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Abstract
We present a model of polydisperse granular mixture with a power-law size
distribution subjected to Brownian forces. The driven inelastic mixture which
has n components can be regarded as ‘granular gas’. The stationary state where
the mixture reaches is the result of the balance between the dissipation and
random forces which inject energies. We have studied the nonequilibrium
properties of the system by means of Monte Carlo method. When the
typical relaxation time τ of the driving Brownian process is greater than the
mean collision time τc, the velocity probability distribution strongly deviates
from the Gaussian one and the system has a strong spatial clustering. We
define the partial granular temperature and the global granular temperature of
the multi-component mixture. The partial granular temperature is the average
kinetic energy per particle of the same component and the global one is the
statistic average value per partial granular temperature of the mixture. One of
the most useful properties of the temperature, i.e., the independence from
the thermal substance, is lost. We introduce a fractal dimension D as a
measurement of the inhomogeneity of the size distribution of the mixture.
Our simulations represent that the deviation and clusterization become more
and more pronounced with the increasing value of the fractal dimension D.
The global granular temperature decreases, and dissipated energy per particle
increases as D augments.
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1. Introduction

Granular systems are widespread in nature and a fundamental understanding of the dynamics
of granular materials still poses a challenge for physicists and engineers [1–4]. The key
feature that distinguishes granular systems from conventional solids, liquids and gases is that
the interactions between grains dissipate energy [3]. The energy loss is at the base of many
interesting phenomena, such as inelastic collapse [6], deviation from Maxwellian behaviour
(observed experimentally in different geometrics and for different driving conditions in [7–11]
and in numerical simulations [13–17]) and clustering (for a sample of theoretical, simulational
and experimental approaches see [8, 9, 12, 18–20]). Du, Li and Kandanoff [18] who considered
N identical hard rods confined between a thermal and a reflecting wall. In the model one
has a statistically steady state as a result of the balance between the dissipation of the kinetic
energy due to the collisions between the rods and the energy reinjection due to the thermal
wall; the latter supplies energy only to the last particle, which in turn transfers energy and
momentum to the rest of the system, producing a trivial cluster near the opposite wall. Such
a state represents a breakdown of the equipartition of the energy in a stationary nonequibrium
system. In this model, the mean kinetic energy per particle,

E = 1

2N

N∑
i=1

〈vi(t)
2〉, (1)

and the mean dissipated energy per particle per unit time,

W = 1

�t

∑
j

〈(�E)j 〉 (2)

(where (�E)j is the energy loss during the j th collision occurred in the time interval
[t − �t/2, t + �t/2], and 〈 〉 is the time average), are not independent of the total number of
particles, but decay exponentially with the number Nof particles.

Williams and MacKintosh [23] proposed an alternative heating mechanism. The idea is to
supply kinetic energy to every particle by means of a random acceleration at every time step.
Though this method is numerically efficient, it does not appear realistic from a physical point
of view. In the spirit of the one introduced by Du, Li and Kandanoff, Puglisi et al [21, 22]
presented a model of driven granular gases subjected to Brownian forces to investigate the
clustering and non-Gaussian behaviour of the granular gases. The stationary state for this
model is the result of the balance between the dissipation and the random forces which inject
energies. It has two regimes [21, 22]: when the typical relaxation time τ of the driving
Brownian process is smaller than the mean collision time τc, the spatial density is nearly
homogeneous and the velocity probability distribution is Gaussian. In the opposite limit, i.e.,
τ � τ c, it has a strong spatial clustering and the velocity probability distribution strongly
deviates from the Gaussian distribution. These phenomena are more and more pronounced
with decreasing values of the restitution coefficient e. This model is only applied to a uniform
granular system. However, in actual granular systems the sizes of particles are different. Some
authors [5, 24, 25] discussed two-component granular mixtures and found the appearance of
two different granular temperatures, one for each species. Zhang et al [26–28] presented a
fractal model of non-uniform granular system. They discussed that the fractal dimension D

influences the carrying characteristics and dynamic behaviours of particles because of different
size distributions.

In this paper, we present a model of polydisperse-driven inelastic granular mixture with a
power-law size distribution subjected to Brownian forces. We apply the Monte Carlo method
in the case far from the equilibrium to discuss the effects on the dynamic behaviours of particles
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Table 1. Relationship between the granular size dispersion and the fractal dimension D.

