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A B S T R A C T :  Damage and failure due to distributed microcracks or microvoids 
are on the challenging frontiers of solid mechanics. This appeals strongly to tools 
not yet fully developed in continuum damage mechanics, in particular to irreversible 
statistical thermodynamics and a unified macroscopic equations of mechanics and 
kinetic equations of microstructural transformations. This review provides the state 
of the art in statistical microdamage mechanics. 

(1) It clarifies on what level of approximation continuum damage mechanics 
works. Particularly, D-level approximation with dynamic function of damage appears 
to be a proper closed trans-scale formulation of the problem. 

(2) It provides physical foundation of evolution law in damage mechanics. Es- 
sentially, the damage-dependent feature of the macroscopic evolution law is due to 
the movement of microdamage front, resulting from microdamage growth. 

(3) It is found that intrinsic Deborah number D*, a ratio of nucleation rate 
over growth rate of microdamage, is a proper indication of critical damage in damage 
mechanics, based on the idea of damage localization. 

(4) It clearly distinguishes the non-equilibrium damage evolution from equilib- 
rium phase transition, like percolation. 

Finally, some comments on its limitations are made. 

K E Y  W O R D S :  damage, microdamage, statistical microdamage mechanics, damage 
evolution 

1 I N T R O D U C T I O N  

1.1 E s s e n t i a l  F e a t u r e s  o f  D a m a g e  E v o l u t i o n  
If there is a crack in solid, fracture mechanics successfully characterizes the solid. 

However, for most heterogeneous materials, such as alloys, ceramics, composites, rocks, etc. 

there might be distributed microcracks or microvoids rather than a single macroscopical 
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crack. Roughly speaking, microdamage is formed at mesoscopic inhomogeneity, for example, 
particulates in alloy. So, the nucleation of microdamage usually has the size of particulates 
or grains, like micrometres, and the density of such microdamages on the surface of metals 
is in the range of (102 ~ 104)/ram 2. Moreover, some microdamage may lead to eventual 
failure owing to growth and coalescence. Hence, the main issues in damage evolution are 
nucleation, growth and coalescence of microdamage. This means that  a trans-scale (from 
meso- to macroscopic) understanding of damage evolution is badly needed [1,2]. 

The distinct features of the evolution are as follows[i~5]: 
(1) The non-linear interactions involved in the evolution concern various scales, from 

micro- to macroscopic. A noticeable feature is the richness of structures and processes at 
mesoscopic length scales. In this case, mesoscale structures, such as grains, microvoids, 
microcracks, etc. play significant role in the evolution. 

(2) The damage and failure of solids under external loading are usually far from quilib- 
rium state. Moreover, there are various mesoscopic kinetics with various time-scMes. So, 
not only size-scales but  also various time-scales play significant roles in the evolution. 

(3) The evolution is governed by the collective effects of numerous microdamages, 
rather than the singularity of an individual crack as traditional fracture mechanics deal 
with. 

Based on these characteristics of microdamage evolution in solids, statistical approach 
to the evolution on meso-scales becomes a necessity. Therefore, this is the main concern of 
this review, in particular, closed trans-scale formulation of microdamage evolution in solids. 

1.2 Continuum Damage Mechanics and Micromechanics 
For a piece of solid containing preexisting inhomogeneities, defects or flaws, what kind 

of successive changes will appear under external loadings? Obviously, this problem is the 
focus in engineering and the goal of damage mechanics. 

In last mid-fifties, continuum damage mechanics develops [6~ii]. Continuum damage 

mechanics ignores both microscopic details and governing mechanisms. As a practical tool 
in engineering, it simply takes the average variations of mechanical properties in damaged 
materials as the measure of damage, for example, the degradation of elastic modulus. There- 
fore, continuum damage mechanics consists of two parts: evolution law and critical damage 

Dc. 
Kachanov [6] introduced a damage variable D. D = 0 and 1 denote intact and failed 

states of solids, respectively. Furthermore, he assumed that  the damage variable D is an 

internal variable in constitutive formulation and follows an assigned evolution law 

D -  K 
(I - D)~ (I) 

where ")' is an undetermined parameter  and K can be stress-dependent K(a) or merely a 
second parameter.  The stress in the damaged solids a is calculated as 

a = a~(l - D) (2) 

where a and as are nominal stress and the stress in intact matrix, respectively, because the 
effective load-supporting area is reduced in damaged solids. 

