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‘act. Sl shear walls are reinforced concrete shear wall structures with purposely built-in vertical
the slits are inserted with visco-elastic damping materials, the shear walls will become visco-
andwich beams. When adequately designed, this kind of structures can be quite effective in resist-
hquake loads. Herein, a simple analysis method is developed for the evaluation of the stochastic
ses of visco-elastic slit shear walls. In the proposed method, the stiffness and mass matrices are
by using Rayleigh-Ritz method, and the responses of the structures are calculated by means of
‘modal analysis. Apart from sht shear walls, this analysis method is also applicable to coupled
Walls and cantilevered sandwich beams. Numerlcal examples are presented and the results clearly
that the seismic responses of shear wall structures can be substantially reduced by incorporating
shts into the walls and inserting visco-elastic damping materials into the slits.

jords: shear wall; sandwich beam; vibration; damping; modal analysis; stochastic response analysis.

response of a structure under dynamic excitation is largely determined by the relative
its of the energy fed in and the energy dissipated. Therefore, to reduce its dynamic
ponse, resonance should be avoided in order to keep the energy input low and sufficient
mg should be incorporated to dissipate the vibration energy. However, there are many
in which the spectra of the input are so wide that resonance cannot really be avoided and
ch cases, it is crucial to introduce extra damping into the structure so as to limit the
amic amplification effect due to resdnance.

is well known that when properly designed, extra dampmg can be added to a beam by
Iporating a visco-elastic sandwich layer into the structure (Narka 1976). Herein, it is
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Fig. 1 (2) A typical slit shear wall structure; (b) slit shear wall treated as two solid walls sandwich;
visco-elastic core o

suggested that this same technique may also be applied to concrete shear walls w
essentially vertical cantilevered beams. Concrete shear walls are widely used in the design
consiruction of tall buildings in seismic regions. However, although they can have fa
lateral strength, they also generally have much hig i :
Due to their high stiffness, they tend to attract large amo
their low damping, the energy fed in may build up very quickly and eventually cause
damage to the structures, Visco-clastic sandwich layers may be incorporated into shear
casting vertical slits near the centroidal axis of the walls and inserting visco-elastic d
materials into the slits (see Fig. 1(a)). Such shear walls with purposely built-in vertical
called “slit shear walls”. It is hoped that by transforming the solid shear walls into. sht sf
walls which are really cantilevered sandwich beams, the seismic. resistances of the shear w
can be greatly increased.
As shown in Fig. 1(a), a slit shear wall may be treated as the limiting case of a pair of
shear walls with very short connecting beams. A simple yet accurate approach for an
“coupled shear wall structures is to replace the connecting beams by equivalent continuot
connections and then apply the so called continuous connection method to derive and: 8
governing differential equations. Use of this method for static ‘analysis have been ‘stu
many investigators and a detailed review of the method was given by Coull and Staffor
(1967). It was extended for dynamic analysis by Tso and Chan (1971), Tso and Bi -
Jennings and Skattum (1973), Coull and Mukherjee (1973), and Mukherjee and C
among others in the 70s%: A recent study by Kwan et al. (1993) confirmed that the conull
connection method may also be applied to slit shear walls provided that the local deform
at the beam-wall joints and the shear deformations of the short connecting beam

y
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riately taken into account.

s been pointed out by Jennings and Skattum (1973) during their study of the dynamic
giour of coupled shear walls that coupled shear walls and sandwich beams are similar in
»f their essential features. In fact, if the shear modulus of the equivalent shear connection
coupled shear wall structure and that of the sandwiched layer in the sandwich beam are
the motion equations of the two structural systems will be identical. Sandwich beams
isco-elastic cores are effective vibration control devices and have been studied quite
vely in the field of mechanical engineering. A complete set of motion equations govern-
. vibration of damped sandwich beams have been derived and solved exactly for several
ant boundary conditions by Rao (1978). The results so obtained on natural frequencies
ss factors have been presented in both the forms of design graphs and approximate-
ac but they are mot sufficient for response analysis. Finite clement methods with visco-
damping considered (Bogner and Soni 1981, Holman and Tanner 1981, Johnson et al.
Soni 1981) have also been developed for the analysis of damped saudw1ch structures.
er, owing to the fact that the shear modulus of the damping core is complex, the com-
jorage and time required will generally be several times higher than those of undamped

he purpose of evaluating the stochastic responses of slit shear walls and in fact also of

shear walls and sandwich beams, a simplified analysis method based on the Rayleigh-
ethod is developed in this paper. Two families of eigen-mode functions, namely the
al and axial vibration modes of an undamped cantilever beam, which already satisfy the
ric boundary conditions, are used as the approximate mode shapes of the slit shear wall
¢. Energy formulation is used to derive the governing equations and a standard computer
EISPACK, developed by Wilkinson (1963), is used to determine the eigenvalues and
vectors of the system equations. The transfer functions are then obtained by Fourier
ormations and the stochastic responses of the structure evaluated by a complex modal
hosition method. The proposed method is computatlonally very efficient and is particularly
for parametric studies.