Size distributionb (%)

Mud formulationa <3.3 µm <4.7 µm <9.4 µm <13.0 µm <19.0 µm <27.0 µm D

2% bentonite 24.9 39.4 62.3 72.0 77.6 100.0 2.39
4% bentonite 32.0 50.6 73.5 83.9 88.4 100.0 2.50
6% bentonite 42.2 66.6 80.8 86.9 88.4 100.0 2.65
6.5% bentonite + 2% NaCl 38.4 60.6 79.1 85.9 90.8 100.0 2.59
6.5% bentonite + 4% NaCl 31.9 50.4 72.4 82.8 88.4 100.0 2.49
6.5% bentonite + 6% NaCl 25.4 40.9 68.7 82.9 89.1 100.0 2.36

a The muds were aged for 24 h at room temperature prior to use.
b Determined by using a microtrac laser particle size analyser.

induced by the fractal characteristics. We investigate how the dynamic behaviour of the driven
granular gas changes with the inhomogeneity of size distribution. Furthermore, we define the
granular temperature of the multi-mixture and discuss how the granular temperature and the
average dissipated energy per particle change with the inhomogeneity of the system.

2. One-dimensional model of non-uniform driven inelastic granular system
with fractal characteristic

We consider a polydisperse granular mixture with a power-law size distribution. We assume
the mass distribution of N particles is continuous (mmin � m � mmax, where mmin is the
minimal mass of the particles, and mmax is the maximal mass of the particles). Ni is the
number of particles of the ith component, and N1 + N2 + · · · + Ni + · · · = N . The mass of
particles of the ith component is mi . For simplicity, the surface of the hard particles is smooth.
The material of each particle is identical, but the size of particles is different. The mass of a
particle is given by

m = 4
3πr3ρp, (3)

where ρp and r are the mass density and the radius of the particles, respectively.
Experiments show that the granular materials exhibit some fractal characteristics. When

n0/N � 1, n0 is the number of particles with the maximum size rmax; the size distribution of
particles in granular system satisfies the size-frequency character by [26]:

Ynr
(r) = 1 − N−1n0

(
r

rmax

)−D

, (4)

where Ynr
is the ratio of nr to N , nr is the number of particles whose size is smaller than r , N

is the total number of particles and D is the fractal dimension, 2 < D < 3. From equations (3)
and (4), the mass of any particle in the mixture can be given by

m = mmax

[
N

n0

(
1 − YNr

)]−3/D

. (5)

If the values of N , mmax, n0 and D are given, according to equation (5), we can randomly
evaluate the mass per particle in the non-uniform granular system with fractal distribution.

In [30] Zhang et al discussed the relationship between the granular size dispersion of the
non-uniform granular system and the fractal dimension D of the size distribution according to
the experimental granulometric analysis. Table 1 lists the size distribution [30].
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From the above data shown in table 1, it can be seen that, both in a simplex non-uniform
granular system and in a mixed granular system, the higher D implies the greater dispersion
of the finer particles, which leads to more inhomogeneity in the size distribution due to the
formation of relatively fine particles. That is to say, the fractal dimension D can be considered
as a measurement of the inhomogeneity of the size distribution. The granular system will be
more and more inhomogenous with the increasing value of the fractal dimension D.

To study the actual granular gas with fractal characteristic, we present the following
model: N different particles whose mass distribution satisfies equation (5), randomly located
on a circle of length L, and L/N = 1. The granular spheres perform a Brownian motion on
the one-dimensional ring and interact by means of inelastic collisions.

Between collisions, the movement of each particle obeys the amendatory Langevin
equation:

dvi

dt
= −vi

τ
+

√
2TF

miτ
fi(t), (6)

dxi

dt
= vi(t), (7)

where 1 � i � N , τ and TF are the relaxation time due to viscous effects and the thermal bath
temperature, respectively, mi is the mass of particles of the ith component, fi(t) is a standard
white noise 〈fi(t)〉 = 0, and 〈fi(t)fj (t

′)〉 = δij δ(t − t ′). TF provides kinetic energy to the
system. And due to the random forcefi(t), the probability of every particle obtaining energy
will be equipotent. After a long time, the system will reach a stationary state as the result
of the balance between the dissipation of the kinetic energy due to the collisions between the
particles and the energy injection due to the random force.

