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Abstract

Multiple crack problems for a torsion thin-walled cylinder are studied in this article. The boundary value problem is reduced to the solution
of a Dirichlet problem of the Laplace equation. For the considered doubly connected region, a constantk is involved in the boundary
condition which is determined by the single-valuedness condition of the warping function. The finite difference method is suggested to solve
the Dirichlet problem. The torsion rigidity coefficient can be evaluated numerically. The inverse of the torsion rigidity coefficient is known as
the compliance coefficient. With the knowledge of the compliance coefficient, the stress intensity factor (SIF) can be evaluated. Numerical
examples are given to demonstrate the use of the proposed method. Interaction effects between the cracks are also investigated.q 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Crack problems for the torsion bar have been studied by
several investigators [1–3]. The torsion crack problem for a
circular section bar was investigated by using the complex
variable function method [1]. By using the integral equation
approach, the torsion crack problem of a rectangular section
was solved [2]. The harmonic function continuation techni-
que was suggested to solve the torsion crack problem of a
rectangular section [3]. It is felt that the previously
suggested technique cannot be directly used to solve the
multiple crack problem for a torsion thin-walled cylinder.

In this article, multiple crack problems for torsion thin-
walled cylinder are investigated. The relevant boundary
value problem is reduced to solve the Dirichlet problem of
the Laplace equation. For the considered doubly connected
region, a constantk is involved in the boundary condition
which is determined by the single-valuedness condition of
the warping function. The finite difference method is
suggested to solve the Dirichlet problem, and the torsion rigid-
ity coefficientJcan be easily evaluated by using the numerical
integration. The inverse of the torsion rigidity coefficient is
known as the compliance coefficientC ( � 1/J), which is the
function of the crack lengtha. With the knowledge of the
functionC(a), the stress intensity factor (SIF) can be finally

evaluated. In this article, the method is referred to as the
computing compliance method. Finally, numerical examples
are given to demonstrate the proposed method.

2. Analysis

It is well known that, for the torsion problem with a
section as shown in Fig. 1(a), the governing equation in
terms of the conjugate harmonic functionc(x,y) takes the
form [4, p. 171]

72c�x; y� � 0; �with 72� � � 22� �=2x2 1 22� �=2y2�;
�1�

cuL1
� ��x2 1 y2�=2�uL1

1 k; �2a�

cuL2
� ��x2 1 y2�=2uL2

; �2b�
where L1(L2) denotes the inner (outer) boundary of the
section, andk is a constant involved in the solution for
multiple-connected region case (Fig. 1(a)). The constantk
will be determined by the single-value condition of the
warping function, and takes the form [4,5]I
L

2c

2n
ds� 0; or

I
L1

2c

2n
ds� 0; �3�

whereL is any closed path between the pathsL1andL2, and
the direction for (n) and (s) has been indicated in Fig. 1(a).
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After the boundary value problem is solved, the torsion
rigidity coefficient can be obtained as follows [4,5]

J �
ZZ

S
�2c�x; y�2 �x2 1 y2�� dx dy 1 2kpb2

; �4�
whereS denotes the region occupied by the cracked cylin-
der, andb is the inner radius of the cylinder (Fig. 1(a)).

An appropriate solution technique was suggested
previously [5] in which, we assumed

c�x; y� � F�x; y�1 KG�x; y�: �5�
In this case, the boundary value problem can be reduced to
solve two individual problems for the functionsF(x,y) and
G(x,y)

72F�x; y� � 0; �6�

FuL1
� ��x2 1 y2�=2�uL1; �7a�

FuL2
� ��x2 1 y2�=2�uL2

; �7b�
and

72G�x; y� � 0; �8�

GuL1
� 1; �9a�

GuL2
� 0: �9b�

After the functionsF(x,y), G(x,y) are obtained from the
numerical solution, substituting Eq. (5) into Eq. (3) yields
k � 2c1=c2; �10�
where

c1 �
I
L1

2F
2n

ds; �11a�

c2 �
I
L1

2G
2n

ds; �11b�

Also, substituting Eq. (5) into Eq. (4)

J � J1 1 kJ2 2
p�R4 2 b4�

2
1 2kp b2

; �12�

where

J1 � 2
ZZ

S
F�x; y� dy dy; �13a�

J2 � 2
ZZ

S
G�x; y� dy dy: �13b�

To solve the boundary value problem shown by Eqs. (6),
(7a) and (7b), the finite difference method is used. In fact,
we solve the problem in the polar coordinate system (r, u)
(Fig. 1(b)). In this case, the Laplace equation (6) becomes