rivation of system equations

sider a typical slit shear wall whose geometry is shown in Fig. 1(a). The slit shear wall
re may be treated as consisting of two solid walls with a visco-elastic sandwich core
1g them together, Fig. 1(b). For simplicity, only symmetric slit shear walls, i.c., slit shear
with the vertical joints located at the centroidal axis, are considered in the present study.
the slit shear wall is symmetric, the two solid walls sandwiching the core have the same
al and. axial rigidities which are denoted by EI and EA respectively. The visco-elastic
ties of the core are described by the complex shear modulus G,=G(1+in,) in which G is
astic shear modulus, i is the square root of —1, and 17, is the core loss factor (for readers
are not familiar with complex stiffness and damping, please refer to Appendix A for more
d explanation).

- following assumptions are made in the formulation:

The lateral displacements are small and uniform across any section.

The axial displacements are continuous.

The walls bend as per Euler hypothesis.
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(4) The core layer deforms mainly through shcar and does not carry any axial load.
(5) Rotatory inertia are negligible.
These assumptlons are the same as those used by Rao (1978) except that the longltudmal-
was neglected in Rao's analysis but is taken into account in the present method. -
Let the flexural response # and axial response v of the two solid walls be in t
limit series as follows:

u D=3 6,10
V& D=3 WO uE

where &=x/1 is the nondimensional coordinate, and ¢(&) and (&) are the j-th flexura
k-th axial vibration modes respectively of an undamped cantilever beam. The ﬂexural
modes are given by (Clough and Penzien 1975);

¢,(E)=cosa;E—cosha;E+b;(sina;E—sinha; &)
in which a; is the root of the frequency equation:
cosa;cosha; +1=0
and b, is related to g; by:

cosa; +cosha; :
b, =-— ! . . ¢es WOT

! sina; +sinha;

On the other hand, the axial vibration modes are given by Clough and Penzien (1975).:'

hich
¥ (&) =V2sinc, &
where
= 2k-1 T .; Substitt
2 ' rentia

Note that all the mode shape functions already satisfy the geometric boundary conditio
structure.

The governing differential equations for the generalized deflections fi(f) and Uk(t)
dynamic equilibrium equations, are derived by means of energy formulation thro

application of the Lagrange equations. Let Y={t 1 = e U U, o Vo) The ={f1 1
equations are given by: ‘matri
4 ar + — A =f; j=1,2,,m+n :
dt | dy; ay; toch:

where I"and A are the kinetic energy and strain energy respectively of the structure,
the generalized force. The kinetic energy I” of the structure is given by: 3

1 uY (v
1 i vV
F_—Z_pl-[] “‘aT + E d[é
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p is the mass per unit length or height of the structure, while the strain energy A of the
¢ is given by:

A:Ai +A2+A3 (10)
h
{ 1 oY
1 1%
Al_EzjozEA T % dé& (11)
A= L1 [lomr (L 21 ng T
T2 > o&*
1 d du Y
1 iU v
== 1{ G.A LA 13
M=yt oa . oF T |1 ®

ﬁm, the generalized force f; is equal to:

ff:l .[Olp(g,t)q%(g)dé j.:1,2,~--,m ’ (14)

(&, #) is the distributed horizontal load acting on the structure. When j>m, f; is equal to
cause no vertical dynamic load is applied. If the wall structure is subjected to horizontal
pake movement with ground acceleration # ,(7), then p(&, f)=— pu %) and the generalized
would become:

fi=—plu.(t)g;  j=12,,m (15)

s=[ 6E©dE  j=12m (16)

ituting the equations for u(§, §) and W& 1) into the energy cxpressions and then
ntiating the energy expressions as per the Lagrange equations, the dynamic equilibrium
n of the slit shear wall is obtained as follows:

