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A technique that melds an atomistic description of the interfacial region with a coarse-grained
description of the far regions of the solid substrates is presented and applied to a two-dimensional
model contact consisting of planar solid substrates separated by amonolayerfluid film. The hybrid
method yields results in excellent agreement with the ‘‘exact’’~i.e., fully atomistic! results. The
importance of a proper accounting for the elastic response of the substrates, which is reliably and
efficiently accomplished through coarse-graining of the far regions, is demonstrated. ©2004
American Institute of Physics.@DOI: 10.1063/1.1667474#

I. INTRODUCTION

Thin-film lubrication involves the relative sliding of two
solid substrates separated by a thin fluid film~e.g., lubricant
or adsorbed impurity!.1 At the interface the substrates make
molecular contact at relatively few asperities~irregular
prominences of microscopic dimensions!, through which
they interact via purely mechanical processes such as elastic
distortion, plastic flow of the asperities and flow of
lubricant,2 as well as by physiochemical processes such as
adsorption,2 adhesion,2,3 and chemical reaction.4 Hence, thin-
film lubrication entails a complicated interplay among vari-
ous processes that couple spatial and temporal scales span-
ning the gamut between molecular and macroscopic.

That coupling occurs at the interface, where fluid mol-
ecules, as well as neighboring solid atoms of the substrates,
can undergo large-amplitude~diffusive! motions. The details
of both fluid and solid molecular motions in the vicinity of
the interface are expected to influence strongly the frictional
force ~i.e., the minimum force needed to initiate, or to main-
tain, sliding!. We take it for granted that the fluid film and the
‘‘near’’ regions of the solid substrates~i.e., the several layers
of solid that border the interface! must be described atomis-
tically in order to predict reliably thermomechanical proper-
ties. The question is: How extensive must the near regions
be? It is clearly impracticable to treat realistic~macroscopic!
tribological systems wholly at the molecular scale, although
computer simulation of single, idealized nanoscopic asperi-
ties is feasible.5–7 Moreover, since atoms in regions of the
solid far removed from the interface~i.e., the ‘‘far’’ regions!
execute only small oscillations about their equilibrium posi-
tions, the far regions behave as~linear! elastic solid. This

suggests that we may be able to ‘‘coarse-grain’’ the far re-
gions, treating them at the continuum~macroscopic! scale
and thereby submerging the details of atomic motion, yet still
having a reliable description of the process of interest. The
next question is: How do we merge the coarse-grained treat-
mentadequatefor the far regions with the atomistic descrip-
tion necessaryfor the fluid and near regions in order to
achieve a self-consistent reliable global description?

Coarse-graining refers in general to a procedure that
eliminates atomic degrees of freedom to achieve a reduced
description of the system in terms of fewer degrees of free-
dom, which pertain to quasi-particles interacting via anef-
fectivepotential energy that incorporates~approximately! the
influence of the ‘‘lost’’ atoms. Coarse-graining has been ap-
plied to polymer melts,8–10 materials11–15 and biological
structures.15 Here we adapt the ‘‘quasi-continuum
approach’’12 to the description of sliding at a fluid–solid in-
terface.

The purpose of this paper is twofold:~1! to present a
new hybrid atomistic-coarse-grained Monte Carlo method
for handling reversible multiscale processes at fluid–solid
interfaces; ~2! to demonstrate the importance of reliably
modeling the elastic response of the far regions in determin-
ing the shear stress.