To deal with dynamic response of solids to impulsive loading, Davison and Stevens [is] 
extended the concept of continuum damage to spallation. Particularly, they pointed out 
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the significance of compound damage in failure. In last nineties, Meyers [13] and Grady and 
Kipp [14] made comprehensive and critical review on the subject. On one hand, they no- 

ticed that  "the current availability of high-speed computers and shock-wave propagation 
codes makes possible the development of continuum models of fracture and fragmentation 
to include in these codes". On the other hand, they stressed that "we still need quantita- 
t ive/predictive models based on continuum measure of spalling and nucleation-and-growth of 
microcracks"[13] and "the continuum models based on the statistical nucleation and growth 
of brittle and ductile fracture appear to be an attractive approach" [14]. 

In order to forecast failure, the other part of continuum damage mechanics is a thresh- 
old of damage from gradual to catastrophic accumulation. Because of lacking proper under- 
standing of the transition, an empirical critical damage De is usually assumed as a material 
property, for example, Lemaitre suggested the range of the critical damage Is] 

De ~ (0.2 ~ 0.5) (3) 

Clearly, this is quite arbitrary. 
After knowing the two parts, like Eqs.(1) and (3), damage evolution can be described 

in the framework of continuum mechanics and constitutive theories. Obviously, continuum 
damage mechanics is essentially an empirical description. So, great efforts are made in terms 
of micromechanics, among which the works on void growth by Rice and Tracy, McClintock 
and Gurson are the well-known [15~17]. Roughly speaking, the basic idea of these approaches 

is to perform stress analysis of individual hole or void in a deformed solid and then to ex- 
trapolate to array of holes or voids as average constitutive laws. Since these formulations 

are quite parallel to the paradigm of plasticity, they are widely applied and need not to 
be reviewed here. However, one point is worthy emphasizing. This is that  the microme- 
chanical analysis of ~ h,~l . . . . . . .  1,4 ~ h1r ~ m ~ - , l ~ ,  ,~f t - r ~ r l i ~ l  m~rh~n~eq ~ l h ~ d  

to a hole or cavity and is not actual kinetics of microstructural evolution. What  really 
needs understanding is, as Barenblatt  declared at 18 TM ICTAM [4], "the governing influence 
of the variations of the material structure on the macroscopic behaviour of bodies". "In the 
mathematical  models of such phenomena, the macroscopic equations of mechanics and the 
kinetic equations of the microstructural transformations form a unified set that  should be 
solved simultaneously." This inevitably appeals statistical considerations of microdamage 

ensemble. 
As a mat ter  of fact, continuum damage should be a collective representation of micro- 

damage. Therefore, the evolution law of damage should be based on some mesoscopically 
physical essence and critical damage is also by no means arbitrarily assumed values. As 
overviewed by McDowell at ASTM STP[ 2] "rigorous t reatment  of non-uniformly distributed 
defects requires tools not yet fully developed in continuum damage mechanics". "Weighing 
the influence of distributed damage at the microscale on the collective macroscale stiffness 
and evolution of damage is a challenge as well." "In fact, the overall framework of contin- 
uum damage mechanics, based on the use of internal state variables to represent evolving 
structure of the material, appeals strongly to irreversible statistical thermodynamics." 

1.3 S t a t i s t i c a l  A p p r o a c h e s  
Actually, microstructural engineering of materials has become a necessity in modern 

technology and engineers intend to consider the application, preparation and processing of 
materiMs comprehensively, as shown in the recent special issue of "Science". It is said in 
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its editorial [ls] tha t  "A piece of blackboard chalk and a clam shell are chemically almost 
identical in composition, but  the chalk will snap far more easily. The difference in the 
performance of these two materials originates in their microstructure." Hence, to develop 
a statistical theory of microdamage evolution, including the necessary knowledge of the 
underlying mesoscopical mechanisms, is not only an academic interest, but also an urgent 

practical task. 
In last fifties, Weibull [19'2~ proposed a well-known Weibull distribution 

W ( o ' )  = 1 - e x p ( - - a L d o  "m) (4) 

where W is the cumulative probability of strength less than or, L and d are the size and 
dimension of the sample and a and m are two parameters, respectively. In practice, it 
was found that  Weibull distribution is suitable for solids with quite random microscopic 

structures. 
In order to correlate Weibull's statistical idea to the reality of damage in various solids, 

there are several approaches to various objectives: fibers and composites, brittle heteroge- 
neous materials (ceramics and rocks), crazing in polymers, cumulative fatigue damage, and 

so on. 
For fibres, Deniels, even earlier than Weibull, derived that the strength of fibre bundle 

follows normal distribution [21] . Later, Coleman justified Weibull distribution in fibre [22] . The 

essential idea in the approaches is simple load-sharing rule. Following this idea, Harlow and 

Phoenix developed statistical theories of composites [23]. For more details on this approach, 

it can be referred to a comprehensive overview recently made by Du and Wang [24]. For 

brittle materials, combining Weibull's idea, Griffith's concept of fracture and distribution 

function of cracks, McClintock [25] and Batdorf [26] formed a statistical fracture theory. For 

rocks, some critical reviews are included in the papers in Atkinson's book [27] and the article 
by Wu et al.[2s]. 

