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THE KAPITZA RESISTANCE ACROSS GRAIN BOUNDARY
BY MOLECULAR DYNAMICS SIMULATION

Qiheng Tang
LNM, State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics,
Chinese Academy of Sciences, Beijing, China

Yugui Yao
Institute of Physics, Chinese Academy of Sciences, Beijing, China

Nonequilibriummolecular dynamics (NEMD) simulations are performed to calculate thermal

boundary resistance that arises from heat flow across Si grain boundary. The environment-

dependent interatomic potential (EDIP) on crystal silicon is adopted as a model system. The

issues are related to nonlinear response, local thermal equilibrium, and statistical averaging.

The tilt grain boundaries S5 and S13 are simulated, and the values of thermal boundary

resistance by nonequilibrium molecular dynamics are compared with those by Maiti et al.

(Solid State Communications, vol. 102, 1997). Using the disperse relation of EDIP potential,

an average transmission coefficient of thermal conductivity across boundary is calculated.

KEY WORDS: the Kapitza resistance, grain boundaries, nonequilibrium molecular

dynamics, phonons, thermal conduction

INTRODUCTION

With the dimension of electronic and mechanical devices approaching the nan-
ometer scale, a demand for greater scientific understanding of thermal transport in
nanoscale devices and individual nanostructures has been created. Some experimental
and theoretical studies have been done to predict or measure thermal conductivity of
nanowire, thin films, and periodic film structures [1–6]. Although current experimental
techniques can study heat transfer at small scales, the spatial resolution is larger than
100 nm [7–9]. Moreover, interpretation of experimental results remain difficult because
typically the different contribution of individual defects, such as impurities, grain
boundaries, etc., cannot be deconvoluted clearly. Even for an individual grain bound-
ary, Cahill et al. [10] pointed out that the interaction of phonons with a single interface
still offers significant challenges to both experiments and theory/simulation.

There are currently two general theoretical frameworks for understanding the origin
of the interfacial resistance for phonon-mediated thermal transport [11]. One is the
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acoustic mismatch model (AMM), in which the scattering of phonons at interface arises
from the difference in the acoustic impedances of the materials on the two sides; the other
is the diffuse mismatch model (DMM), which assumes that all incident phonons are
randomly scattered by the interface. These two theories can successfully explain some heat
transport of the mesoscale polycrystalline systems, but it can not take into account the
atomistic structure of the interfaces fromwhich the phonon scattering actually takes place.

There is a increasing demand to develop a method suitable for measuring
thermal conductivity for the design of microelectronic devices. The molecular
dynamics (MD) simulation method may provide a promising alternative technique
both to calculate thermal conductivity and to understand defect mechanisms. MD
now is extensively applied to calculate thermal properties because there is no need for
an a priori understanding of heat transfer. Many MD simulations have been per-
formed on the heat transfer of different structures, such as liquids [12], solids [13],
solid–solid interface [14], and liquid–solid interface [15, 16].

Maiti et al. [14] used the direct method to perform the first simulations of
thermal transport through symmetric tilt grain boundaries. The simulation shows a
significant interfacial resistance. Schelling et al. [17] computed the Kapitza resistance
of three twist grain boundaries in silicon by nonequilibrium molecular dynamics
(NEMD) method and found that scattering depends strongly on the wavelength of
the incident wave packet.

In the present article, NEMD is used to study heat transfer in the crystal silicon
with the tilt grain boundary. First, we detail the simulation method, then we show the
simulation results and report our conclusions.

COMPUTER SIMULATION

Interatomic Potential

Crystalline silicon is a semiconductor material extensively used in MEMS and
integrated circuits. Heat conduction in semiconductor materials is dominated by
phonon transport, and the contribution to heat conduction by the electrons is negli-
gible. There are several categories of existing potential models for silicon, including
the Tersoff type, the Stillinger-Weber (S-W) two- and three-body potentials [18], and
others. The S-W potential has been used to simulate the thermal conductivity by
several authors. Justo et al. [19] proposed the environment-dependent interatomic
potential (EDIP), which can better describe the properties of silicon, such as the
melting temperature and the thermal expansion coefficient. Therefore, EDIP potential
is selected to simulate heat transfer in our work.
The EDIP potential can be expressed as