When collisions are considered, the particles mutually collide according to the following
rules: (a) only binary collisions are considered, (b) each collision is instantaneous and (c) the
post-collisional velocities are related to the pre-collisional ones by

υ ′
i = (mi − emj )υi + (1 + e)mjυj

mi + mj

, (8)

υ ′
j = (1 + e)miυi + (mj − emi)υj

mi + mj

, (9)

where e is the restitution coefficient. In this way, the momentum is conserved in the collisions,
while the kinetic energy of the centre of the mass is rescaled by e2,

(v′
i − v′

j )
2 = e2(vi − vj )

2. (10)

The elastic case is for e = 1, while for e = 0, the colliding particles have no relative motion
after the collision. It should be noted that, in one dimension, for the ‘hard’ nature of collisions,
the particles never deform (this effect is taken into account in the restitution coefficient picture),
and the length L/N of spacing between particles is much more important than the size of
particles.

In the absence of collisions, each particle would perform a Brownian motion, for t � τ ,
a stationary state with a Gaussian velocity distribution:

f (vi0) ∼ exp

(
−miv

2
i0

2TF

)
. (11)

When collisions are considered, another characteristic time emerges, that is the average
collision time τc between two successive encounters. As a function of average density and
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typical velocity, τc can be expressed by

τc ∼ L

2N
√

〈v2〉
. (12)

It is usually assumed that 〈υ2〉 reaches a stationary value with statistical fluctuations (of order
∼1/N ).

After a long transient, for each given choice of e and τ , the system reaches a stationary
state with certain properties. The presence of two time scales, namely τ and the mean collision
time τc, leads to different dynamical regimes.

(a) When τ � τc the effect of collisions is rapidly overwhelmed by the Brownian motion and
the system behaves as a collection of weakly interacting random walkers. The particles
reach a simple statistical equilibrium and their velocity distribution is that of an ideal gas
with a temperature Tg being not far from the temperature TF of thermal bath.

(b) In the opposite limit, τ � τc, the driving mechanism towards the macroscopically
stationary state is dominated by the collision process itself. In this regime a statistically
stationary state is still observed, and two interesting phenomena emerge: (a) a
strongly inhomogeneous spatial distribution, namely clusterization and (b) a deviation of
velocity distribution from Gaussian behaviour. These phenomena are more and more
pronounced with decreasing values of the fractal dimension D.

3. Simulation and analysis

3.1. Simulation

In all simulations performed, we use N = 9000, L
N

= 1, mmax = 20, n0 = 1, TF = 1 and
τ = 100τc. In our simulations, Mmax

Mmin
> 102(Mmax is the maximal mass of the particles and

Mmin is the minimal mass of the particles); this inequation satisfies the fractal criterion [29].
It proves that our model has fractal characteristic and our simulations are valid.

First, we randomly give the initial velocity to each particle. In the limit τ = 100τc,
the collisions dominate the dynamics. Then we perform the simulations by using the Monte
Carlo method. The simulations have been performed using a fixed step �t integration of
equations (6) and (7) and an event driven check of collisions during every time step,
�t = 0.01τc. After a long time t = 5 × 106�t , the system reaches a stationary state.

Figure 1 shows the distribution of velocities, obtained by sampling the velocities of all
particles when the system reaches a stationary state. To testify that the system assuredly reaches
a stationary state after the time t = 5 × 106�t , we let the evolution time be t = 4 × 106�t ,
t = 5×106�t and t = 6×106�t , respectively. The figures show that after the system evolves
during these three different times, respectively, the three distributions of velocities are almost
the same and the lines of the distributions fit well. So we are sure that the system reaches a
stationary state after t = 5 × 106�t .

3.2. Definition of granular temperature

Marconi and Puglisi [24] studied a Maxwell model of inelastic two-component granular
mixture (α = 1, 2), when the system reaches a stationary state; it appears at two different
granular temperatures, one for each species:

Tα = 1
2mα

〈
v2

α

〉
, (13)

where α = 1, 2, is the average performed over the white noise fi(t). Note that these two
partial granular temperatures are different and here the granular temperature just means the
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Figure 1. The rescaled velocity distribution P(v/σ) versus v/σ . The fractal dimension is different:
(a) D = 2.2 and (b) D = 2.8. In both the figures, τ = 100τc , e = 0.6, the squares represent the
evolution time t = 4×106�t , circles represent t = 6×106�t , triangles represent t = 5×106�t .

