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Abstract

Purpose — Develop a local radial point interpolation method (LRPIM) to analyze the dissipation
process of excess pore water pressure in porous media and verify its numerical capability.
Design/methodology/approach — Terzaghi’s ccnsolidation theory is used to describe the
dissipation process. A local residual form is formulated over only a sub-domain. This form is
spatially discretized by radial point interpolation method (RPIM) with basis of multiquadrics (MQ) and
thin-plate spline (TPS), and temporally discretized by finite difference method. One-dimensional (1D)
and two-dimensional consolidation problems are numerically analyzed.

Findings — The LRPIM is suitable, efficient and accurate to simulate this dissipation process. The
shape parameters, ¢ = 1.03, R = 0.1 for MQ and 5 = 4.001 for TPS, are still valid.

Research limitations/implications — The asymmetric system matrix in LRPIM spends more
resources in storage and CPU time.

Practical implications — Local residual form requires no background mesh, thus being a truly
meshless method. This provides a fast and practical algorithm for engineering computation.
Originality/value — This paper provides a simple, accurate and fast numerical algorithm for the
dissipation process of excess pore water pressure, largely simplifies data preparation, shows that the
shape parameters from solid mechanics are also suitable for the dissipation process.

Keywords Porous materials, Numerical analysis, Dissipation factor

Paper type Research paper

1. Introduction

Finite-element method has been widely used for the analysis of space-domain problems
that have arbitrary shapes or complex geometries. It has been observed that the mesh
generation is a far more time-consuming and expensive task than the assembly and
solution of the finite-element equations. In order to avoid the mesh generation in
finite-element method, meshless methods were proposed to avoid the connectivity
among nodes. Great progress has been made in fluid mechanics (Kansa, 1990; Hon et al.,
1999), solid mechanics (Belytschko et al, 1996; Atluri and Zhu, 1998; Wang and Liuy,
2002a), soil mechanics (Murakami ef al., 2001; Wang et al., 2002) and other applications
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(Wendland, 1999; Ho ef al., 2001; Singh et al., 2003; Wang ef al., 2004) in recent years.
Among meshless methods, radial point interpolation method (RPIM) (Wang and Liy,
2002a) is more attractive due to following characteristics. Firstly, point interpolation
makes an approximation pass through each node within the problem domain, thus
boundary conditions can be more easily implemented than the meshless methods
based on moving least-square (MLS) approximation (Lancaster and Salkauskas, 1981;
Belytschko et al, 1996). Because the interpolation is based on a cluster of nodes instead
of an element, the RPIM does not require the connectivity among nodes. This
completely avoids the drawbacks of FEM. Secondly, shape functions and derivatives of
the RPIM are explicitly expressed over a cluster of nodes only if radial basis functions
(rbfs) are selected (Wang and Liu, 2002b). Thirdly, rbf maps multi-dimensional space
into one-dimensional (1D) space. The smoothness of approximation can be easily
determined in 1D space. Thus, the formulation based on the rbfs can be easily extended
to higher dimensions. On this point, the meshless methods based on the rbfs are
advantageous over the point interpolation method (PIM) based on only polynomial
basis. This is because the singularity in the later is a big problem (Wang ef al, 2001). In
fact, the MLS approximation also uses rbfs as weight function while only polynomials
are used in basis functions. It is a mixed method of rbfs and polynomials. Finally,
because the RPIM carries out the interpolation within each influence domain instead of
global domain (Wang and Liu, 20023, b), the system matrix obtained is sparse and
banded, being more suitable for large-scale problems.

The RPIM is based on the global weak form which is developed over whole problem
domain. Compared with collocation method such as references (Kansa, 1990; Zhang
et al., 2000; Hon et al., 2002), this weak form has two advantages: lower order of
derivatives and easier implementation of boundary conditions. However, the meshless
methods based on the global weak form still requires background mesh for integration,
thus RPIM is a pesudo-meshless method (Wang and Liu, 2002a). Collocation method
directly discretizes partial differential equations with only scattered nodes within
problem domain and on boundaries, thus being a true meshless method. However, this
direct discretization requires higher order of derivatives and may have numerical
oscillation (Zhang et al, 2000). In order to take advantage of the weak form on lower
derivatives and collocation method on only nodes (Larsson and Fornberg, 2003), a local
residual formulation based on Petrov-Galerkin approach was proposed for MLS
approximation (Atluri and Zhu, 1998). We combined the Petrov-Galerkin formulation
with rbfs to formulate a local residual point interpolation (LRPIM) (Liu ef al., 2002) for
solid mechanics problems. This LRPIM does not require any background mesh in the
whole domain and is a true meshless method. This paper will extend the LRPIM to
simulate the dissipation process of excess pore water pressure in porous media.