Since seventies of 20 TM century, based on various experimental data of microcracks and 

microvoids, Curran, Seaman and Shockey [3] proposed their microstatistical fracture mechan- 

ics, NAG (nucleation and growth) model. According to their statistics of microvoids and 

microcracks, they assumed that the cumulative distribution of microdamage remains expo- 

nential in the course of damage evolution. Additionally, they adopted time-independent but 

stress-dependent mesoscopic kinetics of nucleation rate and viscous growth rate of micro- 

damage. Then, they put all these into a continuum constitutive framework and a numerical 

code of wave propagation. However, the NAG model involves too many empirical parame- 

ters. 
Instead of assumed distribution functions, the other trend is to transplant some statis- 

tical formulations into the study. Bogdanoff [29] initiated a B-model of cumulative damage 

based on Markovian process. Xing [3~ applied Fokker-Planck equation to the study of 

microcrack distribution and then calculated fracture probability with Griffith's concept. 

In order to characterize the non-equilibrium nature of damage evolution, Sih empha- 

sized three fundamental parameters: the time rate of nonequilibrium temperature, dissi- 

pation energy density and volume-change to surface-change ratio [32] . Yuan and his group, 

based on their experimental results of local temperature field and pyromagnetic effect in the 

evolution of defects, examined the rupture process from a unified micro-meso-macroscopic 

standpoint[33]. 
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Another distinctive aspect of the concerned subject is scaling and size-effect of failure. 
Recently, Bazant and Chen gave an extensive review on the subject [34]. They discussed 

three types of size effect: statistical size effect due to randomness of strength, the energy 
release size effect and the size effect due to fractality of fracture or microcracks. 

Now, it appears to be more and more clear that  to develop a sound framework of 
statistical formulation of microdamage evolution becomes more significant. The models 
should be a unified set of macroscopic equations of mechanics and mesoscopically kinetic 
equations. 

Panin and his group in Russia proposed a systematic model named as physical me- 
somechanics. In their theory, there are two mesoscopic levels. On level I, vortex plastic flow 
is characterized by the scheme "shear + rotation", whereas on level II new defects appear 
irrespective of crystallographic orientations [35]. 

In recent years, Bai, Xia and their co-workers made endeavour to work out a formula- 
tion of statistical microdamage mechanics, based on their experimental observations of mi- 
crodamage evolution. This theory combines macroscopic equations of mechanics and meso- 
scopic kinetics and then forms a closed trans-scale formulation of damage evolu- 
tion [5'36]. In next sections, we will review the formulation in more details. Further ap- 
plications of the statistical formulation have been made to damage and failure of glassy 
polymers by Li et al. [3vl , to evolution of microvoids in metals by Huang et al.i3sl, to short 
fatigue cracks in metals by Hong et al.[39,40], to brittle solids by Fang and Zhou [41] and so 

o n .  

2 M I C R O D A M A G E  I T S  F U N D A M E N T A L  E Q U A T I O N  A N D  

S O L U T I O N  

2.1 Essent ia l  Features  of  M i c r o d a m a g e  

In this review, we skip the experimental observations and relevant measurements in 
details [3'5,42,43] . But, as mentioned at the beginning of the review, the number of microcracks 

in tested specimens ranges over (102 ~ 104)/ram 2 on sectional surface, roughly correspond- 
ing to (103 ~ 106)/ram 3 or (1012 ~ 1015)/m 3 in volume. Hence, when a millimeter element 

of metal is examined, a statistical formulation of these microcracks is proper. In this case, 
the damaged element can be considered macroscopically infinitesimal representative one. 
Actually, the length scale of a concerned element of damaged material is closely dependent 
on the intrinsic size of the examined medium. For example, the sizes of crystal, second 
phase particles and microcracks in metals are in the order of (10 ~ ~ 102) #m. In this sense, 
a damaged element of mm 2 can be representative one statistically. Clearly, for rock, the size 
of microdamage and the assumed continuum element can both be much greater. 

The statistical microdamage mechanics is a description of the state of microdamage and 
corresponding mesoscopic kinetics. The key to the issue is to find out a proper description 
of microdamage, not oversimplified and not too detailed as well. Tha t  is to say, we should 
develop such a description that  the physical model of microdamage is concise enough to 

deal with mathematically. On the other hand, the model should be relatively inclusive, 
containing all necessary information for further statistical average. 

The main concern in the study is how the number density n of microdamage evolves 
with time under a certain loading, where n is the number of microdamage within unit phase 
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space. Since the total  of microdamage changes in the evolution owing to nucleation and 
annihilation, it is more convenient to use the number density of microdamage n in this 
study, rather than the probability density usually used in statistical physics. 

