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Vapour Recoil Effect on a Vapour—Liquid System with a Deformable Interface
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A new two-sided model of vapour-liquid layer system with a deformable interface is proposed. In this model,

the vapour recoil effect on the Marangoni—Bénard instability of a thin evaporating liquid layer can be examined

only when the interface deflexion is considered. The instability of a liquid layer undergoing steady evaporation

induced by the coupling of vapour recoil effect and the Marangoni effect is analysed using a linear stability theory.

We modify and develop the Chebyshev—Tau method to solve the instability problem of a deformable interface

system by introducing a new equation at interface boundary. New instability behaviour of the system has been

found and the self~amplification mechanism between the evaporation flux and the interface deflexion is discussed.

PACS: 47.20. Ma, 47.27. Te, 64. 70. Fx

Evaporation process has attracted a great deal of
attention because of various kinds of industrial appli-
cations, such as thin-film evaporators, boiling equip-
ments and heat pipes. When temperature drop across
the liquid layer exceeds a critical value, the interfacial
instability results in evaporative convection where a
flat surface becomes undulated.

In previous works,!1?
Marangoni—Bénard instability were carried out for sin-
gle liquid phase systems, in which the vapour phase
adjacent to the liquid layer was considered to be pas-
sive. In this case, the dynamics of the thermal and
mechanical perturbations in the vapour can be ne-
glected. Miller®! examined the instabilities of an
isothermal evaporating interface associated with a
moving boundary. Burelbach et al.l*! investigated the
nonlinear stability of evaporating and condensing lig-
uid films. Vapour recoil, thermocapillary and rupture
instabilities are discussed in their works. In general,
the local surface depressions can be produced by the
rapidly departing vapour and this mechanism is called
the ‘differential vapour recoil’. Recently, Ozen and
Narayanan!® proposed a two-sided model that con-
sists of a liquid layer and its own vapour. In their
theoretical analysis, the Marangoni—-Bénard instabili-
ties of the system only at onset of evaporating were
considered. In that case, the evaporative flux of un-
perturbed state was assumed to be zero, and the differ-
ential vapour recoil effect could not be taken into ac-
count. In Ozen and Narayanan’s model,”! the Hertz—

most studies on the

Knudsen equation!®! was not introduced under the in-
terface boundary conditions and the convective insta-
bility of the system in the case of non-evaporation
can not be deduced when the evaporation accommo-
dation coefficient is zero. Zhang et al.l® and Chai and
Zhang®! experimentally studied the effects of liquid

evaporation on the Marangoni-Bénard convection in
thin liquid layers evaporating at room temperature.

In our previous works,'® we discussed the in-
stabilities of the two-sided model with a non-
deformable vapour—liquid interface. Since the classical
Chebyshev-Tau method!'!! we used before can only
solve the eigenvalue problem of the system without
interface deflexion, we develop the Chebyshev—Tau
method specifically for interface deflexion and solve
the problem with interface deflexion accurately in the
present study.

Here we propose a theoretical model of two-layer
evaporating system with a deformable interface, as
shown schematically in Fig.1. The physical model
consists of a liquid of depth d; underlying its own
vapour of depth d,. Both the top and bottom walls
are considered as rigid perfectly conducting bound-
aries. The top wall is assumed as a porous medium
to vapour, through which the vapour phase can pass
at a certain velocity. The phase change rate at the
interface can be controlled by adjusting the vapour

pressure.
Lo
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Fig.1l. Schematic diagram of a definite depth liquid-
vapour layer system with a deformable interface.

In an unperturbed state, the liquid evaporates at
a certain steady evaporating rate, and it is assumed
that there is no convection in both the vapour layer
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and the evaporating liquid layer. However, the lo-
cal evaporating velocity is not constant and it may
change upon the perturbation. The interfacial tension
at the interface is considered to be a linear function
of temperature: ¢ = g9 — o (T — Tp), where Ty is the
reference temperature of interface. At the evaporat-
ing interface, the mass flux J is assumed to obey the
Hertz-Knudsen equation:[®”

T =0\ o (D) = po(T), (1)

where [ is the evaporation accommodation coefficient;
M is the molecular weight of vapour; ps(T') is the sat-
uration pressure at surface temperature T'; po(T) is
the vapour pressure just beyond the interface; and R
is the universal gas constant.