The key idea behind the hybrid approach is to coarse-
grain the systempartially. The far regions of the substrates,
which behave essentially as elastic solid, are covered by a
coarse-graining~CG! mesh, whose nodes coincide with rela-
tively few atoms. The coarse-grained regions aredynami-
cally constrainedaccording to the quasicontinuum procedure
of Tadmor et al.:12,16 When a CG element is distorted by
displacement of its nodes, the underlying lattice is assumed
to be deformed according to the same interpolations as those
used in the finite-element method.17 Hence, all atoms on thea!Electronic mail: xzeng1@unl.edu
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underlying lattice are displaced in unison. This constraint
greatly reduces the number of degrees of freedom of the
system, replacing the original atoms of the far regions with
the nodes of the CG mesh. For theconstant-strainelemental
deformations assumed in this work the coordinates of the
underlying atoms are related to the coordinates of the nodes
by a linear transformation, which can be used to derive a
coarse-grained Hamiltonian that regards the nodes as
quasiparticles.18 The effectiveinteractions among the quasi-
particles are mediated by the underlying atoms constrained
to move in lockstep with the nodes. The Hamiltonian of the
whole system consists of theeffective-particleHamiltonian
for the far regions plus the originalreal-particleHamiltonian
for the film and near regions. The near and far regions are
coupled by interactions between near-region solid atoms and
atoms underlying the adjacent CG elements. Thiseffective
total Hamiltonian can be used in Monte Carlo computer
simulation of reversible processes~e.g., sliding!.

In order to investigate the importance of a proper mod-
eling of the elastic response of the far regions in the context
of tribology, we simulated reversible sliding at a single
model contact: Two-dimensional~2D! planar substrates sepa-
rated by a monolayer film. We examined several dynamical
approximations for the response of the far regions, compar-
ing the approximate results with the ‘‘exact’’ results obtained
from the fully atomistic simulation.

II. MODEL TRIBOLOGICAL SYSTEM

The idealized 2D contact consists of two identical crys-
talline substrates separated by a thin fluid film at an atomi-
cally flat interface@see Fig. 1~a!#. The top layer of atoms of
the upper substrate~top wall! and the bottom layer of the
lower substrate~bottom wall! are taken to be rigid with the
nearest-neighbor distancefixedat the lattice constanta of the
hexagonal close-packed structure. The bottom wall is as-
sumed to remain fixed in the ‘‘laboratory’’ reference frame;
the top wall can be translated in thex andy directions, but is
assumed to remain parallel with the bottom wall. Thus, the

walls function as handles by which the substrates can be
moved relative to each other. They are technically not part of
the system, which comprises the intervening~active! solid
substrates plus the fluid film.

The system is bounded by anLx3Ly rectangle, where
Ly is the distance between the rigid planes of the top and
bottom walls. Periodic boundary conditions are imposed in
the x direction. The lateral alignment~in the x direction! of
the walls is specified by the registera, which is defined by

xi
u5xi

l1aa, ~1!

whereu and l, respectively, denotex coordinates of corre-
sponding atoms in the top and bottom walls anda is the
fraction of the lattice constant by which the top wall is dis-
placed laterally with respect to the bottom wall. In Fig. 1 the
walls are shown precisely in register~a50!.

We assume that the configurational~potential! energyU
can be expressed as a sum of interactions between pairs of
atoms
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In Eq. ~2! rNf andrNs stand for the collections of 2Nf fluid–
atom coordinates and 2Ns solid–atom coordinates, not in-
cluding the solid atoms in the walls. Note thatU depends on
the 2Nw coordinates of the wall atoms through the last term
in Eq. ~2!. We take the pair interactions to be shifted
Lennard-Jones~12,6! potentials

uab~r !5H fab~r !2fab~r c!, if r ,r c

0, if r>r c ,
~3!

where

fab~r !54eab@~s/r !122~s/r !6#, ab5 f f , f s,ss. ~4!

The effective diameters and ranger c are the same for all
pairs; only the deptheab of the attractive well depends on the
composition of the pair. Thus,U depends on only these pa-
rameters:e f f , e f s , ess.