M1{y}+ K1y} ={f} (17)

the matrices [M ] and [K | are as given in Appendix B, and the force vector is defined by
thfo - o} Note that the mass matrix [M] is a diagonal matrix, while the complex stiff-
atrix [K | is a symmetric matrix.

ochastic response analysis

%:eigenvalues and ecigenvectors of the system equation are calculated by the computer
m EISPACK (the eigen-solver developed by Wilkinson) and the eigenvector matrix IZ]
ined is normalized such that: :

2] M]z]1=[] (18a)
2] [K1[Z1=[€] (18b)
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in which [/] is an identity matrix and [{J] is a diagonal matrix of natural freqy,
Introducing the coordinate transformation {y}=[Z]{q} into Fq. (17) and then pre—multipl
the equation by [Z]", a set of uncoupled equations is obtained: ' i

g, +o>(1+in,)q, =p, r=1,2,-,m+n

where @, is the modal frequency, 7, is the modal damping factor, and p, is the r-th cmﬁpo
of [ZT"{f}. Denoting the r-th eigenvector, ic., the 7-th column of [Z], by {z,}, then p={z
Applying Fourier transformation to Eq. (19), the following set of equation is obtained:

O ()=H,(®)P(0) r=12,m+n

where Q(®) and P(@) are the Fourier transforms of g, and p, respectively, and H( ')
r-th transfer function given by: E

1
w*(1+in)—&
The Fourier transform P, is, in turn, given by:
P.(0)={z VLR (o))

in which {F(w)} is the Fourier transform of {f}. If the wall structure is subjected to eart
movement with ground acceleration (), then:

F,(0)=-pl g U (®) |
where ﬁa(a)) is the Fourier transform of i ,(f). Substituting the value of F, {w) into Eq. (22
P.(&)=—pl {z} {8} G(®)

in which {g} is the vector defined by {g¥'={g, & = 8» 0 0 -~ 0}. Let A, denote pl{z}
then P (w)=— AU, (@). Substituting this value of P(w) into Eq. (20), the Fourier transform
is obtained as: :

H ()=

Q. (0)=—A-H, (&) Uy ()

Generally, any response R of the system can be expressed as a linear function of {y}"b}'
Let the response R, which may be the lateral deflection of the structure, bending moment:i
of the walls or shear stress in the sandwich core, be expanded as a linear combination

follows:

mn

R=Y x4,
r=1

Applying Fourier transformation to this equation, the Fourier transform R(@) of the resp’b
obtained as:

R

R(®)=Z .0, (w)

If only earthquake loading is considered, then substituting the value of Q;(a)) as giveh' b
(25) into the above equation, R{@) can be cxpressed directly in terms of the seismic 10pU

follows:
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m

R (a§) =3 kA H, (@) U () (28)

retically, the variance of the response R can be calculated by (Tian ef al. 1982):
1 had *
2_ = . £ *
%= 4 J— ZZ‘ K b H (@) K5 A H: (@) S (0)d @ 29

i, A, and H(w) are the complex conjugates of x, A, and H ) respectively, and S;; ()
spectral density of ii (f). However, the transfer functions are not Hermitian, in other
H(- w)+H(w) and H(- w)+H(w) As a result, in the negative frequency domain,
nping would become negative and the structure would be unstable. The overcome this
, Tsushima et al. (1976) and Bronowicki (1981) proposed that the imaginary part of the
lex stiffness (the damping component) should be modified by the following factor:

1;0>0

sign(@)=+ 0; 0=0 (30}

-1;m<0
he damping would remain positive in the negative frequency domain. Applying their
[ to the present analysis, the complex stiffness of the sandwich core becomes:
' G. =G (1+i sign(®) 1) (31)
e complex stiffness so modified, the transfer function becomes:
H,(w)= 1 (32)

(1 +i sign(@) 1) — &

is now Hermitian. A stable solution in the whole frequency range can then be obtained as:

, 1 = K, Ar Ko Ao S, (0)
o= 2 do
Am | S5 (w2 +in,)- o) [0X(1-in)~ o]