Ei ¼
X
j 6¼i

V2 rij;Zi

� �
þ
X
j6¼i

X
k 6¼i;k>j

V3 rij; rik;Zi

� �
ð1Þ

where V2(rij, Zi) is an interaction between atoms i and j representing pairwise bonds,
and V3(rij, rik, Zi) is the interaction between atoms i, j, and k centered at atom i
representing angular forces that can be defined by

V2 r; Zð Þ ¼ A
B

r

� �p

�p Zð Þ
� �

exp
�

r � a

� 	
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and

V3 rij; Tik; Zi

� �
¼ g rij

� �
g rikð Þh lijk; Zi

� �
where p Zið Þ ¼ e��Z2

i ; lijk ¼ cos �ijk

� �
¼ r!ij; r!ik=rijrik; and Zi is the effective coordina-

tion number, defined by

Zi ¼
X
m 6¼i

f rimð Þ

and f(rim) is a cutoff function that measures the contribution of neighbor m to the
atom i,

f rimð Þ ¼
1 rim � c

exp �
1�x�3

� �
; c � rim � a;

0 rim � a

8<
:

where x ¼ (r – c)/(a – c), g(rij) is the radial function given by

g rij

� �
¼ exp

�

rij � a

� �

and goes to zero smoothly at the cutoff distance a. The values of parameters of EDIP
potential such as A, B, p, b, s, a, c, l, �, Q0, m, and a are listed in Table 1.

Simulation Model

Since interfaces play a critical role in nanoscale thermal transport, an interface
constitutes an interruption in the regular crystalline lattice on which phonons propa-
gate. Many authors have suggested different simulation techniques to calculate the
heat transfer. Some simulation results can be compared to those of experiments or
theoretical analysis [20, 21] that activate one’s interests of studies and application. The
thermal gradient is applied along the heat flow direction by maintaining the two end
sections at constant but different temperatures T1 and T2. Maiti et al. [14] calculated
the Kapitza resistance of symmetric tilt grain boundary. In their simulation, the
periodic boundary conditions are along the other two directions. Jund and Jullien
[20] studied the thermal conductivity of vitreous silica, the techniques of the periodic
boundary condition along x, y, z directions and the net kinetic energy increased/
decreased by an amount �E in a thin slab are applied. Based on a similar NEMD
method Schelling et al. [17] studied the Kapitza resistance of three twist rain bound-
aries. Using the same simulation technique as that of Jund and Jullien, the tilt grain
boundaries S5 and S13 are simulated in the present article.

Table 1 Parameters in EDIP potential [19] for silicon

A ¼ 7.9821730 (eV) B ¼ 1.5075463 (eV) r ¼ 1.2085196

a ¼ 3.1213820Å c ¼ 2.5609104Å s ¼ 0.5774108Å

l ¼ 1.4531008eV � ¼ 1.1247945Å Z ¼ 0.2523244

Q0 ¼ 312.1341346 m ¼ 0.6966326 b ¼ 0.0070975

a ¼ 3.1083847
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Figure 1 is a schematic of a model system for heat conduction with a three-
dimensional periodic simulation cell. A simulation system of parallelepiped cells with
two symmetric tilt grain boundaries is selected in this study. The size of simulation cell
is Lx, Ly, and Lz, respectively. Suppose that the heat transfer is along x direction, the
size in x direction is larger than that in other directions. Figure 2 is atomistic config-
uration, it contains two grains misoriented with respect to each other by symmetric tilt
rotation by some angle along [001] direction to generate two crystallographically
boundaries, labeled GB 1 and GB 2. Their fully relaxed zero-temperature starting
structures are obtained by static iterative energy minimization.

Figure 1. Schematic representation of three-dimensional periodic simulation cell. The simulation cell is

parallelepiped with lengthLx,Ly, andLz. The heat flow is along the x direction. There are two symmetric tilt

boundaries and a slab of thickness d at x ¼ Lx/2 intowhich energy�E is added; likewise, in the slab at x ¼ 0,

energy �E is removed.

Figure 2. Atom configurations for simulation system. (a) (001) S 5 and (b) (001) S 13.
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To calculate the temperature gradient, we divide the simulation cell into j
slices along x direction. The temperature of particles in the thin slice is calculated
at every iteration. The instantaneous temperature in each slice is calculated using
the formula

TMDð Þj¼
XNj

i¼1
miv

2
i

* +
=3Nj�B ð2Þ

where ,. denotes statistical averaging overall of the simulation time, kB is the
Boltzmann constant, Nj is the atomic number in slice j, (TMD)j is the temperature in
the jth slice, and mi and vi are the ith atom mass and velocity, respectively.