III. HYBRID ATOMISTIC-COARSE-GRAINED
DESCRIPTION

Figure 1~b! displays a schematic of the partial coarse
graining: A portion of each substrate~i.e. the far region! is
covered by a mesh of congruent equilateral triangles~in the
reference configuration!, whose nodes coincide with a subset
of ~active! solid and wall atoms. We assume that when an
elemente is distorted by displacing its nodes, the lattice un-
derlyinge is homogeneouslydeformed. Then the coordinates
r ia of underlying atomi can be written in terms of nodal
coordinates (Rka) as

r ia5 (
k51

3

Ai~k!Rka /Ae ; a5x,y, ~5!

where k labels nodes,Ae denotes the area ofe and Ai(k)
denotes the area of the inscribed triangle which has one side

FIG. 1. Schematic of idealized two-dimensional contact.~a! Fully atomistic
description; ~b! partial coarse-graining of far regions of substrates;~c!
wholly rigid substrates;~d! rigid far regions. All atoms are depicted in their
initial configuration ata50.
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coinciding with the side ofe opposite nodek and the oppo-
site vertex coinciding with the lattice site at (r ix ,r iy), that is,
with the atomi.17 From Eq.~5! we conclude that the posi-
tions of all atoms underlyinge are uniquely and completely
determined by the positions of the nodes ofe. Therefore,
under the assumption that the underlying atoms move in
lockstep with the nodes, the number of independent variables
needed to specify the configuration of the underlying atoms
is greatly reduced, specifically from 2Na

e , whereNa
e is the

number of atoms undere, to 6.
The contribution of the coarse-grained portions of the

substrates to the configurational energy can be written

V~RNn!5 (
e51

Ne

Na
eũe , ~6!

where RNn stands for the nodal configuration,Ne for the
number of elements, andũe for the configurational energy
per atom. Assuming that all elements are ‘‘local’’~i.e., e is
large enough to contain the ‘‘cut-off’’ circle described be-
low!, we can expressũe as

ũe5 1
2 (

j
uss~r i j !, ~7!

where i denotes the ‘‘centroid’’ atom~i.e., the atom nearest
the centroid ofe! andj labels atoms that lie within the cut-off
circle of radiusr c that is centered oni. In essenceũe is the
configurational energy per atom for an infinite crystal that
possesses the configuration of the homogeneous lattice un-
derlying e. The total configurational energy of the partially
coarse-grained system is then given by
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whereNs8 stands for the number of atoms in the near regions
and Ns9 for the number of atoms in the far~coarse-grained!
regions. The second term in Eq.~8! assumes that the bands
of near-region atoms are sufficiently wide that fluid atoms do
not interact with underlying atoms in the far regions. The
factor of 1

2 in the next to last term in Eq.~8! prevents doubly
counting the interactions between atoms in the near and far
regions. The coarse-grained contribution~last term! effec-
tively accounts for one half of the interactions between un-
derlying and near-region atoms.

IV. STATISTICAL THERMODYNAMIC ANALYSIS

We wish to studyreversibleshearing of the film under
conditions of a constant number of fluid atomsNf , constant
~absolute! temperatureT and constant ‘‘normal’’ stressTyy .
For this purpose, we employ the analogue of the bulk-phase
isothermal–isobaric ensemble, whose characteristic function
G is the analogue of the bulk-phase Gibbs energy:

G5E2TS2LxLyTyy . ~9!

In Eq. ~9! E stands for the internal energy andS for the
entropy. The change inG under a reversible transformation
of the system is given by

dG52SdT1mdNf1gdLx2LxLydTyy1TyxLxd~aa!,
~10!

wherem is the chemical potential of the fluid,g is the inter-
facial tension, andTyx is the shear stress, which is equivalent
to the force per unit length acting upon the top wall in thex
direction. It is the shear stress upon which we wish to focus
our attention primarily.

By means of a standard statistical-mechanical analysis
we can derive the following formal relationship:

G52kBT ln D, ~11!

wherekB is Boltzmann’s constant andD is the isothermal–
isobaric partition function

D~T,Nf ,Tyy ,aa!5(
Ly

exp@~LxLy!Tyy /kBT#QNf
. ~12!