0 K:ﬂ/:]{s Aas Sld[(a))

d 33
+fm2>s: (w1 -in,)- & X1 +in) -] ? )

al solution to this equation has been given by Tian (1982). However, for most structures
g cantilevered structutes of which the natural frequencies are well separated, the cross
1 the integrand (the terms with rs) are generally very small and may be neglected so
bove equation can be simplified to:

| %/ |2|’%r |ZSiiiE(a))
S (AL +in,) - o] [0 —in) - o]

gh there may be large fluctuations of S;:(w) as a function of @, the freqﬁ_eﬁ'(:y-

do (39
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intervals over which the power spectral densities are substantial are usually much large
the bandwidths of the oscillator at the various modal frequencies (Miles and Thomsop
Hence, the variations of S;;(w) within the modal bandwidths may be treated as gy
Assuming that S;;(@) varies slowly within the modal bandwidths of the oscillator, the

integration can be carried out by the calculus of residues as follows. The integrand has a'._'p"ajr
poles @,=m V(1+in,) and @,,=—wN(1~in,) above the real axial in the positiy
negative frequency domain respectively which can be expressed more simply in the foll
forms: :

@, =0, (0 +13,)
0, =W (— 0> +if3)
where &, and f3, are given by:

o = iz [(1+757+1]"

1 2
B =—[(1+ H -1
5 [ Th)

Assuming S, (®,,)=S, (®,,)=S,, and applying the calculus of residues, the equation-.f

it iiit

]]/2

variance of R becomes:

o2 = | |* | A [P0nS:
T An, 0+ )

When 7,<0.1, this equation may be approximated by:

0.}332 | cr |? Mrlzsr
-

4n, |
It is noteworthy that the form of the above equation agrees well with that of Eq. (2. 130)
reference by Warburton (1976).

4. Numerical examples
4.1. Example 1

In order to check and cvaluate the accuracy of the proposed method, the first examp
taken to be the cantilevered sandwich beam shown in Fig. 2, which has been studie
extensively by Johnson et al. (1981) and by Soni (1981) in various analysis and exper!
Four different values of core loss factor (1,=0.1, 0.2, 0.6 and 1.0) are considered in the an
Five flexural and two axial eigen-function terms are used (i.e., m=5 and a=2) in the U
calculations. The modal frequencies and the loss factor parameters (loss factor paramcter=
damping factor/core loss factor) so obtained by the proposed approximate method are 1at
in Table 1 where for comparison, the exact analytical results obtained by Soni (198_1___)_
sixth order analysis are also shown. It is evident from the tabulated results that the pr
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Material properties:
E
G = 0.69 N/mm’
mass per length: p-z 0.109 g/mm (0.0061 lbs/in)

69000 N/mm

il

Fig. 2 Example 1- cantilevered sandwich beam
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2 (10 x 10° psi)

(100 psi)

Table T Example I natural frequencies and loss factors of a sandwich beam for

Natural frequencies (H,) {oss factor parameters (1,/1,)

Core loss 0 4o Proposed Exact Proposed Exact

factors approximate analytical approximate - analytical
method method method method

1 64.2 64.1 0.282 0.282

2 297.5 296.4 0.246 0.242

11,=0.1 3 746.1 743.7 0.164 0.154

4 1400.1 1393.9 0.095 0.089

5 2269.0 2261.1 0.060 0.057

1 64.4 64.2 0.278 0.273

2 2979 296.6 0.245 0.242

n=0.2 3 746.4 743.9 0.164 0.154

s 4 1400.2 1394.0 0.095 0.089

5 2268.7 2261.2 0.060 0.057

1 66.0 65.5 0.246 0.246

2 3014 298.9 0236 0.232

n=0.6 3 748.9 745.5 0.163 0.153

4 14124 1394.9 0.095 0.089

5 2269.6 2261.7 0.060 0.057

1 68.3 67.4 0.202 0.202

2 307.2 302.8 0.222 0.218

n.=1.0 3 754.1 748.6 0.161 0.150

4 1403.5 1396.6 0.095 0.088

5 2271.0 22629 0.060 0.057

te loss factor considered.