2.2 F u n d am en ta l  Equat ion  of  Microdamage  [5'44'45] 
We merely pay attention to sensitive variables of microdamage p~(i = 1 , . . . ,  I) ,  such as 

crack length, with P~ -- Pi # 0, where subscript i covers all sensitive mesoscopic variables of 
microdamage. The letter with "." above it denotes its corresponding rate. Let us examine 
an element d ~  in the phase space of microdamage, where d~2 = (p~,p~ + dpi). The flux of 
microdamage flowing into and out of the element in the phase space d~2 in unit time should 
be balanced by the change of microdamage number within this element owing to nucleation 
and annihilation of microdamage there. This balance rule of microdamage in the phase 
space leads to a general evolution equation of microdamage 

On I O(n. P~) 
0--~ + ~ Op~ = nN -- nA (5) 

i----1 

where n is the number density of microdamage, t is generalized time, like actual time, 
nominal deformation, cycles, etc. nN and nA are the nucleation and annihilation rates of 
number density of microdamage, respectively. 

In Eq.(5), there are three kinds of mesoscopic kinetics. They  are the nucleation rate 
nN, the rates of all sensitive variables PC and the annihilation rate n A of microdamage, ~ 
respectively. Generally speaking, they are all functions of independent variables, such as Pi, 
and loading and environmental parameters. 

2.3 Bas ic  S o l u t i o n  o f  M i c r o d a m a g e  N u m b e r  Dens i ty [  5,45~47] 

Clearly, Eq.(5) still contains too much information about the evolution of microdam- 
age for further deduction of macroscopic mechanical behaviour of damaged materials. So, 
further simplification of the general evolution equation of microdamage is a prerequisite 
to the evaluation of macroscopic behaviours. Since the size of microdamage predominates 
the evolution and the macroscopic behaviour, phase space of microdamage could be limited 
to {c}, where c is current size of microdamage in a representative volume where micro- 
damage locates. For instance, n(c) = 1 0 / # m m m  3 means that  a volume of 1 mm 3 has 10 

microdamages with size between c and (c 4- 1)/zm. 
From mesoscopic point of view, the growth rate of microdamage may not only depend 

on their current size c but  also on their initial size at nucleation co [3]. Additionally, a number 
of micromechanical analysis show this effect [3'4sl. Though the initial size of microdamage 
remains fixed during the course of its extension, the distribution of initial size is usually di- 
verse. Hence, instead of number density of microdamage n, we should examine the evolution 
of number density of microdamage no(t,  c, Co), in the phase space {c, co}. 

For a macroscopically representative element, the solution of the number density of 

microdamage, no(t,  c, co) is derived on the following essential assumptions: 
(1) The coalescence and healing of microdamage are ignored and microdamages are 

independent of each other statistically. 
(2) The nucleation and growth of microdamage are governed by its state variables: 

current and initial sizes c and Co as well as macroscopically local average stress cr [3'4s] 

n N  = a N ( c 0 ;  ~) (0) 
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V = a = V(c, c0;a) (7) 

(3) The macroscopically local field can be altered by the average interaction between 
microdamages. Therefore, stress cr is not coupled with individual microdamage but  serve as 
a macroscopically local mean field parameter. 

The fundamental equation of number density of microdamage, no(t, c, co) is 

Ono O(noV) 
o~ + o ~  = nN(c) . ~ ( c -  co) (Sa) 

where g(c - Co) is Dirac 5-function and it has the same dimension as the reciprocal of its 
argument has, i.e. the reciprocal of microdamage size c. The first order quasi-linear partial 
differential Eq.(5a) has the foUowing characteristic ordinary equations 

d(n0V) 
d ~  - nN6(C -- co) (8) 

dt 1 
dc -- V (9) 

Then, by assuming stress ~ be a parameter, the solution to Eq.(5a) is 

n0(t ,c ,  co) = ~N(c0;~)  when co < c < cf (10) 
V (c, co; ~) 

no(t, c, co) = 0 otherwise 

f cf dc 
t =  o v ( c ,  c0;~) ( l l )  

where cf is the moving front of microdamage [45'46] . The implication of the front cf = cf(t, Co) 

is that  the microdamage nucleated at time t = 0 with the initial size Co will extend to current 
size cf at time t (Fig.l). On the other hand, for fixed time t and current size c, there is 
a corresponding minimum initial size Col = cof(t, c) and the initial microdamage less than 
(co < Col) can not reach the current size c within time t (Fig.l). cf and cof are inverse 
functions each other ~ c dc 

t = v (~ ,  co; ~) (11a) 
of 

By definition, the relation between number densities of microdamage n and no is the 
integration of no with respect to initial size co 

f n(t ,  c) = no (t, c, c0)dc0 (12) 