The governing equations for each fluid layer are
the continuity equation, the energy equation and
the Navier—Stokes equations with the Boussinesq
approximation,!2-14] ie., only the densities pi(i =
v,1) are dependent on the temperature. The treat-
ment adapted in the present study is different from
that developed by Pearson,*®! since a set of simplified
equations with elimination of the horizontal velocity u
and the pressure p were applied in Pearson’s analysis,
whereas a set of original equations (2)—(9) are applied
in our analysis. In our model, the boundary conditions
applied at the deformable interface is much more com-
plex than that with a flat interface. As the pressure
and the interface deflexion variable are introduced in
the normal stress balance condition at the interface,
the pressure and the velocity can not be decoupled
under the boundary conditions in the governing equa-
tion system of the problem, and all primary variables
are used in the present analysis.

We introduce two-dimensional spatiotemporal nor-
mal perturbations proportional to exp[At + ikx] into
the linearized full governing equations and boundary
conditions (see Ref.[11]). The dimensionless pertur-
bations are written as

[’U,;, wgv Tzla 77/] = [Ul(z)ﬂ W’i(z)a @Z(Z), 77] exp[)\t + ka]a

where u},w!,T!, and ' with ¢ = v,l are the per-
turbations of the horizontal velocity, vertical velocity,
temperature and interface deflexion; U;, W;, ©;, and n
are the amplitudes of the horizontal velocity, vertical
velocity, temperature and interface deflexion, respec-
tively; A is the complex time growth rate; and k is
We use v;/d;,
d?/v;, d; and AT as the scaling factors for veloc-
ity, time, length and temperature, respectively. The
depth ratio h = d,/d;. The dimensionless ratio of the
physical properties are k* = k,/k; (thermal diffusiv-
ity), 8* = B,/B; (volumetric expansion coefficient),
X* = Xo/x1 (thermal conductivity), p* = u,/p (dy-

the real dimensionless wavenumber.

namic viscosity), p* = p,/p1 (density) and v* = v, /i,
(kinematical viscosity), respectively. The subscript v
refers to the vapour, while [ to liquid.

ikU, + DW,, =0, (2)

A\o*U, + w,0DU, = —ikP, + v*p*V3U,,  (3)
AIO*VI/'U + w'uODWU = _DP’U

Ra
* *V2Wv * *_@1” 4
+v7p . (4)
ATy, K*
D =
A0, + L W, + w,0DO, Prv Oy, (5)
ikU; +DW; =0, (6)
U, = —ikP, + VU, (7)
R
AW, = =DPi + V*Wi + 561, (8)
dTyo 1,
A+ — W, = —V-0 9
1+ & T py L (9)
D = 0. (10)
Boundary conditions at the top wall (z = h):
U,=W,=06,=0, (11)
and the bottom wall (z = —1):
Uy =W, =0, =0. (12)
Boundary conditions at the interface (z = 0):
pT(Wy = An) =W = M, (13)
25(W, —=W,)+ P, — P, — 2DW, + 2u*DW,,
1 Ga
=['f2 +(1—p*)+—]n,
PrCa Pr (14)
Pr(DU, + ikW;) — Pru* (DU, + kW)
. dTyo
= —tkMa (@l + g’ﬂ), (15)
ar, dT,
EW,—An) —x* — =0 16
( l 77) X dz + dz ) ( )
U = Uva (17)
dTyo dTo
o+ &0, g, 4 L0, 18
s T " (18)
- dT;
Wv — Wl :EQ[EI 1(@[ + T?n) — Pv],
(19)

where D is the dimensionless differential operator
d/dz, V? is the operator D? — k2, and dTjo/dz is
the temperature gradient of fluid-i at the unper-
turbed state; w,o is the dimensionless evaporation ve-
locity of vapour leaving the interface in the unper-
turbed state. Ma is the Marangoni number defined as
orATd;/(puki), where AT is the temperature differ-
ences in the liquid layer, Ra is the Rayleigh number
defined as Ra = gB3;d3AT/kiv, Ca is the capillary
number defined as Ca = pk;/0od;, Ga is defined as
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L
Ga = gd} /Ky, E is defined as E = ZIZT

L is the evaporation latent heat. Ey is defined as E; =
pvi T M pi—poui Py
pvh%EAT’ 2rRT  p, hi
is the Prandtl number of the liquid defined as v;/k;.
The linear equations (2)—(10) together with its
boundary conditions (11)—(19) are discretized by using
the spectral numerical method (Tau-Chebyshev).['!]
In addition, we extend the original method by using
a additional equation to describe the interface defor-
mation. For treatment of the boundary conditions at
deformable interface, the relation (10) is introduced
into the governing equations system of the problem,
since the perturbed component of the interface defor-
mation for a certain wavenumber is a constant. By
introducing the relation (10), the number of the gov-
erning equations of system, 13, is the same as that of
the corresponding boundary conditions. It is remark-
able that after using the modified method, we can ob-
tain completely the numerical results in the system
with interfacial deformation.