od agrees very closely with the exact theory for the fairly wide range of modal frequency
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Fig. 3 Example 2-coupled shear wall structure Fig. 4 Example 3 - slit shear wall structure (
{note: all dimensions are in mm except all dimensions are in. mm)
otherwise stated)
4.2. Example 2 (
To evaluate the applicability of the proposed method to coupled shear walls, the coupl dies) i
structure in Fig. 3, which resembles a real building structure and has been studied by Je fure,
and Skattum (1973), is analysed. The spandrel beams of the coupled wall structure are mo 8 of
as an equivalent continuous laminae and the whole structure is treated as a cantilev: e A
sandwich beam with the shear modulus of the sandwiched core taken as the equlvale ts, 1
modulus of the continuous laminae. In the analysis, 10 flexural eigen-function terms (m= ned
used, but as the axial vibrations are generally less important than the flexural vibrations, han
axial eigen-functions terms (n=2) are used. The eigenvalues for the lateral vibrations cale =
by the present method are compared with those calculated by Jennings and Skattum in Tab Ex:
Good agreement between the two sets of results up to the sixth mode is obtained. pre
4.3. Example 3 , : mic
' re i
The proposed method is applied to a slit shear wall structure in this example. The st Bﬁikz

analysed resembles a real and typical shear wall structure and has overall dimensions.
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Table 2 Example 2 - eigenvalues of a symmetric coupled shear wall structure under lateral

motion
Eigenvalues for lateral vibrations
Methods of analysis Mode numbers
1 2 3 4 5 6
Proposed approximate method 8.8 40.0 102.7 178.6 261.2 363.6
‘Exact analytical method 8.9 419 971 1851 263.7 363.0

o7, Difference between above methods —1.1 —4.5 58 -35 -09 0.2

4. It is modelled as a cantilevered sandwich beam with a visco-elastic sandwich core. As
ted in the figure, the sandwich core is nonhomogeneous because the short connecting
n the core and the visco-elastic insert at the slits are in general made of different
als. The short connecting beams which are made of reinforced concrete generally have
hear stiffness and lower damping while the visco-elastic material inserted into the slits
ave somewhat lower shear stiffness and higher damping. As a result, the values of G
are not uniform along the height of the structure. This, however, poses on particular
es for the present method of analysis. To allow for variations of G and 1), with height,
al integration is employed when using Egs. (B5-B7) to derive the stiffness matrix [K] of
ictural system. As in the first example, 5 flexural eigen-function terms (m=5) and 2 axial
functions terms (n=2) are used. In the response analysis, a typical earthquake spectrum
aijimi spectrum) as given by the following equation:

2

1+4 8 -
Siiii(w): 2 So (41)

2 2
@ 2

1-|— +4
. g

@,

=0.642 and @,=15.5 rad. s~ (typical values adopted by Wen (1979) in his theoretical
) is used. To study the effects of core damping on the dynamic responses of the
, the structure is re-analysed for several different values of Nea- The root mean square
of the maximum combined stress in the wall and the maximum deflection of the
versus the multiplying factor y (defined by n,=y17,,) are plotted in Fig. 5. From the

it can be clearly seen that by increasing the core damping, both the maximum
ed stress in the walls and the maximum deflection of the structure can be reduced by

revious example shows that the increase of core damping can significantly reduce the
-tesponse of a slit shear wall structure. This example, in which the same slit shear wall
is re-analysed using many different combinations of core stiffness and core damping so
low the example to serve as a parametric study, shows, moreover, that the dynamic
> of the structure can also be reduced by adjusting the shear stiffness of the core layer to
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Fig. 5 Example 3 —effects of increasing core damping on maximum stress and maximum deflectic
structure

a certain optimum value. In actual engineering practice, it should be quite possible to adjus
shear stiffness of the core layer by inserting different visco-elastic materials into the sli
modifying the width of the slit so that the core stiffness is close to the optimum vz
consequently the dynamic response of the structure is minimized.

In order to reduce the number of parameters fo be studied and in fact also to rend
results more generally applicable, the visco-elastic core is taken to be homogeneous in this
rather than nonhomogeneous. This would not reduce the generality of the results, as o
mogeneous cores can always be treated as equivalent homogeneous cores by usmg
equivalent mean propertles in the analysis. Several different earthquake spectra, includ
one used in the previous example, have been considered and the results are present 2
following.

The combined effects of core stiffness and core damping on the overall damping of
ture are depicted in Fig. 6 where the modal damping factor of the 1st mode of vibratio
structure is plotted against the shear modulus of the visco-elastic core for five different val
core loss factor (1,=0.2, 0.4, 0.6, 0.8 and 1.0). It is seen from the results that there
optimum core shear modulus at which the 1st modal damping factor of the structure
maximum and, as expected, the modal damping factor of the structure increases with th
loss factor. Similar results but somewhat different optimum values for the core shear m
are obtained for the higher modes of vibration. Nevertheless, since for a cantﬂevert:d SiE
the dynamic responses are mainly contributed by the 1st mode of vibration, the optimun
of core shear stiffness for maximum 1st modal damping factor may be taken as the.0
value for maximum overall damping of the structure. The modal damping factors ar
properties of the structure which are independent of the earthquake spectrum and, there
results presented in Fig. 6 are generally applicable regardless of the actual frequeﬂCY
of the earthquake excitation.