In Eq. ~12! QNf
is the canonical partition function, which is

expressible in the classical limit as

QNf
5

1

h2~Nf1Ns!

1

Nf !
E dpNfE drNfE dpNsE drNs

3exp~2H/kBT!, ~13!

whereh stands for Planck’s constant, the HamiltonianH is

H5(
i 51

Nf

pi
2/2mf1(

j 51

Ns

pi
2/2ms1U~rNf ,rNs!, ~14!

and pNf and pNs represent the momenta conjugate to the
coordinatesrNf and rNs, respectively.

From Eqs.~10!–~13! we obtain for the shear stress

LxTyx5
]G

]aa
52

kBT

D

]D

]aa

52kBT

(
Ly

exp~LxLyTyy /kBT!
]ZNf

]aa

(
Ly

exp~LxLyTyy /kBT!ZNf

,

~15!

where the configuration integralZNf
is

ZNf
5E drNfE drNs exp~2U/kBT!. ~16!

The second line of Eq.~15! follows from the observation that
the integrals on momenta do not depend onLy or a. Employ-
ing procedures detailed previously,19,20we derive the follow-
ing formula for the shear stress
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Here the brackets signify the ensemble average; the prime
denotes the derivative with respect to the argument of the
function. Equation~17! is employed in the Monte Carlo
simulation of the fully atomistic system, as described in
Sec. V.

The hybrid analogue of Eq.~14! is
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i 51
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2 PT~M !21P
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whereP is the 2Nn-dimensional column vector of momenta
conjugate to the nodal coordinatesRNn and M21 is the ef-
fective mass matrix, which depends on the transformation
Eq. ~5!.18 By a derivation that parallels the one reaching
Eq. ~17! we obtain the hybrid analogue of Eq.~17!
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wherei in the last term refers to the centroid atom.

V. COMPUTATIONAL PROCEDURE

Figure 1 displays schematic diagrams of the initial state
of the system for the ‘‘exact’’~i.e., fully atomistic! and sev-
eral approximate versions of the idealized contact. The walls
are in register~a50! and each substrate has the configuration
of the perfect crystal. The separationLy between the walls is
such that a monolayer of fluid atoms just fits in the interstices
formed by the solid surface atoms. The initial configuration
of fluid atoms is random.

To compute the thermomechanical properties we per-
form isothermal–isobaric Monte Carlo~MC! simulations us-
ing the prescription given previously.19,20One MC cycle con-
sists of a sequence of diffusive steps~i.e., attempted
displacements of atoms or nodes withLy fixed! followed by
a homogeneous compression or dilation of the system in the
y direction. The diffusive part of the cycle comprises two
subsequences. In the first atoms~or nodes! are sequentially
displaced just once at random~i.e., the atom or node is ran-
domly displaced within a square of sided centered on its
initial position!. In the second subsequence, fluid atoms are
subjected to several cycles of ‘‘large’’ moves in order to fa-
cilitate the equilibration of the fluid film, which tends to get
trapped in metastable configurations. During one cycle of
large moves theNf fluid atoms are sequentially displaced
randomly in a square of edgeD.d. We generate a total ofM
MC cycles, discard the first half of these, and evaluate en-
semble averages over the remaining half.

Shearing, which is regarded here as a quasistatic~revers-
ible! process, is effected by increasinga gradually in small
incrementsDa. The initial configuration for any register
~aÞ0! is determined from the last configuration of the pre-
vious register~a2Da!. In the absence of coarse-graining the
previousx coordinates of atoms in then rows nearest the top
wall ~or nearest the plane of the rigid substrate bordering the
interfacial region! are displaced by

Dx~y!5aS 12
yw2y

nb DDa, ~20!

whereb is the mean distance between lines of atoms parallel
with the x axis, yw is the commony coordinate of the wall
atoms~or atoms in the nearest plane of rigid substrate! andy
designates the coordinate of the solid atom. In case the solid
is partly coarse-grained, then the line of nodes in the top wall
is displaced byDx5aDa, but the active nodes are assumed
to remain fixed. Hence, underlying atoms are displaced from
their positions in the previous configuration according to Eq.
~5!. For each successive register we repeat the MC simula-
tion, as described above for the casea50.

