stress intensity factor in time domain can be obtained by

K3
Ⅲ( t) =

(μx) 0

(μy) 0
τ0 πa

1
2πi∫Br

Φ3 (1 , p)
p

e ptd p. (34)

5 　Res ults a n d Discussion

The functional dependence of the stresses on r1 andθ1 as shown in Eqs . (32) reveals that the

local dynamic stresses near the crack tip in orthotropic functionally graded materials also possess

the inverse square root singularity in terms of r1 and that the angular distribution inθ1 is the same

as the case in orthotropic homogeneous materials[8 ] . Eq. (34) shows that the expressional form of

the dynamic stress intensity factor for orthotropic functionally graded materials is different from

that for homogeneous materials . A coefficient (μx) 0/ (μy) 0 is multiplied in this case for

orthotropic FGM. Thus , it is clear that the influence of the material orthotropy is significant .

By using the numerical Laplace transform inversion scheme described by Miller and Guy[9 ] ,

the dynamic stress intensity factor expressed by Eq. (33) can be evaluated. The influences of

non-homogeneity parameter αa and orthotropic parameter γ on the normalized dynamic stress

intensity factor KⅢ( t) /τ0 πa are shown in Fig. 2 , where ( cy) 20 = (μy) 0/ρ. It is observed

that all the curves reach a peak and then oscillating about the static values with decreasing

magnification. For definite values of γ, the values of the dynamic stress intensity factor are less
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for larger values ofαa. For definite values ofαa , the values of the dynamic stress intensity factor

are larger for larger values of γ. This means that the increase of the shear moduli’s gradients in

FGM can always reduce the magnitude of dynamic stress intensity factor no matter how the

orthotropy is . The increase of the shear modulus in direction perpendicular to crack surface is

beneficial to reducing the dynamic stress intensity factor in orthotropic FGM.

Fig. 2 　The variations of KⅢ( t) at different non- homogeneity and orthotropy

6 　Concl usion

In this paper , an orthotropic FGM with a finite crack under antipole shear impact is studied.

The theoretical analysis show that local stress field around the crack tip in an orthotropic FGM is

found to be similar to that in an orthotropic homogeneous material . The dynamic stress intensity

factor obtained in time domain show that the non- homogeneity and orthotropy of FGM has a

considerable influence on the fracture behavior of anisotropic FGM. The peak values of the

dynamic stress intensity factor decrease with the increasing shear moduli’s gradient of FGM.

Increasing the shear modulus in direction perpendicular to crack surface can also restrain the

magnitude of dynamic stress intensity factor .
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