average kinetic energy per particle of the same component. It is no longer a common feature
of all granular gases in mutual equilibrium, i.e., the quantity that has the role of determining
if two systems are in equilibrium with respect to each other. In other words, one of the most
useful properties of the temperature, i.e., the independence from the thermal substance, is
lost when one deals with granular materials. The global temperature of the assembly can be
defined by

Tg = pT1 + (1 − p)T2 = (N1T1 + N2T2)/(N1 + N2), (14)

where p = N1/(N1 + N2). It is obvious that the global granular temperature is the statistical
average value of the partial granular temperatures of the two components. Since the energy
dissipation and the energy supply mechanisms compete, the system under the influence of
a stochastic white noise driving achieves asymptotically a statistical steady state. Actually
the global granular temperature indicates that under the influence of the balance between the
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Figure 2. The global granular temperature against the fractal dimension. The top curve
represents quasiequilibrium (τ = 0.01τc, e = 0.99) and the bottom curve means nonequilibrium
(τ = 100τc, e = 0.6).

energy dissipation and the energy injection due to the external thermal bath, the assembly
achieves asymptotically a statistical steady state.

In the spirit of the definition of the partial and global granular temperatures of two-
component granular mixture, we can define the partial temperatures of the n-component
mixture as

Ti = 1
2mi

〈
v2

i

〉
, (15)

where Ni is the number of particles of the ith component, and the mass of particles of the
ith component is mi . Here the granular temperature represents the mean kinetic energy
per particle of the ith component. The global granular temperature of the n-component
mixture is

Tg = p1T1 + p2T2 + · · · + pnTn = N1T1 + N2T2 + · · · + NnTn

N1 + N2 + · · · + Nn

, (16)

where pi = Ni/N(i = 1, 2, . . . , n), p1 + p2 + · · · + pn = 1, Ni is the number of particles
of the ith component. The total number of the particles of the granular mixture is N , and
N = N1 + N2 + · · · + Nn. Here the global granular temperature is the statistic average value
of the partial granular temperatures of the n components and also indicates that the assembly
achieves asymptotically a statistical steady state, as the energy dissipation is balanced by the
energy injection. It is convenient to define the global and partial granular temperatures of
the granular mixture whose mass distribution is continuous by means of the definition of the
global and partial granular temperatures of the n-component mixture, which is testified in our
another paper ‘Granular temperatures of driven inelastic multi-component mixture’.

3.3. Global granular temperature and dissipated energy per particle

In figure 2, we report the global granular temperature Tg versus the fractal dimension D for
different e and τ . The system behaves as a collection of weakly interacting random walkers
when the restitution coefficient e = 0.99, τ = 0.01τc. So the global granular temperature Tg

does not change with different fractal dimensions D, and Tg = 1. Actually the partial granular
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Figure 3. Dissipated energy per particle w versus fractal dimension D for e = 0.6, τ = 100τc ,
N = 9000.

temperature per component is also the same and equal to 1. When e = 0.6, τ = 100τc,
the collisions dominate the dynamics and strongly compete against the driving mechanism.
Therefore, the global granular temperature of the system decreases as the fractal dimension D

increases. The increasing value of D indicates that the inhomogeneity in the size distribution
of the system increases.

In figure 3, we show the dissipated energy per particle versus the fractal dimension D.
Because the driving mechanism is dominated by the inelastic collision process, the dissipated
energy per particle w increases as the fractal dimension D increases.

3.4. Probability distribution of velocity in one-dimensional case

Figure 4 shows the distribution of velocities obtained by sampling the velocities of all particles
in two different regimes (a quasiequilibrium case with τ = 0.01τc, e = 0.99 and an out-of-
equilibrium case with τ = 100τc, e = 0.6) when the system has reached a statistic stationary
state. In the quasiequilibrium regime the velocity distribution which is limned in squares,
is very well fitted by Gaussian. When τ = 100τc, e = 0.6 the velocity distribution which
is described by rotundities, ceases to be Gaussian. The deviation becomes more and more
pronounced as the fractal dimension D increases.

3.5. Instantaneous density of particles in one-dimensional case

In figure 5 we report different density profiles in the two regimes (homogeneous and
clusterized). From the figures we can see when the system attains a statistically stationary
state, the instantaneous density of particles becomes strongly inhomogeneous. The spatial
clusterization becomes more and more pronounced with increasing values of the fractal
dimension D.