Simulations are of two stages. The first stage is the constant-temperature simu-
lation, in which the temperature is maintained at constant value using weak coupling
scheme [22] with a coupling time of 200,000 MD steps. �t ¼ 0.539 � 10�15S. The
second stage is a constant-energy one. After equilibrium, a heat flux is imposed on the
system along x direction. A small amount of kinetic energy �E is added in a thin slab
centered at x ¼ Lx/2 and removed from a slab of the same thickness centered at x ¼ 0.
Our simulations display that the distance between source and sink should be Lx/2
because of periodic boundary conditions. Each particle velocity in the source and sink
regious is scaled by the same factor a, which is derived from an amount of net kinetic
energy �E increased or decreased. To avoid an artificial drift of the kinetic energy,
conservation of the total momentum in the source/sink slices is required. The velocity-
rescaled arithmetic of Jund and Jullien [20] is used here.
By imposing the heat transfer in this manner a constant heat flux Jx can be calculated
[23]

Jx ¼ ��= 2LyLz�t
� �

ð3Þ

The temperature is calculated by Eq. (2) and temperature gradient is obtained. The
relation between the current Jx and the temperature discontinuity at the interface �T
is given as [17]

Jx ¼ ���T ð4Þ

where sK is known as the Kapitza conductance. The Kapitza resistance R� ¼ 1
��

is a
measure of the resistance of an interface to the transport of heat through it.

RESULTS AND DISCUSSION

The resulting temperature profiles are shown in Figure 3. The system dimensions
are 340 Å � 12.15 Å � 10.86 Å for (001)S5 boundary, and the length Lx ¼ 340 Å is
divided into 32 slices. The size of each slice is 10.625 Å� 12.15 Å� 10.86 Å. The total
number of atoms is 2224, about 69 atoms per slice. Similarly, 443 Å� 13.84 Å� 10.86
Å for (001)S13, and the length Lx ¼ 443 Å is divided into 40 slices for (001)S13
boundary. The total number of atoms is 3316, about 83 atoms per slice. The equili-
brium temperature is 500 K.

According to the analysis ofMaiti et al. [14], if there are more than 30 atoms in a
slice, these would correspond to 3000 phonon scattering events in 1 ns, and the local
thermal equilibrium can be obtained in the slice. A test of double slice number for
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(001)S13 is carried out, 80 slices are obtained, about 42 atoms per slice, temperature
discontinuity will change a little, less than that of about 6%.

A nonlinear temperature profile is observed near regions of the heat source or
heat sink, which has been attributed by the strong phonon scattering [20, 22]. The data
of Figure 4 come from that of Figure 3. From Figure 4(a) and (b) temperature
discontinuity 86 K and 84 K are calculated, respectively, and the average temperature
�T ¼ 85 K. A suitable �E is taken as 1.2% of kBT, the energy increment
�E ¼ 0.000517eV is adopted in our simulations, and the heat flux Jx ¼ 58.22 � 109

(J/m2s) and the thermal conductivity of about 0.685 (GW/m2K) are obtained from
Eqs. (6) and (7) for (001)S5 boundary. Similarly, for (001)S13 boundary, fromFigures

Figure 3. Typical temperature profiles. (a) 340 Å � 12.15 Å � 10.86 Å for (001) S 5 boundary; (b) 443 Å �
13.844 Å � 10.86 Å for (001) S 13. A nonlinear temperature profile observed near the regions of the source

and sink.
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Figure 4. (a), (b) Typical temperature profiles for S 5 boundary; (c), (d) for S 13 boundary.
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4(c) and (d) temperature discontinuities of 90 K and 94 K are calculated, and the
average temperature �T ¼ 92 K for (001)S13 boundary, Jx ¼ 51.11 � 109 (J/m2s)
and the thermal conductivity of about 0.562 (GW/m2K).