For all simulations, Table I lists the values of the various
parameters. Numerical values are expressed in dimensionless
units based on the Lennard-Jones parameters for the solid–
solid interaction: Distance is expressed in units ofs; energy
in units of ess; stress in units ofess/s; temperature in units
of ess/kB .

VI. RESULTS

A. Fully atomistic treatment

We first survey the behavior of the fully atomistic ver-
sion @see Fig. 1~a!# of the two-dimensional~2D! contact un-
der reversible shearing. Figure 2 displays plots of the shear
stressTyx as a function of registera. The two curves corre-
spond to shearing in the ‘‘forward’’~a50→a51.2! and ‘‘re-
verse’’~a51.2→a50! directions. Note that since shearing is
a quasistatic process~i.e., it is carried out infinitely slowly!,
each point (a,Tyx) of the shear-stress curve corresponds to
an equilibrium state of the system. The plots are periodic in
a, having a period of unity. They are also antisymmetric
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arounda50.5 in the range 0,a,1.0. The maximum inTyx ,
which occurs arounda'0.4, is the minimum stress needed
to initiate sliding of the contact in the forward direction.
Hence the static friction force per unit length of the contact
can be taken to be the maximum inTyx .

The symmetry of the shear-stress curve can be rational-
ized as follows. The explanation is based largely on snap-
shots of atomic configurations, which we do not present for
lack of space. Whena50, the solid surfaces at the fluid–
solid interface are aligned so that the solid atoms in the upper
surface are precisely opposite~on average! those in the lower
surface. This configuration of the solid atoms at the interface
has the effect of creating interstices~cages! into which the
fluid atoms neatly fit. The mean position of a given fluid
atom is at the center of its cage. It thus exerts equal and
opposite forces on the two atoms of the upper solid surface,
as well as on the two atoms of the lower surface, which
altogether form its cage. Thus, the net transverse~x direc-
tion! force on the upper substrate vanishes ata50. We note
that if the fluid atoms were replaced by solid atoms, then the
system would become a pure single crystal under no shear
stress.

Now as the top wall is displaced slightly to the right
~a50→a5Da!, that is, as the system is subjected to a small
shear strain, the atoms relax upon equilibration~after many
MC cycles starting from the initial configuration! to their
new equilibrium positions, which are shifted to the right. In
particular, the atoms in the upper solid surface at the inter-
face are shifted to the right of their counter-atoms in the
lower solid surface. As a consequence, the mean position of
a fluid atom in its cage is closer to the upper~lower! solid
atom that lies to its left~right!. Hence, the fluid atoms exert
a net transverse force~in the negativex direction! on the
upper solid surface, which is transmitted to the top wall and
must be counterbalanced by an external force applied in the
positivex direction in order to hold the wall in place~i.e., to
fix the value ofa5Da!. The applied external force per unit
length is the shear stress. By convention, the sign ofTyx is
positive if the applied force is in the positivex direction.

As a increases gradually over the range 0,a<0.4 and
the effective cages of the fluid atoms become more con-
stricted,Tyx rises~Fig. 2!. The system behaves as if it were a
linear elastic solid. When the register just exceedsa.0.4,
Tyx begins to drop precipitously. The configuration snapshots
indicate that the atoms of the upper solid surface at the in-
terface abruptly slip over the caged fluid atoms, so that they
~the upper solid atoms! lie nearly over the voids between the
atoms in the lower solid surface. In this situation the old
cages shrink to create new ones. There are about twice as
many cages of about half the size. In the range 0.4<a,0.5,
the newly created cages are smaller than the shrunken origi-
nal ones, so that~on average! fluid molecules are asymmetri-
cally distributed about atoms in the upper solid surface.
Hence, there remains a net transverse force on the upper
wall, although it is diminished substantially from the maxi-
mum at a.0.4, where fluid atoms are constrained to the
original cages. Finally, ata50.5 the cages are of the same
size. Fluid atoms should, therefore, be symmetrically distrib-
uted about solid atoms in the upper surface so that the net
transverse force on the upper wall vanishes.

