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Abstract The differential variational principles of second kind for non-holonomic mechanics are given, from which a
number of integral variational principles of second kind are set up. From the latter, the general relation =f d¢’-dg and
the general form of integral variational principles of the first kind and intermediate kinds azc derived. Thus not only all
previous relations of 8¢’-8q and integral variational principles are unif’ed hut 2lsc the existance of the variational princi-

ples of intermediate kinds are pointed out.
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For the non-ltiolonomic mechanics of freedom degree n, in state space, all the generalized coor-
dinates ¢ = (¢,,"**, q,) and generalized velocities ¢’ = (¢';,***, q’,) should be looked as basic vari-
ables and so the motion equations for ¢,

o= (s=1,mn) (1)
should be put on a bar with the motion equations for ¢’,, i.e. the form of Newton’s second law of mo-
tion in state space. Here the time differential of ¢, has been expressed by g, for short. All the previ-

(1=4] can give the motions for ¢’ only if those of

ous variational principles for non-holonomic mechanics
q (eq. (1)) are accepted beforehand, because only the generalized coordinates are permitted to get
independent variation while the generalized velocities are not permitted so. In the present paper, the
variational principles from which both the motion equations of ¢ and those of ¢’ can be derived to-
gether will be set up for non-holonomic mechanics. The variational principles given in the present pa-
per will be called variational principles of second kind because both the d¢’ and &q are independent,
while the previous variational principles for non-holonomic systems are called the variational principles
of the first kind. Besides, in non-holonomic mechanics, many different relations of d¢’-8¢ and differ-
ent integral variational principles of the first kind were suggested and even many arguments ap-
peared!' "®! . Can all those relations and principles be unified? It will be shown in the present paper
that our variational principles of the second kind for non-holonomic mechanics can lead to the general
relation of §'¢q-8q and the general form of integral variational principles of the first kind and intermedi-
ate kinds for holonomic and non-holonomic mechanics. Thus not only all previous relations of §'¢-8¢
and integral variational principles are unified with the result of canceling any possibility of arguments,

but also the existance of the variational principles of intermediate kinds are pointed out.
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1 The differential variational principles of the second kind

Consider a mechanical system composed of N mass points subject to m independent, ideal and

holonomic constraints

W, (r,t) =0 (a =1,",m < 3N) (2)

and g independent, non-holonomic, ideal (in Appell-Chetaev’s sense'’ ') constraints of first degree
Gﬁ(rar,!t)=0 (,8=17'“’g<3N"m)’ (3)

where r=(ry, =-,ry), r'=(r{,-,ry), with r; and r’; being the position vector and velocity

vector of ith mass point respectively. The forces of constraint R; of ideal constraints possess the prop-
erty: for vector elements 8r(dr,, '+, dry) satisfying

2 20 (o tm) (4)
i=1 ari ' ri - *= ’ '
and Appell-Chetaev’s conditions!' >}
N
d
20 5ee(ror ) s dr =0 (=12, (5)
1=1 1
we have
N
DIR, - br; = 0. (6)
r=1
This is equivalent (0 that the forces of constraint R, exerted upon ith mass point can be expressed as'!
- W, < 2 , |
Ri= ;#n(t)_az—*' ;;@(t)a—r,lcﬁ(r!r ’t) (’/=1’“.’N)y (7)

where the coefficients ., and {; depend on temporary dynamical states. In terms of state variables,
Newton’s second law of motion can be written as

Fi+Ri_TTLLad;rl;=0 (i=11“"N)v (8)
’.'i"r,i=0 (i=1"“9N)’ (9)

where m; and F; are the mass of ith mass point and the active force exerted upon it respectively .
Theorem 1 ( Newtonian representation of generalized D’ Alembert-Lagrange’s principle
(differential variational principles of second kind) ). The sufficiently smooth functions (r(t),
r'(t)) defined on time interval [ to, t,] is an actual motion of constrained Newtonian system repre-

sented by eqs. (2), (3) and (7)—(9), if and only if it satisfies eqs. (2), (3) and

N

N
E(F,—mi%r’i) '8ri+zmi(;'i—r,L)°8rli=0 (10)

i=1
for every moment of time t € [ to, t;], all vector elements r'(dr'y,-+,8r'y) and all vector elements
Or satisfying conditions (4) and (5).

