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Abstract

Recently, Wazwaz [Appl. Math. Comput. 118 (2001) 311–325] applied the Ado-

mian�s decomposition method to solve analytically the solution of sixth-order boundary
value problems. The same problem is discussed via the variational principle, which

reveals to be much more simpler and much more efficient.
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The sixth-order boundary value problems,

yðviÞðxÞ ¼ f ðx; yÞ; 0 < x < b; ð1Þ

with proper boundary conditions were discussed by Wazwaz [1] using the

Adomian decomposition method [1,2]. A much simpler solution is obtained
using the Ritz�s method which is based on variational theory.
By the semi-inverse method [3], the variational principle of the above

equation is easily obtained, which reads

JðyÞ ¼
Z b

0

1
2
ðy000Þ2

n
þ F ðx; yÞ

o
dx; ð2Þ

where F is the potential function defined as
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¼ f : ð3Þ

To compare with Wazwaz�s method, we consider the same example as dis-
cussed in Ref. [1]:

yðviÞðxÞ ¼ �6ex þ yðxÞ; 0 < x < 1; ð4Þ

subject to the boundary conditions

yð0Þ ¼ 1; y00ð0Þ ¼ �1; yðivÞð0Þ ¼ �3;

yð1Þ ¼ 0; y00ð1Þ ¼ �2e; yðivÞð0Þ ¼ �4e:

Its variational principle reads

JðyÞ ¼
Z 1

0

1
2
ðy000Þ2

n
� 6exy þ 1

2
y2
o
dx: ð5Þ

Applying Ritz�s method, we choose a trial function satisfying all the boundary
conditions.

y ¼ ð1� xÞða0 þ a1xþ a2x2 þ a3x3 þ a4x4Þ
¼ a0 þ ða1 � a0Þxþ ða2 � a1Þx2 þ ða3 � a2Þx3 þ ða4 � a3Þx4 � a4x5; ð6Þ

where ai are unknown constants. In view of the boundary conditions, we have
the following relations:

2ða2 � a1Þ ¼ �1; ð7Þ
2ða2 � a1Þ þ 6ða3 � a2Þ þ 12ða4 � a3Þ � 20a4 ¼ �2e; ð8Þ
24ða4 � a3Þ ¼ �3; ð9Þ
24ða4 � a3Þ � 60a4 ¼ �4e: ð10Þ

Substituting the trial function (6) into (5), then making it stationary under
the constraints of (7)–(10) with respect to ai, we can identify all the unknown
constants ai.
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