, where here

and Ey as Ey =

The alcohol with its own vapour at 25°C is selected
in the present study and the depth of the liquid layer is
1mm. The ratios of physical properties (see Ref. [16])
and dimensionless numbers of the liquid—-vapour sys-
tem are v* = 34.7, p* = 2.3 x 1074, x* = 8.5 x 1072,
k* = 6.1 x 102, Pr = 14.9, and Ra = 0, respectively.
The depth ratio of vapour and liquid layers is A = 1.0.
In present study, first we do not consider the buoyancy
effect on the system when Ra = 0. The Rayleigh ef-
fect on the convection instability of the liquid-vapour
system will be discussed later in the end of paper.

When the system is perturbed, it responds accord-
ing to the dynamical equations. This responds may
carry it still further from the original unperturbed
state. The neutral curves of Marangoni—-Bénard in-
stability in the system with 8 = 0 have been shown
in Fig.2. It is obvious that at all wavenumbers the
system without evaporation (w,o = 0) is more sta-
ble than that with non-zero evaporation velocity at
the free vapour interface (w,o # 0). For example,
the critical Marangoni number of the system in the
case of w,y = 0 is greater than that in the case of
w,o = 1.0. This means the vapour recoil effect can
obtain the vapour-liquid Marangoni—Bénard system
more unstable.

In fact, upon the perturbation the temperature
profile along a deflected interface is not uniform (see
in Fig.1). When the vapour layer heated from the
bottom, the temperature in the valley of the vapour
surface is higher than that at the crest since the valley
is close to the heat source (hot bottom wall). In the
valley, the temperature is higher than the unperturbed
reference temperature and the evaporation will take

place here at the perturbed state. At the crest where
the temperature is lower than that of the reference
state, the vapour will condense into its own liquid. A
disturbance inducing a local increase in surface tem-
perature will increase the local evaporation rate and
decrease the local surface tension. The increasing of
evaporation rate produces a local increase in normal
force and at the same time it results a correspond-
ing local depression at the interface. At this point
of interface, the liquid becomes hotter and its evapo-
ration rate becomes greater than before so the local
interface will continue to depress. This process pro-
duces auto-amplification of the original disturbance
and makes the vapour-liquid Marangoni—Bénard sys-
tem more unstable.
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Fig. 2. Marangoni number of the liquid layer versus di-
mensionless wavenumber for different evaporation veloci-
ties with the evaporating coefficient g = 0.
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Fig. 3. Marangoni number of the liquid layer versus di-
mensionless wavenumber for different evaporation veloci-
ties with the evaporating coefficient 3=0.001.

In Fig. 3 when the accommodation evaporation ef-
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ficient of the system, 8 = 0, is 0.001, the Marangoni—
Bénard system with zero evaporation velocity (w,g =
0) is more stable than that at w,o = 1.0. Compared
Fig. 2 to Fig. 3, we find that the system with =0 is
more unstable than that with 8 = 0.001, at the same
evaporating velocity.

In many laboratory situations, gravity plays an im-
portant role. The Rayleigh effect makes the system
unstable. However, this effect can be avoid when the
liquid layer is very thin. In this case, gravity force sim-
ply pulls the perturbed interface back to its original
position, and the gravitational effect on the interface
makes the system more stable. If the steady evapo-
ration rate is high enough to overcome the stabilizing
effect of the gravity and the cooling effect of the evap-
oration, the vapour recoil effect is capable to produce
convection in the liquid layer. As we know, the ac-
commodation evaporation efficient presents the cool-
ing ability. The larger the value of 3, the larger the
temperature difference across the liquid layer needed
to drive the convection in it.

In summary, new behaviour of the Marangoni-
Bénard instability in a vapour-liquid layer system
have been found in our present study when considering
the coupling of interface deflexion to the Marangoni
effect at the evaporating interface. The vapour recoil
effect has destabilization mechanism to the system,

and the cooling effect of the evaporation has stabiliza-
tion mechanism to the system.
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