Substitution of solution n0(t, c, co;a) (10) into this definition (12) gives the expression of 
number density of microdamage n by means of the kinetics of nucleation and growth of 
microdamage, nN and V 

T r - - ' Z ~  ~ "  OCO C < Of, 0 

,~(t, c) = v~c,  co; ~ (13) 

of V(c,  co;cr) dc0 c > cf,0 

where Cf,o = cf(t, co = 0) is the front of microdamage at infinitesimal initial size (Fig.l). 
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Fig. 1 The solution region of microdamage number density n(t, c). The shaded indicates 
where non-zero solution locates, cf is the microdamage front moving upward. Also, 
cf(c0) and c0f(c) (shown in blanket [] ) are inverse each other for the microdamage 
front. 

The solution of number  density of microdamage,  consisting of integrals (13) and ( l l a ) ,  
is unsteady, namely t ime-dependent,  but  the t ime-dependent feature appears  only on the mi- 

crodamage front cf(t, Co). Within the area (the shaded one in Fig.l)  enclosed by the front cf 

and two natural  boundaries co = 0 and c -- co, the solution remains steady, i.e. fixed. So, es- 
sentially, the evolution of damage is due to the movement of microdamage front (Fig.2) [45'47]. 

1.5 

Fig.2 

1.0 

0.5 

i i 

0 2 4 
C 

An example of the solution of microdamage number density n(t, c) under constant 
stress, for dimensionless nucleation rate mcm-le -c'~ and growth rate [1 - (co/c)~] 1/2. 
One can see the trajectory of microdamage front cf on plane (t, c) and the tendency 
to saturation of microdamage. 

3 D A M A G E  F I E L D  I T S  C L O S E D  T R A N S - S C A L E  A P P R O X I M A T I O N S  

3.1 n- leve l  F o r m u l a t i o n ,  B a s e d  o n  N u m b e r  D e n s i t y  o f  M i c r o d a m a g e  n 

We mentioned before tha t  one main point in damage mechanics is how to close the for- 
mulation of damage evolution. From practical point of view, engineers are more interested 



Voi.18, No.1 Bai Yilong et al.: Closed Trans-Scale Statistical Microdarnage Mechanics 9 

in macroscopic evolution and damage distribution in components or structures. In these 
cases, the independent variable of spatial coordinates ~ is of significance. Then, we define 
number density of microdamage in a macroscopic spatial element and adopt its correspond- 
ing coordinates x as a variable describing the state of microdamage. The corresponding 
phase space of the inhomogeneous microdamage is {c, ~}. Certainly, the coordinates x and 
the corresponding particle velocity v are the representative average values of the element. 
Tha t  is to say, all microdamage in the element would have the same coordinates x and 
velocity v. Therefore, for spatial inhomogeneous microdamage, the fundamental equation 
of microdamage (5) can be writ ten as 

On O(nA) O(nv) 
ot  + o-----V- + o ~  - n N  (55) 

where A is the average growth rate of microdamage with current size c 

A(t,  c; o) -- fo  Vnodco (14) 
n 

Clearly, this equation should be associated with other continuum equations, such as mass, 
momentum and energy equations 

Op Op Ov 
o - - 7 + v . ~ + p .  ~ = o  

Ov Ov = p - 1 .  Oer 
0--7 + v .  ~ o--; 

(15) 

(16) 

Ov p-1 02h O ( e -  q) O ( e -  q) = p _ ~ . ~ .  �9 ~ (17) 

where p is density, e and q are specific internal energy and heat source, respectively, er is 
Cauchy stress tensor and h is heat flux. For simplicity, we ignore energy equation in this 
review. 

Later, to illustrate the framework easily, we confine our discussion to its one-dimensional 
strain state version in Lagrangian coordinates 

On O(nA) p Ov 
a--~ + ~ + n - nN (5c) 

Po OY 

Op p2 09 v 
O-T + - 0 (18) Po OY 

Ov i Oz 
po b-~ = 0 (19) 

The transformation from Euclidean (t, y) to Lagrangian coordinates (T, Y) in one dimen- 
sional strain state is t = T and y = Y + u (u is displacement) or 

0 0 0 0 p 0 
--~ + v-fly - OT Oy - Po OY (20) 

where p 1 - - - ,  e is strain. To complete the formulation, apart  from usual relations in 
P0 1 + e  

continuum mechanics, this system of equations should be supplemented by the following 
relations: 
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�9 The above-mentioned relation between nominal stress and the effective stress in intact 
matrix, formula (2). 

�9 Constitutive equation of intact matrix and the principle of strain equivalence[ 6~9] 

as = as(~) (21) 

�9 The relation between continuum damage D and number density of microdamage n 

D(t, x) = n(t, x, c)Tdc (22) 

where ~- is the failure volume of an individual microdamage with size c, for example, for a 
spherical microdamage 7 ~ 1rc3/6. 