The existence of an optimum core shear stiffness for maximum overall dampln
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Example 4~ combined effects of core stiffness and core damping on 1st modal damping factor of
structure

ned by the fact that the energy dissipation through the visco-elastic core is proportional to
ain energy absorbed by the core. When the core shear stiffness is high, the shear stress
d in the core would also be high but the corresponding shear strain would be rather low
to relatively small strain energy absorbed by the core. On the other hand, when the core
stiffness is low, the shear stress in the core would become low despite high shear strain
g induced and as a result the sirain energy absorbed by the core would again be relatively
Therefore, at both extremes of high and low core shear stiffness, the damping capacity of
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7 Example 4 - effects of core stiffness on defiection response of structure for 7,=0.1 and 1n=0.5
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Fig. 8 Example 4—effects of core stiffness on stress response of structure for 1,=0.1 and 7=05

the structure would remain relatively low and at certain intermediate value of core shear
stiffness, in which case neither the shear stress nor the shear strain in the core is too fow, the

damping capacity of the structure reaches a maximum.

The deflection and stress responses of the structure are shown in Fig. 7 and Fig. 8 respec- -
tively. Unlike the modal damping factors, the dynamic responses of the siructure are dependent
on the frequency spectrum of the earthquake excitation. Although several different earthquake -
spectra have been considered in the study, due to limited space, only the results for one earth- =
quake spectrum are presented; the results shown in the two figures are for the same earthquake |
spectrum as that applied in the previous example which is given by Eq. (41). Two values of .
core loss factor, namely: 17,=0.1 and 1,=0.5, have been used in the analysis. From the results,
it can be seen that the dynamic responses of the structure are at their minimum when the core -

shear modulus is approximately equal to its optimum value for maximum 1st modal damping

factor. The results for the other earthquake spectra applied are similar except that the optimum
value of core shear modulus for minimum dynamic response of the structure is slightly
different for different earthquake spectra. For all the carthquake spectra considered in this !
particular study, the optimum core shear modulus for minimum dynamic response is never {00 -
far away from the optimum value for maximum Ist modal damping factor of the structure. It__;-. !
may be said, therefore, that in most cases, setting the core shear stiffness near its optimum
value for maximum overall damping would more or less lead to minimum dynamic response of S

the structure.

It is noteworthy from the results of Fig. 8 that the stress response of the structure is highest

when the core shear modulus is very high in which case the slit shear wall structure acts more

like a solid shear wall. In other words, the dynamic response of a slit shear wall structure is ::.
generally lower than that of a solid shear wall which is equivalent to a slit shear Waﬂ St_r“cmri_
with very high core stiffness. Hence, it may be concluded that by introducing vertical slits 10§ i

. o . . . ; [
solid shear wall so as to convert it into a slit shear wall structure with reduced core stiffness, 1
is possible to reduce the stress response of the structure during earthquakes.
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nclusions

ea of incorporating extra damping into shear wall structures by casting vertical slits
centroidal axis of the walls and inserting visco-elastic damping materials into the slits
the shear walls are effectively transformed into visco-elastic sandwich beams is proposexl.
sults in a novel type of earthquake resistant structures- the slit shear wall system. It is
that by so doing, the energy dissipation capacities and hence the seismic resistances of
all structures can be greatly increased.

ipproximate method for the stochastic response analysis of slit shear walls is developed.
.sponse analysis method is applicable not only to slit shear walls but also to coupled
walls and cantilevered sandwich beams because their governing equations are actually
al. In the proposed method, the system equations arc derived by Rayleigh-Ritz method
‘the stochastic responses of the structure are evaluated using a complex modal
osition method. Nonhomogeneous sandwich core can also be dealt with by employing
cal integration to evaluate the stiffness matrix of the sandwich core. Before applying the
ed method to slit shear walls, the accuracy of the method is verified by analysing a
vered sandwich beam and a coupled shear wall structure and comparing the results {o
btained by other researchers.

