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Abstract Fully developed compressible turbulent channel fiow (Ma = 0.8, Re = 3300) is numerically
simulated, and the data base of turbulence is established. The statistics such as density-weighted
mean velocity and RMS velocity fluctuations in semi-local coordinates agree well with those from other
DNS data. High order statistics ( skewness and flatness factors) of velocity fluctuations of compressible
turbulence are reported for the first time. Compressibility effects are also discussed. Pressure-dilatation
absorbs part of the kinetic energy and makes the streaks of compressible channel flow more smooth.
The scaling laws of compressible channel flow are also discussed. The conclusions are: (a) Scaling
law is found in the center area of the channel. (b) In this area, ESS is also found. (¢) When Mach
number is not very high, compressibility has little effect on scaling exponents.

Keywords:  compressible turbulent flow, direct numerical simulation, high-order statistics, scaling law,
streaks.

Direct numerical simulation (DNS), as an important tool in turbulence research, simulates
turbulent flows numerically by solving the Navier-Stokes equations directly. Because no model is
used, DNS is very exact and universal, and it can provide information of the whole fluid, and it
(1] Since the 1980s, there have been many
DNS data for solving the complex flow fields such as turbulent channel flow, turbulent mixing lay-
er, turbulent boundary layer and turbulent jet, but most of them are incompressible, and DNS

data of compressible turbulence are rather few. However, many engineering problems (such as

is very useful in the research of turbulence physics

problems associated with aeronautics and astronautics) are associated with compressible turbu-
lence, so DNS of compressible turbulence is also very important .

Compressible turbulent channel flow is a typical flow because it contains wall boundary ef-
fects and compressibility effects. In this flow the boundary condition of the wall can be isothermal
or adiabatic and they are different from each other. In this paper, we use isothermal-wall bound-
ary condition.

Effects of compressibility can be categorized into two types: those associated with variations
of the mean properties, and those due to fluctuations of thermodynamic quantities (so-called
acoustic effects'?)) . According to Morkovin’s hypothesis, dominant compressibility effect is due
to mean property when pressure fluctuation is much less than its mean value®! . Bradshaw'*! and
Spina et al ') found that only the mean effects are significant for transonic and supersonic wall-
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bounded flows ( Ma < 5) . Coleman et al. (2] got the same conclusion from the DNS data of super-
sonic isothermal-wall channel turbulence with Ma =1.5 and 3.

However, acoustic effects are not totally negligible. Coleman et al. found that the near-wall
streaks become “less wiggly” as the Mach number increases and suggest it is an acoustic effect.
Until now there is no clear conclusion on compressibility effects.

DNS of compressible turbulence has to solve the compressible N-S equations numerically.
The compressible N-S equations are much more complicate than the incompressible ones. In the
compressible N-S equations, viscous terms are also nonlinear as convection ones, and the contin-
uous equation, the moment equation and the energy equation are coupled. Because the compress-
ible N-S equations are much more difficult to solve, there are much fewer DNS results for com-
pressible turbulence than for incompressible turbulence. Besides Coleman et al., L. Gamet et
al. performed a DNS of compressible turbulent channel flow with Ma = 0.2. Because of the low
Mach number, the characteristics of flow are very close to those of the incompressible ones.

In this paper, turbulent channel flow with isothermal-wall is numerically simulated by using
upwind compact schemes on non-uniform meshes!®"”) . Data base of fully developed compressible
turbulent flow is established. Mean profiles of streamwise velocity, pressure, temperature and
density are provided. Mean dissipation rate of turbulent kinetic energy and Kolmogorov length
scale are also discussed. The high-order statistics of velocity fluctuations are reported for the first
time .

The density-weighted mean velocity (with Van Direst transformation) and RMS velocity fluc-
tuations in semi-local coordinates agree well with those of Kim et al. and Coleman et al.

In this paper, compressibility effects on the near-wall streaks are discussed, and the differ-
ence between streaks of compressible and incompressible flows is studied through the analysis of
spanwise two-point correlation of velocity fluctuations. According to this paper, pressure-dilation
absorbs part of turbulent kinetic energy near the wall, which makes the streaks more smooth .

Scaling law is a hot topic in turbulence physics in recent years. It states that in the inertial-
range scales, all moments of velocity fluctuations (so-called structure of velocity) at scale [ have
a power-law dependence on the scale [: {1du;|?) ~ I%. Scaling law plays an important role in
turbulence physics and becomes one criterion for testing various theories of turbulence.