The dissipation process of excess pore water pressure in porous media can be
described by Biot’s consolidation theory (Wang ef al, 2002) where the deformation of
porous medium interacts with the flow of pore water. The Mander-Cryer’s effect at the
initial stage of consolidation can be described in this theory. However, Biot's
consolidation theory has complicated mathematical structure, thus both numerical and
analytical solutions are not easily obtained. If the main characteristics of dissipation
process are concerned, Terzaghi’s consolidation theory is sufficient (Huang, 1983).
Terzaghi consolidation theory assumes that total hydrostatic stress keeps constant
during dissipation process. This largely simplifies the mathematical structure and its



solution procedure. This paper will solve two-dimensional (2D) Terzaghi's
consolidation theory with LRPIM. This LRPIM uses rbfs for interpolation and local
residual formulation for integration. It is still a weak-form based method, thus keeping
all properties of weak-form types. Because only sub-domain is required for both
interpolations and integrations, the nodes can be arbitrarily distributed within the
problem domain. Therefore, the LRPIM is a true meshless method. This is
advantageous over the RPIM as well as collocation methods.

This paper is organized as follows. Section 2 presents the formulation of Terzaghi’s
consolidation theory for multi-dimensional consolidation problems. Section 3 develops
the local residual formulation for each node at each time step with weighted residual
method. A quartic spline is proposed for the weight function. The excess pore water
pressure is spatially discretized through RPIM and temporally discretized by finite
difference method. The system equation is assembled through node-to-node approach.
Section 4 presents the RPIM and the rbfs, multiquadric (MQ) (Hardy, 1990) and thin
plate spline (TPS) (Powell, 1996), are incorporated into the LRPIM to form MQ-PIM and
TPS-PIM, respectively. Section 5 checks the numerical performance of the LRPIM with
1D and 2D consolidation problems. The LRPIM results are compared with closed-form
solution for 1D problem and FEM results for 2D problem. Conclusion is provided in
Section 6.

2. Terzaghi’s consolidation theory

Terzaghi’s consolidation theory basically describes a dissipation process with a
diffusion equation. It cannot give initial excess pore water pressure and deformation.
This paper uses a two-step scheme to solve this issue. The first step is to solve a static
elastic problem with undrained condition (Poisson ratio is used as 0499 in
computation). This step gets a stress distribution. Following empirical formulation is
then employed to compute the initial excess pore water pressure at each node point
within the problem domain ()

#y = Bloy + A(o1 — 03)] in Q Q)

where A and B are material parameters of soil masses. B =1 for saturated soils.
A = 1/3 for linear elastic soils. -

The second step is to numerically simulate the dissipation process of above initial
excess pore water pressure by Terzaghi’s consolidation theory. Terzaghi’s
consolidation theory can be developed from conservation law of soil masses and
pore water. Darcy’s law is assumed to be suitable for the seepage in porous media. For
any element of the soil-water mixture, the flow-out of pore water is equal to the
deformation of soil skeleton: ‘

f”iﬁz_” k_yaz_” fifﬁ—_?f‘i in Q )
Yw ax? Yw ayZ Yw 922 of

where u is excess pore water pressure, k,, k,, k. are the permeability of soil skeleton
along ¥, v, z directions, respectively. s, is the water density. If soil skeleton is linearly
elastic, &, the volumetric strain of soil skeleton, is as follows for a three-dimensional
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problem:

® -3 in Q &)

where ® = gy + 02 + 03 is the total hydrostatic stress. Because Terzaghi’s
consolidation theory assumes this stress keeps constant during dissipation process,
equation (3) becomes as:

dev _ 3(1—20) du
5% F w Y @

The Terzaghi’s consolidation equation is obtained as:

13 %u k% k, 8%w 31 —2v) du .
By S ke Ju_SU A 0 5
Yo 052 Y ay2+ Vo 022 E at ©)

It can be expressed as following general form:

2 2 2
0% L ¢ a“+cvzi27‘2‘=a—” (=1,2,3) 6)

¢ Wiy 3t

Vi m
where the coefficient of consolidation along x-direction as an example is:

Ciz = m for 3D problem

y
¢ Tve (T:Z%m for 2D problem @

__ ke E(d—v)
Con == g5y for 1D problem

‘Boundary conditions:

u =0 for permeable boundary I,
®

g—z =0 for impermeable boundary I';

Initial condition:
o =uo in Q )

where # is the normal direction of boundary I',.