Compared to traditional continuum mechanics, there are two more variables: micro- 
damage number density n and continuum damage D, and one more statistical evolution 
Eq.(hc) and an integral relation (22). 

Though the above system constitutes a unified and closed formulation, the differentio- 
integral equations and their complicated meso- and macroscopically coupled nature make 
the problem too tricky to deal with. 

3 .2  D-level  A p p r o x i m a t i o n ,  B a s e d  on t h e  S t a t i s t i ca l  A v e r a g e  o f  M i c r o d a m a g e  
D e n s i t y  So lu t i on  
The main difficulty of the above formulation comes from the integral including micro- 

damage number density n. However, the number density contains more information than 
we usually need in engineering practice. Hence, the first approximation is to eliminate the 
microdamage number density, but to remain its function bridging mesoscopic kinetics and 
macroscopic formulation. 

The statistical evolution equation of number density of microdamage (5c) can be con- 
verted to the following continuum damage field equation by integration under proper bound- 
ary conditions [3,49] 

OD p Ov 
0-u + D - f (23) 

Po OY 
where 

/0 /0 I = nN (c; ~),-dc + nit, .,, c)A(c, o)~-'dc (24) 

f is the dynamic function of damage (DFD), which represents the statistical average effects 
of nucleation and growth of microdamage and ~_t = dT/dc. Obviously, the function is an 
agent bridging microdamage n and continuum damage D. 

Substitution of the obtained solution of number density n in Eq.(13) and growth rate 
A in Eq.(14) into integral Eq.(24) leads to a closed DFD without microdamage number 
density but still with mesoscopic kinetics. To facilitate integration, we should exchange the 
integrating order of the double integral in Eq.(24). The region of the double integral Eq.(24) 
with non-zero number density n0 in Eq.(10) is illustrated by the shaded area in Fig.1. Then 
a closed DFD is expressed directly by two mesoscopic kinetic laws of nucleation and growth 
rates of microdamage [36,461 

f0 = 
f = nN(c;~).(c)dc 1 + [n~(c0;~)2- ' (c )dc]  

f o  ~ ( c ;  ~)~(~)dc 
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nN (25) (co; cT)7-(cf)dc0 

along with the time-dependent microdamage front cf, (ii). The approximation is a closed 

and trans-scale one, combining traditional continuum mechanics and mesoscopic kinetics 
closely and explicitly. So, the D-approximation is preferable to others. However, we have to 

confess there are two assumptions involved in the derivation. Firstly, although continuum 

damage D(t, x) is assumed to be a variable depending on macroscopic spatial coordinates 

m in Eq.(23), the closed form of DFD in Eq.(25) is based on the local solution of nmnber 
density of microdamage n(t,c), formula (13), namely independent of macroscopic spatial 
coordinates x. However, this is in accord with the concept of locality in constitutive theory. 
Secondly, the stress a in the formulation is nominal stress, whereas the stress in mesoscopical 
kinetics Eqs.(6) and (7) should be understood as the stress in intact matr ix  as. The relation 
between the two stresses is shown in Eq.(2). So, the decoupling in the formulation (25) is 
based on the assumption of D << 1. Additionally, stress is usually time-dependent, whilst 
the solution (13) is obtained by assuming stress to be a parameter. These are the points of 
the approximate closure. 

There is another D-level approximation, but based on empirical DFD. One can notice 
that  the only time-dependent part  in DFD is the second term in the blanket of expression 
(25), because of the time-dependent front of microdamage cf. Actually, it is found that  
in some cases this t ime-dependent term can be fitted into a power function of continuum 
damage D. Hence DFD can be expressed by a very simple formula 

f = f (D,  a) = n~(c*)4gN(a) [1 + ~g(a)D m] (26) 

where gN and g are two dimensionless functions of stress. Constant n~(c*) 4 indicates the 
characteristic value of microdamage nucleation rate, where n~ is characteristic nucleation 
rate and c* is the characteristic microdamage size, respectively, m and /3 are two dimen- 
sionless parameters. This is in accord with the concept of simple and compound damages 
corresponding to nucleation and growth of microdamage, respectively, proposed by Davi- 
son and Stevens [121 . Generally speaking, the DFD has m > 1 and appears to be concave. 

Whereas, /3 is a dimensionless ratio of compound rate over nucleation rate of damage (see 
Eq.(25)), so it is an intrinsic Deborah number. Additionally, it is worthy noticing that  in 
this approximation continuum damage D is still governed by the damage field equation. 

Compared to traditional continuum mechanics, there are one more variable conti- 
nuum damage D and one more field Eq.(23), which is dependent on mesoscopic kinetics of 
microdamage by DFD, integral (25). 