22F

2r2 1
1
r
2F
2r

1
1
r2

22F

2u2 � 0: �14�

From Eq. (14) we have the following approximation at
the vicinity of the central node (Fig. 1(b))
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(at the vicinity of central node) whereF0, F1, F2, F3, F4

denote the values of the functionF(x,y) at the relevant
nodes (Fig. 1(b)). In addition, from Eq. (15) we have

F0 � F1 1 F3
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2
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2
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2
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 !
�16�

(at the vicinity of the central node). Therefore, an algebraic
equation is obtainable, in which the node point values of the
functionF(x,y) are the unknowns. The algebraic equation is
solved by using the Siedel iteration procedure [6]. The
boundary value problem shown by Eqs. (8), (9a) and(9b)
can be solved in a similar manner. After the functionsF(x,y)
and G(x,y) are obtained from the numerical solution, the
integrals (11a), (11b), (13a) and (13b) can also be evaluated
numerically. Finally, the torsion rigidity coefficientJ is
obtainable.

In this article, the inverse of the torsion rigidity coeffi-
cient is defined as the compliance coefficient
C � 1=J: �17�
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Fig. 1. (a) A thin-walled cylinder with multiple cracks at the outer boundary (N is the number of cracks). (b) The center node with adjacent nodes in the polar
coordinate.



In this case,J andC can be considered as functions of the
crack lengtha. By using the computing compliance method,
the SIFs at the crack tip can be expressed by [3]

K3 � M

���������������
1
N

d
da

1
J�a�

s
� M

������������
1
N

dC�a�
da

s
; �18�

whereM is the torque applied at the end of cylinder, andN
the number of cracks.

For the cracked thin-walled cylinder with the inner cracks
(Fig. 2), the relevant problem can be solved in a similar
manner.

3. Numerical examples

Numerical examples are present in order to provide some
new results, and to determine the interaction between
cracks. In the case of cracks at the outer boundary, the
boundary value problem is solved in the region (0# u #
p/N, b # r # R) (Fig. 1(a)). The regions are divided into
40× 40 meshes. The Seidel iteration method is used to solve
the algebraic equation [6]. The computation is straightfor-
ward and will not be cited in detail. In the examples, the
ratio b/R is chosen as two cases 0.8 and 0.9, the number of
cracks is changed fromN� 1, 2, 4 to 10, and the ratioa/t is
changed from 0.1, 0.2 to 0.9.

The final calculated results for the torsional rigidity coef-
ficient, the SIF at the crack tip are expressed, respectively,
by:

J � A�a=t;b=R;N�R4
; �19�

K3 � B�a=t;b=R;N�M�R�22:5
; �20�

whereM is the torque applied at the ends of the bar, andN
the number of cracks. The obtained numerical results forA
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Fig. 2. A thin-walled cylinder with multiple cracks at the inner boundary.

Table 1
Normalized torsion rigidity coefficient factorA(a/t, b/R, N) for torsion a thin-walled cylinder with cracks at the outer boundary (see Fig. 1(a) and (19))

a/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b/R� 0.8

N � 1 0.9254 0.9223 0.9181 0.9125 0.9053 0.8959 0.8834 0.8648 0.8267
N � 2 0.9248 0.9199 0.9126 0.9026 0.8896 0.8728 0.8507 0.8200 0.7682
N � 4 0.9236 0.9151 0.9018 0.8836 0.8600 0.8303 0.7925 0.7422 0.6662
N � 10 0.9198 0.9004 0.8699 0.8292 0.7790 0.7200 0.6516 0.5714 0.4686

b/R� 0.9

N � 1 0.5394 0.5383 0.5370 0.5352 0.5328 0.5297 0.5250 0.5170 0.4968
N � 2 0.5392 0.5376 0.5354 0.5323 0.5284 0.5233 0.5163 0.5056 0.4828
N � 4 0.5388 0.5364 0.5325 0.5272 0.5202 0.5110 0.4988 0.4815 0.4515
N � 10 0.5379 0.5327 0.5243 0.5126 0.4974 0.4781 0.4535 0.4210 0.3725