3. Local residual formulation and discretization

3.1 Local residual formulation

A 2D problem as shown in Figure 1 is discussed. For convenience, the subscript “2” at
the coefficient of consolidation is omitted hereafter. The (), is a sub-domain within the
problem domain ). It is\the influence domain of dark dot node All sub-domains should
cover the () Q uQ jN and sub-domains must overlap each other (O, N ; # &, O
is emipty set) We take a eight function W for this sub-domain €} and let the we1ghted
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Figure 1.

A schematic description
for local overlapping
domain method

residual over the ) equal to zero:

8%y %u  ou

Applying divergence theorem, equation (10) becomes:

/Qs<cvx%@ W e, iv-V-) av +

ou
— — W daV
¥ dx Yoy oy ot

Qs

ou ou
_/a S<CV anx+cvy5§ny>WdF—0

where 8Q), = L, + Iy, + I'y. L, is the boundary of the sub-domain ;. I'y, and I';; are
the parts of permeable and impermeable boundaries along the sub-domain boundary
8);. n,, n, are directional cosines along 9€);. When the () locates entirely within the
problem domain Q, only L, remains. Let the weight function W be zero along the
internal boundary L, then equation (11) becomes:

ou oW du oW ou
/QS(CV e —é}——i-va@ E) dV + Q554W(:1V

aDn

12

ou ou
- /rst (Cvxanx + va@ny) Wdl'=90
This is the local residual formulation or local weak form of Terzaghi’s consolidation
theory. Domain integration only concentrates on the sub-domain (). Interpolation
point is usually the center or dark dot node and can be any point within the problem
domain. Such localization largely avoids the element not only for interpolation but also
for integration. It is a true meshless method.



HFF 3.2 Discretization within sub-domain
15.6 The discretization of excess pore water pressure is only done in sub-domain €. This
’ ), contains N nodes and the excess pore water pressure at the fth node and time £ is
u; (). The excess pore water pressure #(x,f) at node x is approximately expressed by N
nodal values:

572

N
u(x, 1) =y D) a3
I=1

where ®;(x) is the shape function over the influence domain ). The partial
derivatives of this approximation are then obtained as follows:

au(x ) i ad)[(x)

ur()
- = (14)
au(x H X aqn,(x)
"X o
au(x H & du[(f)
Z (15)

I=

Equation (12) becomes the following differential equation after spatial discretization:

do(t)
C—g + Kalt) = (16)

where

Kij _ / (Cvx 9®;(x) 9 Wx,x;) n va aCI)]-(x) IW(x, X,)) av
ax ax oy ay

. a(I)j(X) BCI)]'(X) '
,/r ) (Cvx T + Cyy i ny) Wx,x)dl’ an

Ci= / QW x)AV oy =[ad) wd - uy®]"
Qs
We use the following finite difference method to discretize the time domain in
equation (16):
+AL

f@yde = AHOF () + A — Of (¢ + AD] 18
t



Here 0 < 6 =< 1. A recursive form of equation (16) is obtained as:

C C
(A_t +KQd - 9)) WiAr + (— A + KG) o =0 a9

3.3 Weight function
Following quartic spline is used as weight function:

1-6d>+84%—3d" d=1
(20)

W —xn) { 0 d>1

where d = |x — x;]| /77 is the relative distance from node x; to point x, and #;is the
radius of sub-domain. This weight function is non-zero only within the influence
domain €.

If the influence domain is taken as a rectangle of #4d,; X ngd,r, where n;is a scaling
parameter and d,z, d,y the average distance between two neighboring nodes in the
z-direction and the y-direction, respectively, the above weight function has the
following form:

Wx-—xp) = W("x)'WO'y) = Wx'Wy 21)
where relative distances 7, and 7, are defined as:

lx — 1] by — 1l
¥y = , ¥y = 22
YT ngdy 7 ngdy @)

3.4 Numerical procedure
The numerical procedure or flowchart is listed as follows:

(1) Determine time step
(2) Loop over node points

+ Determine the domain of influence for specified node and select neighboring
nodes based on a predefined criterion such as rectangle.