Proof. We first prove the necessity of the conditions. Suppose that (r(¢),r'(¢)) is an actu-
al motion of constrained Newtonian system represented by eqs. (2), (3), (7)—(9) on time interval
[ tost,]. Then it satisfies conditions (2) and (3). For any vector elements ér' and any vector ele-
ments Jr satisfying conditions (4) and (5), we have eq. (6) from eq. (7). Egs. (6), (8) and
(9) give (10). This completes the proof of the necessity of the conditions.

Now we prove the sufficiency of the conditions. The conditions of the theorem give (2) and (3).



548 SCIENCE IN CHINA (Series A) Vol. 42

Since r in (10) satisfies (4) and (5), we can use Lagrange’s multiplier method with undetermined
multipliers 4, and ; to obtain (8) and (9). The sufficiency of the conditions has been proven.
Now we are going to express this principle in terms of generalized state coordinates (g, q’ ). The
number of the generalized configuration coordinates g, on the intersection of hypersurfaces (2) is n =
3N - m, i.e. whenever r satisfies eq. (2), we have generalized configuration coordinates g, =
qi(r,t) (i=1,",n). For the sake of convenience, for every t< (5, t) we extend smoothly and
invertiblly these n generalized configuration coordinates on the intersection of hypersurfaces (2) to an
open field 3 (¢) in state space (7, r’) containing the intersection themselves, and then in 3 () we
define m auxiliary configuration coordinates ¢, , , = W,(r,,"=*,ry,t)(a =1,",m). The general-

ized-velocities coordinates ¢’ (g';,"**, ¢’y ) are defined as

LT L T

s = + r; = 19'“93N)- (11)
1 dt ~ dr,
The inverse transformation is
ar, N dr,
= 7 o = L A
o= rlg), s e 250 (s W), (12)
From eqs. (10)—(12), we can easily prove the new rclations
ar,  Ar, ¢ Ar,  3r Iy, 3r, (i = 1,---,N)
= SO NS =V 2AJ7—= - 13
7q. " 5o, didg, g 2T Waag \o 1, (13)
corresponding to Lugrange relations and the new central equation
- d 9T ar N
D= di 5y 5a * 0Joa + D, - 8 35 < 0, (14)
s=1 § s=1
N 1 N
where the definitions of kinetic energy T and generalized force Qs( T = Z ) mr'?and Q, = Z F,

=1 =1
ar,
. a—ql) are used. Due to condition (2), s and k in (13) and (14) only take 1 to n but not 1 to 3N

(From now on, g and ¢’ have only n components). Eq. (14) becomes

" d 2 n . aL
2( dta,L+—L+Q)8q,+;(qs-qs)8m=0, (15)

s=1

s

where L is Lagrangian L = T — V containing the contributions of all conservative active forces and @',
(s=1,-",n) are possible non-conservative forces. Based on these results with further trivial deriva-
tion, we obtain the following statement :

Theorem 2 (Lagrange representation of generalized D’ Alembert-Lagrange’s principle) .
The sufficiently smooth function (q(t), q' (t)) defined time interval [ ty, t,] is an actual motion of
Lagrange system with function L and constraint conditions

f2(gsq' 1) = Ge(r(q,t),r'(q,q",t),t) =0 (B =1,",g) (16)

(i. e. conditions (2) and (3)), if and only if it satisfies (16) and (15) for every moment of time t €
[to,t1]), all 8¢' and all 8q satisfying conditiorw

Z S0 =0 (8=1,). (17)