According to Kolmogorov’s theory of 1941 (K41)!#] scaling exponent ¢, = p/3. However,
the experimental data of high-order scaling exponents are substantially lower than the K41 predic-
tion. This is the so-called anomalous scaling which becomes the greatest challenge to K41 theory.
She et al. developed a hierarchical structure model (SL Model)!*"1%), which predicts a nonlinear
scaling exponent {, = p/9 + 2(1 - (%) p) , and agrees well with experiments.

In recent years, DNS data have been successfully used in the study of scaling law of homo-
geneous turbulence, but there is no report about the DNS data used for the compressible turbu-
lence. In this paper, DNS data are used in the scaling of the compressible turbulent channel flow
for the first time, and the following conclusions are obtained: (a) Scaling law is found in the
center area of channel. (b) In the same area, ESS is also found. (¢) When Mach number is not
very high, compressibility has little effect on scaling exponent.

1 Numerical procedure

Fig. 1 shows the two-dimensional counterpart of the three-dimensional flow geometry and co-
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ordinate system. The flow is driven by a uniform body force. Temperature in two walls is the
same and remains constant.

The non-dimensional compressible N-S equa- Y
tions are
U JE IF 9G _ JE, IJF, IG,

az+ax+ay+az‘P+ax+ay+ EPR
where Uz[p,pu,pv,pw,e]T, E,F,G,E,,F,,
G,, P are convection items, viscous items and body

force, respectively.
The dynamic viscosity is a function of tempera- Fig. 1. The geometry and coordinate system of com-

ture, and the Sutherland’s equation is used: pressible channel flow.
ﬁ_( T )1~5288.15+C
“o 288.15 T+C °
. . U,L U,
where C =110.4. The non-dimensional numbers are defined as: Re = T Ma = s where
0 0

Re is the Reynolds number, Ma is the Mach number, U, is the mean bulk velocity, L is the
half-width of the channel, v is viscosity at the wall temperature, c¢q is sound speed at the wall
temperature .

Periodic boundary conditions are used in the homogeneous streamwise and spanwise direc-
tions, while isothermal and no-slip boundary conditions are used on the walll

Uniform streamwise and spanwise meshes and non-uniform meshes in cross-direction are
used. The grid spaces are contracted near the wall.

The convection terms of the N-S equations are approximated by using up-wind compact dif-

ference schemes on non-uniform meshes %"’

, and the viscous terms are approximated by using
symmetrical compact difference schemes on non-uniform meshes' ") . Third order R-K method is
used in time-advancement. The body force is chosen to vary in time such that the total mess flux
remains constant.

In order to compare the incompressible with the compressible flow, incompressible turbulent

channel flow is also numerically simulated in this paper.

1.1 Computational conditions of compressible turbulent channel flow

The numerical parameters of compressible DNS are: Ma = 0.8, Re = 3300, Pr=0.7
(these parameters are non-dimensionalized by the mean bulk velocity, the sound speed and the
viscosity at the wall temperature) .

Computation domain is: L, = L, =2x, L, =2, and computational meshes are 101 x 140 x
101, x is the streamwise coordinate, z is the spanwise coordinate and y is the cross-direction co-
ordinate. y = + 1 are walls.

Computation is initialized as superimposing random velocity fluctuation (the amplitude of
random velocity is 20% of the mean flow) upon a laminar parabolic velocity and computations
were carried out on the SW-I super computer of Beijing High-Performance Computer Center. Par-
allel computing is carried out on 64 (or 32) CPUs, and it takes about 6s per time step (64
CPUs) or 10s (32 CPUs) per time step. Statistical equilibrium is reached after ¢ = 100, and re-
sults were then averaged over about 300 non-dimensional time unit.
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1.2 Computational conditions of incompressible turbulent channel flow

The Reynolds number is 3300 for the incompressible turbulent flow (based on the mean bulk
velocity and half-width of the channel). The computational domain is the same as for the com-
pressible counterpart, and computational meshes are 64 x 130 x 64.

The highly efficient method for the incompressible N-S equations in ref. [6] is used in com-
putation, and it takes about 2s per time step (32 CPUs).