3.3 I - l e v e l  A p p r o x i m a t i o n ,  B a s e d  o n  I n t e r n a l  V a r i a b l e  D 
When examining the second term in the equation of damage field evolution (23), one 

can express it as 
D P _ O v  D O e  D O e  (27) 

po OY l + e OT '~ OT 

provided strain is negligibly small. So, if damage D is also negligibly small and the two 
Oe OD 

rates, strain rate ~-~ and damage rate - ~ ,  are in the same order, the damage field Eq.(23) 

becomes 
OD _ D ,.~ f (28) 
OT 
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This is what internal variable theory in continuum damage mechanics assumed [6~1~ . So, we 
name this I-level approximation. Obviously, the derivation provides a ground for the usual 

continuum damage mechanics. In this approximation, damage D is implicitly dependent on 
spatial coordinates via stress field, rather  than an explicit field variable as before. Hence, this 
I-level approximation is implicitly space-dependent. Incidentally, under this approximation, 
one can obtain another expression of damage D straightforwardly by its definition Eq.(22) 
and the solution of number density of microdamage Eq.(13), provided mesoscopic kinetics 
are available, regardless of damage evolution law, like Eq.(25) 

D(t;cr) = nN(c0; ~r) V(c, eo;o.)dc dco (29) 

Compared to traditional continuum mechanics with internal variable, this approxima- 
tion not only provides a reasoning ground of continuum damage mechanics, but also gives 
the expression (29) of damage D in terms of mesoscopic kinetics directly. 

3.4 Intr ins i c  D e b e r a h  N u m b e r  

In spite of various formulations of damage evolution, we can indicate that  there is a 
characteristic dimensionless number 

D* - nN(c*)5 (30) 
V* 

where V* is the characteristic growth rate. D* characterizes the damage rate ratio of two 
intrinsic processes: nucleation over growth. This expression can be seen clearly from expres- 
sion (29) of damage D, because of ~- c< c 3. Also, in the light of ~r theorem in dimensional 
analysis, since there are three independent characteristic parameters: nucleation rate n~, 
growth rate V* and microdamage size c* but only two independent dimensions: length and 
time, only is there one independent dimensionless parameter  that is D*. The lower the num- 
ber is, the stronger the effect of growth is. Obviously, D* implies a certain characteristic 
damage. Although the significance of Deborah number, a ratio of intrinsic relaxation time 
over imposed one, was proposed in micromechanics [4] , noticeably, D* is an intrinsic Deborah 
number in damage evolution. This intrinsic Deborah number originates in multi-time-scale 
intrinsic processes, like nucleation and growth of microdamage in the concerned case. In 
this sense, the introduction of intrinsic Deborah numbers is very much natural and universal 
in non-equilibrium processes in heterogeneous media. We will see later that  this intrinsic 
Deborah number is truly the decisive factor in failure prediction. 

4 C R I T I C A L  D A M A G E - - D A M A G E  L O C A L I Z A T I O N  A S  M E C H A N I S M  

O F  F A I L U R E  

4.1 D a m a g e  L o c a l i z a t i o n  C r i t e r i o n  [49] 

Till now, we have not answered the other key question in damage mechanics: how 
to determine the critical threshold of damage to failure. As discussed before, damage is 
viewed as a field variable, i.e., explicitly dependent on spatial coordinates x,D = D(x). 
It is usually accepted that  failure is a process of dimension reduction, like a roughly two- 
dimensional fracture surface formed in a three-dimensional solid. Hence, the damage field in 
the process of localization could be examined with one dimensional approximation, namely 
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only one effective spatial variable Y vertical to the premature fracture plane. In the light of 
this damage field concept, damage localization can be depicted by the following condition 

02D / O D  OD 
0Y-g-T / O-Y > y ~ / D  (31) 

This implies that damage localization appears when the relative rate of damage gradient 
becomes greater than the relative rate of the damage itself. Then, what mechanical factor 
governs the localized failure? For the damage field, we take the form of DFD f = f(D, or), 
like Eq.(26), and differentiate damage field Eq.(22) with respect to the spatial ordinate 
Y. Under the assumption of quasi-static small deformation, the inequality for damage 
localization Eq.(31) can be expressed by DFD and its derivative [49] 

f (32) 

of 
where fD = OD" 

This is no longer a geometric description of damage localization Eq.(31), but a critical 
dynamic condition for damage localization, governed by intrinsic nature of media, DFD. 
Most importantly, this demonstrates that critical damage should be a material constant, 
independent of sample size, boundary, etc. To illustrate the apphcation of the criterion, we 
substitute DFD Eq.(26) into Eq.(32), then the criterion to localization becomes 

De = [(m - 1). fl]-l/,~ (33) 

From data fitting, it is known that m is in the order of 10 ~ like 2..,4, but/~ may change 
from 101 in creep to 10  4 ~ 1 0  6 in impact. From the mesoscopic measurements, Dc ranges 
from tenths to hundredths, even thousandths. 