2 Integral variational principles of second kind

By using the obvious relation 8g, = d/dtdq,, eq. (14) can be written as
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d y T S . ’ aT Y ’
_a(za—q;é\qs) +8T+82(q‘_q‘)8_q’s+ 205343 = 0. (18)

s=1 s=1
Now let us extend q(¢) and ¢’ (t) to ty and ¢, continuously. By using the fundamental theorem

for variational method'”’, we can easily prove that (18) for time interval (¢4, #,) is equivalent to
tl n X aL n n aL t‘
J {S[L + 250q - ¢)) aq'] ¥ 2 Q’ﬁqx}dt -2 900 =0 (19)
b s=1 s a=1 s

s=1 !
0
which is called “partial variational equation” because of the restrictions (17) on dq. Thus we have

Theorem 3 ( Lagrangian representation of integral variational principle of second kind
with free end-points).  The sufficiently smooth function (q(t), q'(t)) defined on time interval [ to,
t,] is an actual motion of Lagrange system with constraint conditions (16) (i.e. conditions (2) and
(3)), if and only if it satisfies eq. (16) for every moment of time t € [ to, t,] and the partial variation-
al equation (19) with all 8¢' and all 3¢ satisfying conditions satisfy condition (17).

Under the end-point conditions

Bq,(to) = Bq,(tl) =0's =1,"",n) (20)
or under condition (20) and

81‘!’,(140) i Sq’s(tl) ::0(8 = l,"',n), (21)
generalized D’ Alembarnt-lajrange’ s principle remains tenable in the open interval (tg, ¢,), and so the
integral variationel principls aiso remains tenable; only the forms of eq. (19) become

IRE DT q;)aaTL,] - > Qg fde = 0. (22)
0 s=1 s s=1

Thus we have the following statement :

Theorem 4 (Lagrange representation of integral variational principle of second kind with
half-fixed (or fixed, end points) ). The sufficiently smooth function (q(t), q'(t)) defined on time
interval [ to, t,] is an actual motion of Lagrange system with constraint condition (16) (i.e. conditions
(2) and (3)), if and only if it satisfies eq. (16) for every moment of time t € [ ty, t,] and the partial
variational equation (22) with all 89’ (or satisfying condition (21)) and all 8q satisfying conditions
(17) and (20).

By using Lagrange’ s multiplier (Ag) method and considering the non-singularity of Hertz matrix
5‘3,2—9%7 , the above integral variational principle of the second kind gives the complete motion equations in

state space: eqs. (16) and

a1 a1 g
_dtaq,x+aqs+()s+ﬁzz;/1l;aq,x_O(s_l, ,n), (23)
(}J =q, (s=1,,n). (24)

f1—3]

Substituting (24) into (23) gives well-known Routh equations , which also shows the correctness of

" our variational principles of the second kind.
3 Hamilton representation of the variational principle of the second kind

It this section we suppose that all the active forces are conservative. In view of the non-singulari-
*T

ty of Hertz matrix W , we can introduce the Legendre’s transformation :
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a 12
Ps = aql“L(q’q ’t) (S = 1"“’"/)’ (25)
H(q,p,t) = > pq, - L(q,q' ,¢). (26)
s=1
These two equations give
IH

¢ = ¢.(g,p,t) = 3~ (s = 1,-,n), (27)

s

and so (19), (22), (16), (17) and (21) become

3 Lid . n t
L 8( Zpsqs - H)dt - Zpﬁqs

‘-0, (28)

0

f ( Zpsqs - H)dt =0, (29)

s=1

us(q,p, t) = f,;(q g ,t)=0(8=1,",g), (30)

2 kz; dpy aP9P
On (1) = 8p,(t1) =0(s =1, ,n), (32)

respectively. This ve obtain the tollowing (wo statements

] aqs =0 (!-‘ = ’""g./\ o (31)

Theorem 5 {!lamilion representation of variational principle of the second kind with free
end-points) .  The smooth function (g(t),p(t)) defined in time interval (to,t,) is an actual motion
of Hamilton system under condition (30) (i.e. conditions (2) and (3)), if and only if it satisfies
(30) for every moment of time t € (ty,t,) and the partial variational equation (28) with all the smooth
variations Op and all the 8q satisfying condition (31).