2 Statistics and analysis

Fig. 2(a),(b) are the mean profiles of compressible turbulent channel flow, where fig. 2
(a) shows the profiles of mean velocity non-dimensionalized by wall-shear velocity. In the figure
the dashed lines are results of ref. [2] (Ma =1.5) and ref. [6] (Ma =0). It shows that the
profile of Ma = 0.8 is in the middle between the profiles of Ma = 1.5 and Ma =0. Fig. 2(b)
shows the profiles of mean density, temperature and pressure. According to this figure, maximum
temperature and minimum density are found at the center line and the mean flow is approximately
isobaric. Near the wall there are great gradients of mean temperature and density and these are

very important attribute of the isothermal wall flow!?! .

e 1301
1.25¢
1.20+
iR 1.15
P (] S
LosK J
1.00f :
0 ) . . . 0.95 . . _®,
0.5 1.0 1.5 20 -1.0 -0.5 0 0.5 1.0
log(y") y
Fig. 2. (a) Mean streamwise velocity. ——, Ma =0.8; ****, Ma=1.5; - - - -, Ma=0; O, experi-
mental data of Ma =0 (Kim et al.['"™) . (b) Mean profiles of density, pressure and temperature . , Mean
density; ******, mean pressure; - - - -, mean temperature.

The Reynolds number based on the mean wall shear velocity is defined as u, = | % s Re,

a
, where 7, = p, 51;* . In this paper, u, = %

u.L

0.056, Re, =185.

In our computation the Mach number is not very
high, so according to Morkovin’s theory, dominant com-
pressible effects are due to mean property variations, es- =
pecially the variations of mean-density. Coleman et al.

20t

101

studied the density-weighted mean velocity @ yp by using

. [2.13] . - . ‘ -
Van Driest transform 2 0 03 10 15 20 25
J( P )V2 log)
—+ i —+
Uyp = du*.
0 \p, 1 Fig. 3. Profiles of density-weighted mean veloci-
[2] o+ . ty,. —, Ma=0.8; ***, Ma=0; - - - -,
Coleman et al.'“" found that &y, of compressible flows Ma=1.5; — — -, theory of Ma =0 (wall-

(Ma =1.5 and 3) are close to those of incompressible 1aw and log-law) .
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flow.

Fig. 3 shows the profiles of &y for the flow with various Mach numbers, where solid line is

for the profile with Ma = 0.8, dashed lines are Ma =0 and Ma = 1.5. Three lines are very
close.

Coleman et al. find that RMS velocity fluctuation profiles increase with Mach number, but
when the “semi-local” scaling suggested by Huang et al. is used instead, the profiles of different
Mach numbers are very close to each other. “Semi-local” scaling is defined as: y*

= ;u: (_)(y)/ﬁ(y) , where u, =, {ﬁ ,5/ =1-1lyl, and semi-local non-dimensionalized

RMS velocity fluctuation are defined as

’ ' i

, * U rms ;) * U rms ;% W rms

rms — * 9 rms — * 9 W rms = *
T T U,

Fig. 4 shows the profiles of semi-local non- #"ms
dimensionalized RMS velocity fluctuation. Accord-
ing to this figure, profiles of Ma =0.8, Ma =0,
Ma =1.5 and Ma =3 are very close, which vali-
date the DNS data in this paper.

The computed skewness and flatness factors of w
velocity fluctuation are shown in fig. 5(a), (b).
Skewness and flatness factors are high-order statis-
tics. The small asymmetry and oscillations in the
profiles show the adequacy of the sample size. The
skewness and flatness factors for compressible tur-
bulent channel flow are reported for the first time.

Fig. 6 and fig. 7 show respectively the pro-
files of mean dissipation rate of turbulent kinetic gig. 4.

RMS velocity fluctuation in “semilocal” coordi-
energy € * and mean Kolmogorov length scale n; , nate.

_ d u£ a uf d u} -1/ u s v s w'
where e = v —| — + — |, 7 = (v3/e)"?,
axj ax] axi Ma=0.8 —_— R O
et =ev/ul, g = pusv. Ma=0 | IN v
Solid lines are the results of this paper ( Ma = Ma=1.5] MW A v
0.8) and symbols are the results of Ma = 0.2011] Ma=3 > o '®)
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Fig. 5. (a) Skewness factor of velocity fluctuation (Ma =0.8). ——, S(u'); - - - -, S§(v'); ==+ ,
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Fig. 6. Distribute of € * in wall coordinates. —, Ma Fig. 7.