As a varies over the range 0.5,a,1.0, the sequence of
events detailed above is reversed, except that the distribution
of fluid atoms is skewed in the opposite direction. As a con-
sequence the net transverse force on the top wall changes
sign. When the register finally reachesa51, the system is in
precisely the same condition as it is ata50. Thus, asa
increases from 1.0, the above scenario is repeated.

Shearing froma51.2 to a50 carries the system in re-
verse through precisely the same states as shearing in the
forward direction. Since the process is performed reversibly,
we expect the ‘‘reverse’’ plot to coincide with the ‘‘forward’’
one, as indicated in Fig. 2.

We regard the version of the model contact depicted in
Fig. 1~a! as a prototype and the results of the fully atomistic
simulation ~Fig. 2! as ‘‘exact.’’ They furnish a benchmark
against which we can compare results of simulations of ap-
proximate versions, which we consider next.

B. Approximate dynamical treatment of substrates

Is it necessary to describe the entire system at the atom-
istic scale in order to obtain reliable shear-stress curves~i.e.,

FIG. 2. Shear-stress curves~shear stressTyx vs registera! for the fully
atomistic version@Fig. 1~a!# of the 2D model contact.

TABLE I. Parameters~in dimensionless units defined in text! of the simu-
lation.

Nf510
Nw52310520

Ns5232405480
Ns852340580

Ns95232005400
Ne523458
Nn523254

T50.1
Tyy520.1

a5A 2

A3
51.075

Lx510a
ess51

e f f51/9
es f51/9
r c52.5
M5106
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curves that essentially agree with those displayed in Fig. 2!?
If so, then we face an overwhelming computational burden
in treating general tribological systems, which involve bil-
lions of atoms.~Even our relatively small model contact,
which is deliberately tailored for our present purpose, taxes
our computational resources when it becomes necessary to
simulate a large number of thermodynamic states.! Since we
are convinced of the necessity of describing the film and near
regions at the atomic level, our only hope is that the dynamic
response of the far regions to molecular motion in the film
and near regions can be handled approximately in such a
way as to yield reliable shear-stress curves.

We can conceive of several levels of approximation that
could be adequate to this task. At the crudest level we simply
freeze the entire solid substrate, as shown in Fig. 1~c!. That
is, we take the substrates to be wholly rigid. We note in
passing that this is a common approximation.5–7 The rigid
substrate can be regarded as an extended wall. Only the first
two terms on the right side of Eq.~17! contribute to the shear
stress andLy refers to the separation between the planes of
the rigid substrates that border the film. Figure 3 displays the
resulting shear-stress curve. Although the curve exhibits the
same symmetries~periodic ina of period unity; antisymmet-
ric about a50.5 in the range 0,a,1! as the exact curve
~Fig. 2!, which can be rationalized in a similar way, it is not
even qualitatively correct in that it fails to reproduce the
‘‘snapping’’ character of the exact curve~i.e., the slow rise
with register in the elastic region followed by the precipitous
decline at the threshold of the transition region, which sug-
gests a tendency of the contact to lurch at a critical register!.

The next level of approximation that suggests itself is to
improve the crudest model by ‘‘thawing’’ the near region of
the substrates@Fig. 1~d!#. As Fig. 3 indicates, the introduc-
tion of a measure of elasticity in the substrates improves the
shape of the shear-stress curve modestly by lowering the
maximum and shifting it to higher register. Nevertheless, the
approximate curve still does not capture the snapping char-
acter of the exact one.