Table 2
Normalized SIFsB(a/t, b/R, N) at the crack tip for torsion thin-walled cylinder with cracks at outer boundary (see Fig. 1(a) and (20))

a/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b/R� 0.8

N � 1 0.3735 0.4628 0.5414 0.6213 0.7117 0.8265 1.0024 1.3934 1.8403
N � 2 0.3254 0.4250 0.5102 0.5950 0.6881 0.8017 0.9607 1.2564 1.5911
N � 4 0.2951 0.4042 0.4937 0.5803 0.6739 0.7871 0.9449 1.2225 1.5325
N � 10 0.2803 0.3949 0.4882 0.5789 0.6763 0.7923 0.9502 1.2241 1.5300

b/R� 0.9

N � 1 0.5400 0.6439 0.7437 0.8516 0.9852 1.1808 1.5193 2.3279 3.2186
N � 2 0.4622 0.5743 0.6771 0.7829 0.9019 1.0556 1.2944 1.8327 2.4437
N � 4 0.3912 0.5236 0.6352 0.7458 0.8674 1.0162 1.2249 1.6192 2.0653
N � 10 0.3520 0.4923 0.6068 0.7183 0.8394 0.9859 1.1900 1.5485 1.9476



(a/t, b/R,N), B(a/t, b/R,N) are listed in Table 1 and Table 2
and in Fig. 3, and Fig. 4, respectively.

Interaction of cracks can be found from the present
results. From Fig. 4 we see that, generally, in the same

conditions ofa/t and b/R, if the number (N) of cracks is
larger, then the SIF at the crack tip becomes lower. This
phenomenon was also observed in [7].

In the case of cracks at the inner boundary (Fig. 2), a
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Fig. 3. Normalized torsion rigidity coefficientsA (a/t, b/R, N) (see Fig. 1 (a) and (19)).

Fig. 4. Normalized SIFsB (a/t, b/R, N) (see Figs. 1(a) and (20)).

Table 3
Normalized torsion rigidity coefficient factorD(a/t, b/R, N) for torsion thin-walled cylinder with cracks at inner boundary (see Fig. 2 and (21))

a/t 0.1 0.2 0.3 0.4. 0.5 0.6 0.7 0.8 0.9

b/R� 0.8

N � 1 0.9262 0.9240 0.9208 0.9163 0.9100 0.9015 0.8893 0.8700 0.8273
N � 2 0.9258 0.9224 0.9170 0.9090 0.8980 0.8830 0.8622 0.8320 0.7780
N � 4 0.9250 0.9191 0.9093 0.8951 0.8757 0.8499 0.8151 0.7667 0.6903
N � 10 0.9224 0.9091 0.8871 0.8563 0.8164 0.7667 0.7057 0.6291 0.5239

b/R� 0.9

N � 1 0.5396 0.5387 0.5375 0.5358 0.5336 0.5305 0.5258 0.5173 0.4954
N � 2 0.5394 0.5380 0.5361 0.5334 0.5297 0.5248 0.5178 0.5069 0.4828
N � 4 0.5392 0.5370 0.5337 0.5289 0.5224 0.5137 0.5018 0.4847 0.4540
N � 10 0.5384 0.5339 0.5267 0.5163 0.5025 0.4845 0.4610 0.4291 0.3805



numerical solution can be obtained in a similar manner. As
before, the final calculated results for the torsion rigidity the
SIF are expressed by:

J � D�a=t;b=R;N�R4
; �21�

K3 � E�a=t;b=R;N�M�R�22:5
; �22�

whereM is the torque applied at the ends of bar, andN the
number of cracks. The obtained numerical results forD(a/t,
b/R,N), E(a/t, b/R,N) are listed in Table 3 and Table 4
respectively. From Table 2 and Table 4 we see that, for
the same conditions ofa/t, b/R andN, whena/t # 0.5 the
SIFs are slightly higher for the outer crack case.

4. Remarks

It is proved that the finite difference method for solving
the boundary value problem and the computing compliance
technique for evaluating the SIF provide an effective way to
solve the torsion problem of a thin-walled cylinder with
many cracks. The iteration for obtaining the solution of
the algebraic equation is easy in computation. Also, as the
computing compliance method was used to evaluate the

SIF, the demand for the functionF(x,y) and G(x,y) at the
vicinity of the crack tip is not serious.
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