+ Compute shape function and its derivatives for each node point.
« Evaluate stiffness and loading at each node point within sub-domain.
« Assemble the contribution of each node to nodes system equation.

(3) End node point loop

(4) Introduce permeable boundary condition through modification of system
equation by the method in Wang ef al. (2004)

(5) Solve the system equation to obtain the excess pore water pressure at each node
(6) Forward to next time step until end criterion.
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4. Radial PIM interpolation

4.1 Point interpolation method

The shape function ®; within an influence domain can be constructed through RPIM
(Wang and Liu, 2002a, b). The influence domain €, for point X, where excess pore
water pressure is #(x), has N nodes at which the excess pore water pressures are
ur = 1,2, ...,N). This #(x) can be approximated as:

N
u(x) = > Bi(x)a; = BT(x)a (23)
I=1

where the coefficient vector a and basis function B;(x) are as follows:
a'=[@ @ ... ], Bi(x)=Bi(r) (24)

where 7 is the distance between point x and node x 7 In 2D space

L
2

r=[(x— 2+ -y (25)

Let the approximation of equation (23) pass through all N nodes within the influence
domain:

N
By =w k=12,...,N 26)
I=1
1
where 7; = [(t: — 2% + (3 — 3D°)?

Therefore, the coefficient a is uniquely determined as follows:

a=B; lu @2n
where
| Bir) By ... By(ro)
T Bi(rz) Ba(r2) ... Bn(rz)
u =[# "2 ... U] By= (28)
Bi(rn) Bory) ... Bn(n)

The approximation function #(x) is finally obtained as
u(x) = BT(»B, 'u = ®(x)u (29)

where ®(x) = BT(7)B;" is the shape function, and BT(») = [B1(») Bx(r) ... By()).
The shape function depends uniquely on the distribution of scattered nodes within the
mnfluence domain. The partial derivatives of approximation function are:

L eu_[WB B oBy]
}B"“ @‘[ay 5 Ty |Bow @D

ou |0B1 0B 3By
ax | 8x ax T ax



Above PIM has two attractive features. The first is that the shape functions are of
Kronecker Delta properties. This makes the implementation of permeable boundary
conditions much easier than MLS approximation. The second is that the inverse of By
is available for almost any distribution of scattered nodes, thus no special treatment is
necessary to avoid the singularity problem (Wang et al., 2001).

4.2 Radial basis functions
Two typical rbfs, multiquadric (MQ) and thin-plate spline (TPS) are used in
computation. The MQ basis function has the following form:

Bix,y) = (r} + R?)" 31)
where ¢ and R are shape parameters. The derivatives of MQ basis function are:

B _ B ~
01 _ og(r2 + RY)" - 1) a—ay—’=24(r% YR - @D

The TPS basis function has the form as:
Bi(x,y) =71/ 33)
where 7 is a shape parameter. The derivatives of the TPS basis function are:

B -1 9By -1
Froe V4 (x/— 1) o ] (9= 34

For convenience, MQ-PIM and TPS-PIM denote the combination of LRPIM with MQ
and TPS, respectively.

5. Numerical performance

The consolidation process of a foundation subject to surface loading is studied. As
shown in Figure 2, the thickness of soil layer is H = 16 m. A width of 48m is taken to
form a computational domain. The boundary conditions are as follows: two sides and
bottom are impermeable and the upper surface is permeable. If a uniform load is full of
top surface as shown in Figure 2(a), this is a typical Terzaghi’s consolidation problem.
If only partial load is applied onto the surface as shown in Figure 2(b), this is a 2D
problem. Foundation soil is linearly elastic with Young’s modulus E = 4.0 X 10*kPa,
Poisson ratior=0.3, and the isotropic permeability k&, =4k, =k =1728X
10-3m/day (2% 10~8m/s). Two types of node distributions, regular in Figure 3(a)
which has 833 nodes and irregular in Figure 3(b) which has 820 nodes, are used to
study the effect of node distributions. Based on our previous study (Wang and Liu,
2002b; Liu ef al, 2002), the shape parameters are taken as ¢ =1.03, R =0.1 for
MQ-PIM and 5= 4.001 for TPS-PIM. The influence domain is rectangle and the
scaling parameter is taken as #g = 2.0.
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(b) Two-dimensional consolidation model
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5.1 One-dimensional consolidation problem :
The top surcharge is taken as Ao = 10kPa for 1D consolidation problem (Figure 2(a)).
This problem has a closed-form solution:

Ch > 1 (@n =Dy gperpaty,
u_frrAU; 2n—lsm( SH )e T (35)
The surface settlement S; is
_ 81 ewren,
S; = mAcH (1 — ”Z; TR e T (36)
where
_Ca _(A+wd -2y
L=t ™="Fa-»

The surface settlement is numerically computed as

H
S =my <A0-H - / udy) 37
0

It is noted that 1D problem has no immediate deformation after loading. Therefore,
initial surface settlement is zero. We take 6 = 0.5 and the time step Afis taken between
5% 10% and 6 X 10* s to ensure numerical stability. Figure 4 gives the sampling points
4,9 and 14 for comparison.

For 1D problem, initial excess pore water pressure is equal to surcharge
everywhere. For comparison, FEM analysis is also carried out with quadrilateral
elements for regular node distribution (833 nodes). Figure 5 compares the excess pore
water pressures obtained by MQ-PIM, closed-form solution and FEM, and Figure 6
compares the results obtained by TPS-PIM, closed-form solution and FEM. The results
by FEM and LRPIM agree well at the three sampling points. However, some difference
is observed between closed-form solution and numerical results. The effect of node
distributions is also studied. Figure 7(a) compares the surface settlements obtained by

1
2
3

Depth of selected points along central line

Point number | y-coordinate (m)
9 4
9 8
14 13
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Figure 5.

Comparison of excess pore
water pressure for MQ
basis
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closed-form solution and MQ-PIM for regular and irregular node distributions.
Figure 7(b) is the comparison for TPS-PIM. Both MQ-PIM and TPS-PIM are not
sensitive to node distributions. This is one of the advantages over the PIM with
polynomial basis. The surface settlement of LRPIM is a little lower than that of
closed-form solution, which is consistent with the slower dissipation process of excess
pore water pressure. As a general, the numerical results by both MQ-PIM and
TPS-PIM are acceptable. Figure 8 is a typical spatial distribution of excess pore water



10 O Theoretical value at 4
* Theoretical value at 9
* Theoretical value at 14
83” — TPS-PIM results

- FEM results

Excess pore water pressure (kPa)

Elapsed Time (Day)
(a) Regular node distribution

i
N

© Theoretical value at 4

s Theoretical value at 9

#  Theoretical value at 14
e TPS-PIM resulis

+  FEM results

e
(=]

o0
.

[*2]

Excess pore water pressure (kPa)
5

N

10 20 30 40 | 50 0
Elapsed Time (Day)

(b) Irregular node distribution

pressure at different times, which is similar to the results calculated by Biot’s
consolidation theory (Wang et al., 2001). Oscillation of excess pore water pressure is not
observed at the early stage of consolidation process (Wang et al, 2002). From this
simple example, it can be concluded that the LRPIM is not sensitive to node
distributions, and both MQ-PIM and TPS-PIM can achieve reasonable accuracy for 1D
Terzaghi’s consolidation problem.
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Figure 7.
Comparison of surface
settlement for different
node distributions
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5.2 Two-dimensional consolidation problem

5.2.1 Initial excess pore water pressure. A strip load is applied onto the top surface as
shown in Figure 2(b). We use the same soil parameters as the 1D problem. Being
different from the 1D problem, the stress distribution within the problem domain
should be computed by an undrained static problem. After obtaining the stress
distribution, the initial excess pore water pressure at each node is determined -by
equation (1). For the undrained static problem, we use the Poisson ratio of 0.499. In
computation, care must be taken for the integration over volumetric term and reduction



Distance from the surface (m)

10

Time increase
12
14

16

Excess pore water prcssare (kPa)

integration is a good choice if necessary (Wang ef al., 2003). Figure 9 is the contour of
the initial pore water pressure. This pore water pressure is input into above LRPIM
program, and the dissipation process of excess pore water pressure is simulated.