We could of course extend the atomistically treated near
regions indefinitely, eventually reaching the exact limit@Fig.
1~a!#, but this tack would obviously defeat our objective of
finding an efficient and reliable method of treating the far
regions approximately. Therefore, we attempt to introduce
elasticity at the continuum scale by coarse-graining the far
regions@Fig. 1~b!#. As illustrated in Fig. 1~b!, we take~the
equivalent of! four triangles in the mesh on each substrate.
On account of the periodic boundary conditions in thex di-
rection there are two active nodes in each substrate~i.e.,
nodes coinciding with solid atoms!. These are sufficient to
determine the positions of 200~active! underlying atoms.
Plots of coarse-grained and exact shear-stress curves in
Fig. 4 are in excellent agreement, thus showing that coarse-
graining can reliably approximate the elastic response of the
far regions.

VII. SUMMARY AND CONCLUSIONS

We present a new hybrid atomistic coarse-grained treat-
ment of thin-film lubrication. The key idea is to coarse-grain
the regions of the solid substrates that are sufficiently far
removed from the lubricant~fluid!–solid interface. The
coarse-graining, which is accomplished by superposing a

FIG. 3. Comparison of shear-stress curves for several versions of 2D
~model! contact: Wholly rigid substrates~solid lines! @Fig. 1~c!#; only rigid
far regions~open circles! @Fig. 1~d!#; fully atomistic ~solid circles! @Fig.
1~a!#.

FIG. 4. Comparison of shear-stress curves for the fully atomistic~solid
circles! @Fig. 1~a!# and hybrid~open squares! @Fig. 1~b!# versions of the 2D
model contact.
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mesh on the far regions, reduces the original Hamiltonian to
an effective Hamiltonian which governs the motion of the
original fluid atoms plus the near-region solid atoms plus the
nodes of the mesh as pseudo-atoms. The effective Hamil-
tonian can be used to carry out Monte Carlo simulations of
~reversible! sliding.

We applied the new hybrid atomistic-coarse-grained
scheme to an ideal 2D lubricated contact consisting of a
monolayer of fluid between two planar solid substrates.
Simulating reversible shearing of the contact by means of an
isobaric–isothermal ensemble Monte Carlo method, we stud-
ied several approximate versions of the model designed to
ascertain the importance of a proper accounting for the elas-
tic response of the substrates. The conclusions of the inves-
tigation are:

~1! Neglecting completely the elastic response of the sub-
strates~i.e., maintaining the substrates entirely rigid!,
one misses completely the ‘‘snapping’’ character of the
exact shear-stress curve~i.e., the gradual rise of the
stress with register followed by an abrupt drop at the
threshold of the transition region, suggesting a tendency
of the contact to snap at a critical register!;

~2! introducing elasticity into the near regions of the sub-
strates, while maintaining the far regions rigid, improves
the shape of the shear-stress curves only marginally,
which suggests that the elastic response of the far re-
gions is critical to a reliable overall description;

~3! the elastic response of the far regions can be adequately
and efficiently accounted for by the hybrid atomistic-
coarse-graining scheme.

ACKNOWLEDGMENTS

We thank the National Science Foundation for generous
support through the Grant Programs ECS-9900127, ITR-
0112929, and NIRT-0210850. We also thank the UNL re-
search computing facility for support.

1N. P. Suh,Tribophysics~Prentice-Hall, Inglewood Cliffs, NJ, 1986!.
2F. P. Bowden and D. Tabor,Friction and Lubrication of Solids~Clarendon,
Oxford, 1964!.

3D. H. Buckley,Surface Effects in Adhesion, Friction, Wear and Lubrica-
tion ~Elsevier, Amsterdam, 1981!.

4D. Godfery, inFundamentals of Tribology, edited by N. P. Suh and H.
Saka~MIT Press, Cambridge, 1980!.

5B. Bhushan, J. N. Israelachvili, and U. Landman, Nature~London! 374,
607 ~1995!.
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