It might be interesting to compare these values to the transition thresholds of several 
tenths given by percolation theory. Percolation is an equilibrium theory of geometrical phase 
transition to form global connection [5~ Actually, the connection of broken sites resulting 
from random breaking resembles the failure owing to random nucleation of microdamage in 
process. So, the difference in transition thresholds demonstrates that damage localization 
to failure is by no means an equilibrium process in nature. As a matter of fact, provided 
growth rate of microdamage vanishes, dynamic function of damage f would become damage- 
independent, see Eq.(24) or (25). According to criterion Eq.(32), damage localization will not 
appear in this case. Furthermore, numerical simulations do show that damage localization 
criterion can properly predict the collapse of media under loading[ 51]. 

4.2 Intr insic  Deborah  N u m b e r  as Ind ica tor  of  Cri t ical  Damage  
Provided the critical damage for damage localization is a material constant, could it 

be expressed by mesoscopic kinetics, rather than empirical constants, like Eq.(33). Notice 
that there is differentiation with respect to damage D only in criterion (32) and stress acts 
as if a parameter. So, by means of the approximations of DFD (25) and damage D (29), as 

d f  _ d f / d D  the critical damage to localization well as the relation among derivatives: dD dcf / dcf' 

can be derived as 

Dc = D*. f o  ~ (Gf) nN (Go) d~o. fo ~176 "r (~f) ~N (~o)/V (Go, Gf) dGo (34) 

fo  (G0) dG0 
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where over bar denotes dimensionless and scaled variables. Actually, Eq.(34) is a tran- 
scendental equation of Dc, because of the dependence of microdamage front cf on time t, 
therefore on damage D. Since variables in (34) are well-scaled, the integrals in (34) are all 

in order 1, i.e., O(1). Therefore 
Dc ~ D* (35) 

This implies that  intrinsic Deborah number D *  is a proper indicator of macroscopic critical 
damage to localization. So, instead of the arbitrary values of critical damage (3) in con- 

t inuum damage mechanics, we have had a physically meaningful evaluation of the critical 
damage. Based on this fact, engineers can figure out the critical threshold according to 
mesoscopic physics and design proper tests to measure its exact values. 

Alternatively, in some cases it is found that  the second term of the trans-scale for- 
mulation of DFD (25) could be fitted into a power law of damage D and then there is an 
approximate relation [52] 

( v *  = ( D . ) _  m (36) 

Then, the expression (32) of the critical damage De, also leads to the important  relation 

(35). 
Above all, the intrinsic dimensionless numbers D* plays the most significant role in 

the prediction of damage localization to failure in heterogeneous media. 
Now let us have a quick look at a practical example: spallation. For a kind of A1 alloy, 

mesoscopic experimental measurements give D *  - n ~ ( c * ) S  ,-. (10 -3 ~ 10-2). Data fitting 
V* 

on continuum level gives ~ N (105 ~ 100). Suppose that  damage localization criterion, 
Eq.(33), works, the condition leads to the critical damage to localization, De N 4 • 10 -3 
and a calculated critical time of 0.7#s. Clearly, De and D* are in the same order. Also, 
compared the calculated critical time 0.7#s to the loading duration of (0.68 ~ 0.85)#s for 
the appearance of incipient macro-cracking in tests, the agreement is very encouraging Is3]. 

5 C O N C L U T I O N  

The present paper reviews the progress in damage mechanics, especially, the state 
of the art in statistical microdamage mechanics. The main points can be summarized as 

follows: 
(1) "Weighing the influence of distributed damage at the microscale on the collective macro- 

scale stiffness and evolution of damage is a challenge." 
(2) We reviewed its fundamental equation and basic solution of microdamage number den- 

sity, which can provide an essential bridge linking mesoscopic kinetics and continuum 

formulation of the phenomena. 
(3) Damage evolution can be described in terms of an associated system of continuum and 

damage field equations on various levels of approximation. The D-level approximation 
with dynamic function of damage (DFD) appears to be a proper closed trans-scale for- 
mulation of the problems. And, continuum damage mechanics is equivalent to I-level 
approximation of the trans-scale formulation. 

(4) Damage localization provides a proper threshold of failure forecast. The critical dam- 
age to localization lower than the thresholds in percolation reflects the non-equilibrium 
essence of damage evolution to failure. 
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(5) Intrinsic Deborah number D* is a significant representation of the effect of mesoscopic 

kinetics on macroscopic damage evolution. It is closely related to damage localization. 
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