Theorem 6 { Hamilton representation of variational principle of second kind with half-fixed
(or fixed) end points). The smooth function (q(t),p(t)) defined in time interval (ty,t,) is an
actual motion of Hamilton system under condition (30) (i.e. conditions (2) and (3)), if and only if
it satisfies (30) for every moment of time t € (ty,t,) and the partial variational equation (29) with all
the smooth variations 8p ( or satisfying condition (32)) and all the 8q satisfying conditions (31) and (20).

Although all the variational principles given above are related to Newton system, it is easy to prove
that Lagrange representation and Hamilton representation of the variational principles with the words relat-
ed to Newton system deleted still exist for Lagrange systems and Hamilton systems themselves respective-
ly. Besides, when the non-holonomic constraint conditions do not exist, our variational principles will re-
duce to those for holonomic mechanics, with the well-known Livens Theorem'®! and “Modified Hamilton

Principles"fg' 10] being two examples.
4 Leading to integral variational principles of first kind and intermediate kinds

Since the actural motion condition (1) is a deduction of any principle of the second kind, we
will get a new principle equivalent to the original one if condition (1) is put on the trial actual motion
in the original principle. Then in the new principle, combining condition (1) of the trial actual mo-
tion with partial variational equation (22) we obtain a new partial variational equation

J[SL z(a'(&h 8q's)+028q,)] de

7 =q

0. (33)
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Notice that the subscript ¢’ = ¢ is only put on trial actual motion, but not on any comparative motion,
so 0q’, is still independent variation (of course the end-point condition must be satisfied) . Therefore
the new principle still belongs to those of second kind. However, expanding 6L in (33) shows that
the terms containing dq’, are canceled out so that all selection methods of J¢’, are equivalent. Thus in
the new variational principle, imposing any linear relation (called general relation of 8¢’ — 8¢)
8¢, = A,(8q) (s € {1,--,nt) (34)

(here, A, may depend on trial actual motiom ¢,q’ and ¢) on 8¢’ is equivalent to permitting 8¢’ to
be independent. But the new variational principle with condition (34) just belongs to those of the first
kind (for the number M, of s is n) or intermediate kinds (for 0 < M, < n). Therefore we have

Theorem 7 (Lagrange representation for general form of variational principle of first and
intermediate kinds with half-fixed (or fixed) end points).  The sufficiently smooth function
(q(t), q'(t)) defined on time interval [ ty, t,] is an actual motion of Lagrange system with constraint
condition (16) , if and only if it satisfies eq. (16) for every moment of time t € [ ty. t,] and the partial
variational equation (33) with (8q, Oq') satisfying condition (34). Appell Cheiaev conditions (17)
and end-point conditions (20) (or plus equation (21)).

With each specified form of A, a pariicviar vanational principle is obtained. It is worth noticing
that as shown by the above Jeduction, the form of A, can be independent of constraint condition (16) .
Besides, when the non-kclonomic corstraint conditions do not exist, the general form of the variational
principles of the tirst kind and intermediate kinds will reduce to those for holonomic mechanics.

Take some examples as follows: (i) Let eq. (34) take the form 8¢’ =0. Then eq. (33) takes the

n

t aL . ,

partial variational formJ l[ SL(q,q ,t) + E ( W@qs + 0 ﬁqs)] dt = 0, whose form has not
‘o s=1 s ¢ =q

appeared in literature. (ii) Under the condition that there are no non-conservative active forces, let eq.

de

q, t)]q' - th = 0. (iii) Under the condition that there are no non-conservative active forces, let (34)

13
(34) take the form of 8¢’ = i&q. Then eq. (33) takes Hélder partial variational form[l_‘ﬂj '(8L(q,
to

take Susrov’s form. Then (33) takes Susrov’s partial variational form ™41, (iv) Let (34) take the form

8q', = 8q, + dt = 0.

7 =q

Q’s/aiqL,—)&h (s=1,,n). Then (33) becomesj l[SL(q,q’,i:)]
5 ’Q
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