It should be noted that the slice j temperature (TMD)j is obtained from Eq. (2),
which is commonly used in MD simulation; however, it is a classical formula valid
only at very high temperature ðT � TDebyeÞ, where TDebye ¼ 645 K is Debye tempera-
ture for silicon. In case the system average temperature (T ¼ 500 K) is lower than the
Debye temperature, it is necessary to apply a quantum correction. Because the system
energy from classical statistics should equal to that from the quantum description,

3NjkB TMDð Þj¼
Z!D

0

Dj !ð Þnj !;Tð Þ�h!d! ð5Þ

in which Dj(o) is the density of states, nj(o, T) is the phonon occupation number, o is
the phonon frequency, and �h the Planck’s constant. From Eq. (4), we deduce the real
system temperature T appearing in the function n(o, T). Since the temperature
gradient in the Fourier law must also be corrected, the thermal conductivity k should
be rescaled by the @TMD/@T factor obtained from Eq. (4). When the system tempera-
ture is 500 K, the correction coefficient @TMD/@T is nearly 1. The result given by Volz
and Chen [24] shows that the influence of quantum correction on the thermal con-
ductivity is not significant, and our calculations reach the same conclusion.

Figure 5 shows the evolution of time-averaged temperature for slice j ¼ 8.15 nm,
j ¼ 19 nm, j ¼ 29.9 nm, and j ¼ 40.73 nm. Initially the system is in the unstable states,
and temperature varies significantly for the first 300,000MD steps, about 0.17 ns. The
system reaches steady state at time greater than 1,000,000 MD steps, about 0.54 ns.
This result indicates that 1.08 ns simulation time is a long enough to obtain time-
averaged temperature profiles. It means that the local thermal equilibrium is reached
within every slice region at 1 ns.

Figure 4. Continued.
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By applying for a lattice dynamical model, we may analyze the Kapitza con-
ductance theoretically. The Kapitza conductance can be expressed as the temperature
derivative of the phonon heat current density across the interface [14]

�K ¼
X
	

Z
vx>0

d3q

2
ð Þ3
�h! 	; qð Þvxð	; qÞ

@n Tð Þ
@T

t 	; qð Þ ð6Þ

where t(l,q) is the transmission coefficient of phonon, and nx is the phonon group
velocity normal to the boundary. The integration is over the entire Brillouin zone.

Calculating t(l,q) from phonon-matching equations is not straightforward for
the case of a grain boundary. Once sK values are obtained from MD simulation, one
can estimate an average transmission coefficient

< t >¼ �K=�max
K ð7Þ

Taking t l; qð Þ ¼ 1; �max
K

is obtained from Eq. (6). The phonon dispersion relation of

EDIP potential is used in Eq. (6). Applying for dynamical matrix of EDIP potential,
we can obtain the phonon dispersion relation. The curves of frequency o and group
velocity n versus wave vector are plotted in Figure 6 and Figure 7.

�max
K
¼ 1:2 GW=m2Kð Þ is obtained from Eq. (6). So the average transmission

coefficient , t . ¼ 0.57 and 0.463 for (001) S5 and (001) S13 from Eq. (7), respec-
tively. It means that the different atomic structure of interface may be with different
thermal resistance for the same materials. By applying S-W potential, Maiti et al. [14]
get , t . ¼ 0.65 and 0.57. There is a little difference between our result and that of
Maiti et al. The difference may be attributed to applying the different potentials and is
within 12.3 and 18.77%, respectively, which is also within the range of the usual
estimated calculating error value from about 10 to 20% [10].

Figure 5. Time evolution of temperature for slices at 8.15 nm, 19 nm, 29.9 nm, and 40.7 nm, respectively.

KAPITZA RESISTANCE ACROSS GRAIN BOUNDARY 395

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
S
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
1
:
0
5
 
2
5
 
M
a
r
c
h
 
2
0
0
9



CONCLUSION

The NEMD with periodic boundary conditions is performed to determine the
Kapitza conductance and Kapitza resistance for symmetric tilt grain boundaries (001)
S5 and (001) S13. An obvious thermal boundary resistance is observed by simulation,

Figure 6. Dispersion relation of silicon for EDIP potential in (100) direction.

Figure 7. The curve of group velocity versus wave sector in (100) direction.

396 Q. TANG AND Y. YAO

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
S
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
1
:
0
5
 
2
5
 
M
a
r
c
h
 
2
0
0
9



and theoretic analysis show that about 57% phonon across grain boundary. The
different grain boundaries are with different Kapitza conductance; the similar con-
clusion can be deduced by Maiti et al.’s [14] simulation.
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