5.2.2 Comparison of LRPIM with FEM. We have compared the results obtained by
LRPIM and FEM for 1D problem, and found that the LRPIM results agree well with
FEM. This section continues thé comparison for 2D problems. Regular node
distribution (833 nodes) is used for both LRPIM and FEM. FEM uses the quadrilateral
elements while LRPIM uses the same parameters as 1D problem. Figure 10 compares
the excess pore water pressures computed by LRPIM and FEM at three sampling
points. Figure 10@) is for MQ-PIM and Figure 10(b) is for TPS-PIM. In the whole
dissipation process, both MQ-PIM and TPS-PIM agree well with FEM. The accuracy of
both MQ-PIM and TPS-PIM is comparable to FEM for this problem.

5.2.3 Effect of node irregularity. The effect of node irregularity is shown in Figure 11.
Figure 11(a) compares the dissipation process obtained by MQ-PIM and Figure 11(b) is
the comparison for TPS-PIM. A little difference is observed at the initial excess pore
water pressure. This is caused by the static problem. However, this difference does
reduce with the dissipation process of excess pore water pressure. These numerical
results are not, in general, sensitive to node distributions at the dissipation process.
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Figure 8.

Distribution of excess pore
water pressure at different
time

- Figure 9.
Initial excess pore water
pressure for 2D problem
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Therefore, the LRPIM is not sensitive to node distributions. This is an important
advantage of the LRPIM over the PIM with polynomial basis.

5.2.4 Effect of Poisson vatios. Poisson ratio is an important parameter. We calculate
the dissipation process when Poisson ratios are v = 0.0 and 0.45. The same problem is
also computed by FEM. A typical result is shown in Figure 12 for TPS-PIM, These
figures show that lower Poisson ratio produces lower rate of dissipation. For example,
at the 20th day, excess pore water pressure almost completely dissipates for the Poisson
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ratio of 0.45, while residual excess pore water pressure is still high for the Poisson ratio
of 0.0.

5.2.5 Effect of permeability anisotropy. The permeability in x-direction is assumed to
be three times of that in y-direction. We take k, =% in computation. All other
parameters are the same as above 2D problem. MQ-PIM and regular node distribution
are used. Figure 13(a) shows the effect of permeability anisotropy on the dissipation
process of excess pore water pressure and Figure 13(b) is the contours of pore water

Dissipation
process

583

Figure 11.

Effect of node irregularity
on excess pore water
pressure (2D problem and
v=10.J3)
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pressure at the time 1 day. The anisotropic soil dissipates faster than the isotropic soil
because the horizontal layer is a good seepage passage.

6. Conclusion

A local radial point interpolation method (LRPIM) was presented and applied to the
dissipation process of excess pore water pressure in this paper. A residual formulation
was developed based on the sub-domain within the problem domain and quartic spline
was used as weight function. Excess pore water pressure was discretized through
RPIM. Multiquadrics (MQ) and TPS are employed to form the MQ-PIM and TPS-PIM.
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Finally these MQ-PIM and TPS-PIM are used to study 1D and 2D consolidation
problems. The results are compared with either closed-form solution or FEM results.
Based on this study, following conclusions can be made:

First, the RPIM overcomes the drawbacks of MLS approximation such as the
complexity in shape functions and difficulty in the implementation of permeable
boundary conditions. It also avoids the singularity of PIM using only polynomial basis.
Furthermore, the RPIM has the same formulation for both 1D and multi-dimensional
problems. :

Second, the LRPIM is advantageous over both collocation method and RPIM. It
requires lower order of derivatives and less cost to implement boundary conditions
than collocation method. The local non-zero weight function localizes the integration
just over an influence domain, thus avoiding the background mesh over whole problem
domain. The LRPIM is true meshless for both interpolation and integration, thus being
advantageous over the RPIM.

Third, MQ-PIM and TPS-PIM are efficient and accurate to solve the diffusion
equation of Terzaghi consolidation theory. Numerical results are not sensitive to node
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Figure 13.

Effect of permeability
anisotropy on dissipation
of excess pore water

pressure
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distributions, dimensions and soil-parameters. Because the Terzaghi’s consolidation
theory does not include an initial excess pore water pressure, a static problem has to be
solved before dissipation process. This static problem may cause large error for the
initial distribution of excess pore water pressure when Poisson ratio approaches to 0.5.
Special care has to be taken to treat the volumetric integration for this static problem.
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