erical examples of applying the proposed method to slit shear wall structures are present-
the examples, the effects of core stiffness and core damping on the dynamic responses of
ucture are studied by re-analysing the structure many times using different combinations
- parameters. The resulis show that (1) both the deflection and stress responses of the
te can be substantially reduced by incorporating extra core damping into the structure;
e exist a certain optimum value of core stiffness at which the overall damping of the
e is maximum; (3) in most cases, the dynamic responses of the structure would be
im when the core stiffness is approximately equal to its optimum value for maximum
| damping; and (4) the stress responses of slit shear wall structures are generally lower
0se of solid shear walls which are equivalent to slit shear walls with very high core stiff-
Hence it is demonstrated that a slit shear wall system with visco-elastic material of high
ig capacity inserted into the slits may be a good solution for earthquake resistant building
res. :

ould, however, be borne in mind that so far only theoretical studies have been carried out.
imental investigations are still lacking. Particularly, suitable visco-elastic materials for
on into the slils are yet to be identified before the material and installation costs can be
ed and the feasibility of the proposed system evaluated. Further researches on these are

- research findings reported herein are the outcomes of a co-operative research programme
en the Department of Civil and Structural Engineering, University of Hong Kong and the
te of Mechanics, Chinese Academy of Science. The financial support given by the Crouch-
undation of Hong Kong and the National Natural Science Foundation of the People's

lic of China is gratefully acknowledged.
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dwich beams under various boundary cond

Notations

sectional area of one face layer (or that of one wall)
sectional area of sandwiched core
Young's modulus of face layer (or that of wall)
shear modulus of sandwiched core
complex shear modulus of sandwiched core

: transfer function of r-th mode

pl& lateral load acting on structure

)

QG

-
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moment of inertia of one face layer (or that of one wall)
sqare toot of —1

length of cantilever beam (or height of wall)
response of structure being evaluated
spectral density of ground acceleration
lateral displacement (flexural deflection)
ground acceleration

longitudinal displacement (axial deflection)
kinetic energy of structure

strain energy of structure

mass per unit length or height of structure
modal frequency of r-th mode

core loss factor

modal damping facior of r-th mode

_ndix A

tural damping mechanisms are complicated in nature and difficult to evalnate. In general, viscous
ing forces, which are proportional to the velocities of motion but opposite in direction, are easiest to
with mathematically. For this reason, damping forces are usually replaced for the purpose of analysis
ivalent viscous damping. This equivalent damping is generally determined from experiment by
g the dissipation of energy per cycle fo that of a viscous damper and expressed in terms of the
ing ratio { (ratio of damping to critical damping}.

cenergy dissipated per cycle by a viscous damper increases linearly with the frequency of vibration
the amplitude of vibration is constant. However, experimental observations cannot corroborate this
ic frequency dependent characteristic. A mechanism that leads to the energy dissipation per cycle
independent of the frequency of vibration is hysteretic damping which is a much better
ximation than viscous damping for most engineering structures. Hysteretic damping can be
orated using the concept of complex stiffness by expressing the strucfural stiffness as A(L+im)
'k is the elastic stiffness, i is the square root of —1 and 7 is a loss factor. For a single-degree-of-
dom system, the relation between the loss factor n and the equivalent damping ratio £ is:

n=2¢§ (A1)

ulfi-degree-of-freedom system, however, there is no simple relation between the loss factors of the
tal components and the damping ratios of the system as above. Generally, the loss factors of the
s structural components have to be determined experimentally by testing the structural components
ividual single-degree-of-freedom systems and then the damping factor of each vibration mode of the
1 determined through complex eigen analysis of the system equations as in Sections 2 and 3 of the
paper. In cases where fesfing of the individual structural compenents is not possible, the loss
‘of the structural components may have to be estimated by back analysis of the system behaviour
lilar structures or even by engineering judgement.”

M1=pl 1] | @®1)

[f] is an identity matrix. On the other hand, the stiffness matrix [K'] is a symmetric matrix of the
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[Al+[C]  IE]

K= my 31+

in which [A] and [C] are m X m matrices, [B] and [D)] ate nXn matrices, and [E] is @ m X1 matiy

submatrices [A] and [B] arc diagonal matrices and their diagonal elements are given respectively by:
o4 BT
A i ﬁ2dj —l?

EA
BJ'O'C =2(,'k2 T

Finally, the elements of [C], [D] and [E] are given respectively by the following equations:

1 Acd? a¢j Iy
Ael
d’
1 Ad aff’j
Ejk =J.0 2G. “E?" B_’cj W d§

1
Djkzjg 4G, vy dé