=0.8; &, Ma=0.2.
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Distribute of 7; in wall coordinates. —, Ma

=0.8; &, Ma=0.2.

It can be seen that the dissipation rate for Ma = 0.8 is a little higher than that for Ma = 0.2
(which can be considered as incompressible flow) , and Komogorov scale for Ma = 0.8 is a little

lower than that for Ma =0.2.

Near-wall streaks are dominant feature of the wall-turbulence. Refs. [2, 12] studied the
near-wall streaks of compressible and incompressible turbulent channel flow respectively. It is
found that the streaks became more smooth as Mach number increases. Fig. 8(a) and (b) show
distributions of streamwise velocity at 1 — | y| = 0.04 for the flow of Ma =0.8 and Ma =0 re-
spectively. It can be seen that the streaks of compressible flow is more smooth.

Fig. 8.
snapshots of stream velocity at 1 - | y| =0.04 (Ma =0).

(a)

u
0.946718
0.842789
0.738859
0.63493

0.531

0427071
0.323141
0.219212

()

(a) Instantaneous snapshots of stream velocity at 1 — | y| =0.04 (Ma =0.8). (b) Instantaneous

Fig. 9 shows the spanwise two-point correlation of the velocity fluctuation, which is defined

as: Ruu(z) = v/ (x,y,2 + z2)u' (x,y,2)/ u’z(x,y,z’). The spanwise correlation shows

that negative minima occur at z =0.311(z* =57.73), providing an estimate of the mean spac-



No. 5 DNS & SCALING LAW ANALYSIS OF COMPRESSIBLE TURBULENT CHANNEL FLOW 651

ing between the high- and low-speed fluid. It
means that in our computation the mean spacing
between the streaks should be 115.46, while the
counterpart spacing of incompressible flow is 100 &

)[11,12]. So the space between &

(in wall units
streaks of compressible flow is wider than that of g
incompressible flow. ;
In this paper, the terms associated with com- %
pressibility in energy equation are analyzed, and it =
is found that the pressure-dilated terms absorb part
of turbulent kinetic energy, makes the near wall
streaks more smooth . 0 1 2 3

The energy equation is

Fig. 9. Spanwise two-point correlation functions at 1 -

. du.
Y oU _ p Y H 2 Ui Iyl =0.04. , Ruu(z); - - =, Row(z); -oeer,

AL A A S o
dt Jaxj o axj Rep 379 dx axj Ruww(z).
p (9w 9ulaw, G 3 ar
+ + a_ + a— 5_— s
Rep\ dx; Jdx; J9%  RePrp 9%; %
where U = C,T is inner-energy, C,=1/(y(y -1)Ma?), C,=7C,, y=1.4.
The following two terms which absorb the kinetic and transfer it into inner-energy are associ-

ated with compressibility :
+ 2
Rep 3

v = w = 0. Divergence of mean velocity is zero, so V * V is

pr=-—V-V, ¢,=- (V- V)2

P
I
)

In channel turbulence, z = #(y

0.006 actually the divergence of velocity fluctuation, ¢,
and @, are terms associated with the absorption of
0.004 turbulent kinetic energy .
0002 According to computational data, V * V has
& the order of 1, so ¢1:¢2~1:RL’ and ¢, can be
0.000 €
ignored since Reynolds number is high enough.
0.002 Fig. 10 shows the profile of @, in which
) . . there is a positive peak near the wall ( about
-1.0 05 0 y 0.5 10°0.006, this value is significant for the turbulent

kinetic energy). The profile indicates that in the
area near the wall, part of turbulent kinetic energy
is absorbed and transferred into inner-energy. This makes the velocity streaks more smooth .
Fig. 11 shows the space distribution of ¢, at 1 — | | =0.04. In this figure, there are clear
streak structures as in fig. 8, which validate the correlation between ¢, and velocity streaks.

3 Analysis of the scaling law

Fig. 10. Profile of 3,.

Scaling law is a hot topic in turbulence physics in recent years, and DNS data have been
successfully used in the study of scaling law of homogeneous turbulence, but there is no report
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Fig. 11. Instantaneous snapshots of ¢, at 1 - |yl =0.04.

about the DNS data used in the study of scaling law for the compressible turbulence. In this sec-
tion, scaling laws for turbulent channel flow are studied basing on the DNS data.