The clusterization may quantitatively be characterized by means of an entropy defined as

hM = −
M∑

j=1

mj

N
ln

mj

N
(17)
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Figure 4. The rescaled velocity distribution P(v/σ) versus v/σ for different values of
D: (a) D = 2.2, (b) D = 2.5 and (c) D = 2.8 with τ = 100τc, e = 0.6, N = 9000.

where the ring of length L is divided into M equal boxes (i.e., segments) and mj is the number
of particles in the jth box. The entropy hM attains its maximum value hM = ln m when
mj = N/M for every box j . hM decreases as the density distribution becomes more and more
clusterized.

In figure 6 many measurements of HM/H ∗
M are presented, where HM = exp(〈hM〉),H ∗

M =
exp(〈h∗

M〉), h∗
M is the effective entropy for homogeneous regime (τ = 0.01τc, e = 0.99) and

〈 〉 is the time average. The quantity HM/H ∗
M basically gives an indication of the fraction of

non-empty boxes in a typical snapshot.
The figure shows that HM/H ∗

M decreases as the fractal dimension D increases with respect
to the same restitution coefficient e. Namely, the system becomes more and more clusterized.
When e = 1, all the curves reach one point and HM/H ∗

M attains its maximum value. The
spatial density is homogeneous and there is no energy dissipation as the collisions between
particles are elastic. The energy dissipation induces clusterization.

3.6. Analysis

In all our simulations, the collisions between the particles are inelastic. From equations (8)
and (9), the energy dissipation due to the inelastic collisions during one collision is

�E = (1 − e2)(vi + vj )
2

2
· mimj

mi + mj

= (1 − e2)(vi + vj )
2

2
· mi(mi + �mij )

2mi + �mij

, (18)
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Figure 5. Instantaneous density profiles ρ(x) in two regimes: (a), (c), (e) quasiequilibrium regime
(τ = 0.01τc , e = 0.99) with D = 2.2, D = 2.5, D = 2.8, respectively, and (b), (d), (f )

nonequilibrium regime with clusters (τ = 100τc, e = 0.6) with D = 2.2, D = 2.5, D = 2.8,
respectively. In all histograms N = 500 and the dashed horizontal lines represent the average
density, equal to 20 particles per bin.

where �mij = mi − mj . Obviously, when the restitution coefficient e does not change, the
difference of the mass between the two colliding particles is greater, the dissipation of energy
�E is higher. As the increasing value of D represents more number of finer particles in the
system, the inhomogeneity of size distribution is more prominent, which makes the difference
of the mass between any two colliding particles greater. So the higher the value of D,
the more dissipated the energy of the system. Therefore, with the increasing value of D, the
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Figure 6. HM/H ∗
M versus e for different D: from top to bottom D is 2.2, 2.4, 2.6, 2.8, with

N = 500, M = 500, e = 0.6, τ = 100τc .

global granular temperature decreases, the average dissipated energy per particle increases
and the velocity probability distribution deviates more obviously from the Gaussian one. The
density distribution becomes more and more clusterized as the energy dissipation is more
pronounced.

4. Conclusion

In this paper, we represent a fractal model of a non-uniform driven inelastic granular system and
an amendatory Langevin equation which each particle of the system obeys. By means of fractal
theory, we have studied the nonequilibrium properties of the system. Note that the system is
not at equilibrium, so granular temperature is not a temperature in a proper thermodynamic
sense. We define the partial and global granular temperatures of the mixture. The partial
granular temperature is the average kinetic energy per particle of the same component and
the global one is the statistic average value of partial granular temperatures of n components.
One of the most useful properties of the temperature, i.e., the independence from the thermal
substance is lost.

We represent that the fractal dimension D is a measurement of the inhomogeneity of the
size distribution. So the higher the D, the more inhomogeneous the size distribution.

Our simulation results show when e = 0.6, τ = 100τc, the global granular temperature
reduces and average dissipated energy per particle increases with the augment of D. However,
in the quasiequilibrium regime (τ = 0.01τc, e = 0.99) the global granular temperature is
independent of D and the partial granular temperature per component is equal and up to the
global one.

When τ � τ c, non-Gaussian velocity distribution and clusterization arise. The deviation
and clusterization become more and more pronounced as the fractal dimension D increases.
The clusterization is quantitatively characterized by means of an entropy hM . The dynamics
properties of the non-uniform granular system are prominently influenced by the size
distribution of the system.
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