Scaling law states that all moments of velocity fluctuations at scale I (so-called structure
function of velocity) have a power-law dependence on the scale [ in the inertial-range scales:
(18u;1?7) ~ 1%, and §, is called scaling exponent. Extended Self-Similarity (ESS) is one of the
important developments in the measurement of scaling exponents[m . It is developed by Benzi et
al. and states that the velocity structure function of any order p depends on the structure function
of order g (usually 3) in a much better power law: {10u;17) ~ (1| 5., §p,q is called rela-
tive scaling exponent. ESS provides a new method for measuring scaling exponent with improved
reliability .

Fig. 12(a) shows a plot of In 4 Su;l? ) as a function of Inl at the center of channel (y =
0 or y* =185). From this figure it can be seen that all of those lines have linear range (the
slope rate k in the figure equals the relative scaling exponents, it is reliable since ESS are

used) . This figure indicates the existence of scaling law in the turbulent flow in the center area of
the channel.

n¢|8v["
In¢|6v")

=30 (@

Inl : In{|6v,[*)

Fig. 12. (a) Profile of In {18y,1”) as a function of In! at location y =0. (b) Profile of In (|3v;17) as a function
of In (18y,1®) at location y = 0.
Fig. 12(b) shows the plot of In{ | 8u;!?) as a function of In{|du;1*) in the turbulent flow

at y=0. For all p, In{|18u;|1?) is shown as a strict linear function of In{ | du, 1) . This figure
shows clearly the existence of ESS of the turbulent flow in the center liner of the channel.



No. 5 DNS & SCALING LAW ANALYSIS OF COMPRESSIBLE TURBULENT CHANNEL FLOW 653

Fig. 13(a),(b) show respectively In{|8u,;|?) as a function of Inl and In{|8u,1*) at the
location of ¥ * = 150. It can be seen that scaling law and ESS also exist at ¥ * = 150. Therefore
the conclusion is: scaling law and ESS are found in the compressible turbulent flow in relatively
wide range near the center of the channel.

Because of the relatively low Reynolds number, the inertial-range of turbulence cannot be
very wide, so the linear-range in figs. 12(a) and 13(a) is relatively narrow for higher p .

_5..

n¢|6v,”)
]"<|5vl‘p>

In(|6v|*)

Fig. 13. (a) Profile of In {|8v,1”) as a function of Inl at location y * = 150. (b) Profile of In{| dv,1?) as a func-
tion of In (| 8y, 1) at location y* =150.

Fig. 14 shows the relative scaling exponent of  35r L
the numerical results of this paper, those from ex- 30k ,,/
perimental data, K41 theory and SL theory, where ,
experimental data include: (a) wind tunnel turbu- 2.5} 7 P
lence ( Anselmet et al.!'s, Re; = 515 (based on - 20l //’
Taylor microscale)); (b) weak turbulence (Benzi t\g ' Y
et al.l'%, Re, = 225—800); (c) jet turbulence LS| Py
(Noullez et al.!'"”’, Re, = 365—605, transverse | g
velocity structure function); (d) DNS of isotropic
turbulence (Cao et al. Re, ~210181) . (a)—(d) 0S¢~ | . L ‘

are incompressible turbulence. p

The result from DNS data of incompressible
turbulence of this paper agrees well with those from Fig. 14. Scaling exponents.
experimental data (or other DNS data) . It shows the exactness of the incompressible DNS data.
It also can be seen that there is small difference between the scaling exponent from compressible
and incompressible data, so we can draw the conclusion that compressibility has little effect on
scaling exponent when the Mach number is not very high.

Fig. 14 shows that the DNS results agree very well with the predicted values by SL theory.

It means that both results are believable.
4 Summary

Fully developed compressible turbulent channel flow ( Ma = 0.8, Re =3300) is simulated
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by using upwind compact schemes on non-uniform meshes. The statistics such as density-weight-
ed mean velocity and RMS velocity fluctuations in semi-local coordinates agree well with those
from other DNS data.

Compressibility effects are also discussed. It is shown that the pressure-dilatation absorbs
part of the kinetic energy and makes the streaks of compressible channel flow more smooth.

The scaling laws of compressible channel flow are also discussed. Scaling law and ESS are
found in the center area of the channel, and when the Mach number is not very high, the com-
pressibility has little effect on scaling exponents. The scaling exponent from the DNS data of this
paper agrees well with those from the predicted value by SL theory, which means that both results
are believable.
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