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Abstract

The influence of Casimir force on the nonlinear behavior of nanoscale electrostatic actuators is studied in this paper.

A one degree of freedom mass-spring model is adopted and the bifurcation properties of the actuators are obtained.

With the change of the geometrical dimensions, the number of equilibrium point varies from zero to two. Stability anal-

ysis shows that one equilibrium point is Hopf point and the other is unstable saddle point when there are two equilib-

rium points. We also obtain the phase portraits, in which the periodic orbits exist around the Hopf point, and a

homoclinic orbit passes through the unstable saddle point.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

More than five decades ago, Hendrik Brugt Gerhard Casimir (1909–2000) predicts that the ground-state energy of

photons is alternated in the presence of two parallel perfectly conducting metal plates in such a way as to lead to an

observable macroscopic force between them [1]. His brief article discusses the discovery, formulation, physical signif-

icance and impact of one of the phenomena that bears his name, the eponymous Casimir effect. The regularized zero

point energy per unit area between parallel plates of infinite conductivity separated by a distance r is given by [1]:
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and the attractive Casimir force per plate area has universal amplitude as follows:
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where �h is Planck�s constant divided by 2p, and is equal to 1.055 · 10�34 J s, c is the speed of light and is equal to

2.998 · 108 ms�1. Because of its fundamental nature, the Casimir effect motivates extensive researches in the last dec-

ade. Potential applications of Casimir effect in nanoelectromechanical systems (NEMS) and nanotechnology are stud-

ied theoretically and experimentally [2–10]. It finds [5] that movable components in NEMS devices fabricated at

distances less than 100 nm between each other often stick together due to strong Casimir force. Chan et al. [6,7] measure

the Casimir force between a sphere and a flat plate in microelectromechanical systems (MEMS) using a micromachined

torsional device, and the Casimir effect is demonstrated as a candidate for novel actuation source for the design of

NEMS [6,7].

NEMS switches are fundamental building blocks for the design of NEMS applications, such as nanotweezers and

some other nanoscale actuators [11,12]. There is an inherent instability, known as pull-in phenomenon, in both MEMS

and NEMS switches. A typical MEMS switch is constructed from two conducting electrodes, one is typically fixed and

the other is movable, which is suspended by using a mechanical spring. By applying a voltage difference between the two

electrodes, the upper movable electrode displaces to the ground electrode because of the electrostatic force. At a certain

voltage, the movable electrode becomes unstable and collapses (or pulls-in) to the ground plane. The voltage and gap

distance of the switches at this state are called to as the pull-in voltage and the pull-in gap respectively, or together the

pull-in parameters of switches.

An analytical expression of the pull-in parameters is given about the MEMS switches in [13]. A lumped two degrees

of freedom pull-in model is presented in [14] for a direct calculation of the electrostatic actuators. The effect of residual

charges, located in dielectric coating layers, upon the pull-in parameters of electrostatic actuators is studied in [15]. Axis

stress, residual stress, and fringing-field effect have great influence on the behavior of RF switches, and even cause the

failure of devices [16]. The pull-in phenomenon widely exists in many micromachined devices that require bi-stability

for their operation, such as electrical RF switches [17] and some other micro-opto-electro-mechanical systems

(MOEMS) devices [18]. The bifurcation analysis for an electrostatic microactuator is addressed in [19,20]. Dequesnes

et al. study the pull-in voltage with van der Waals force in [21] while omitting its influence on the pull-in gap. In [22],

Rokin considers the effect of van der Waals force on the pull-in gap, and gives the analytical expression of the pull-in

gap and pull-in voltage with a general model. The dynamics behavior for nanoscale electrostatic actuators is studied by

considering the effect of van der Waals force in [23]. The Casimir effect on the pull-in gap and pull-in voltage of NEMS

switches is studied in [10]. An approximate analytical expression of the pull-in gap with the Casimir force is presented

by the perturbation theory.

The present paper aims to study the bifurcation behavior of nanoscale electrostatic actuators considering the Casi-

mir force and the maximum length of the switches that does not stick to the substrate is also determined. This study is

believed to assist the understanding the actuation of NEMS switches by Casimir effect.
2. The modeling system with Casimir force

For simplicity and without loss of generality, the geometry shown in Fig. 1 is simplified to a one degree of freedom

lumped model as shown in Fig. 2. The model consists of a linear spring, a mass, and a parallel-beam capacitor. Only one

degree of freedom of the system is the gap distance, r, between the beam and the ground plane. This gap distance is

defined to be the gap distance between the tip of cantilever structure and the ground plane for the cantilever switch

and the gap distance between the center of the fixed–fixed structure and the ground plane for a fixed–fixed switch.

For the parallel beam configuration shown in Fig. 2, the electrostatic force (neglecting fringing fields) is given as
F elec ¼
e0wLV 2

2r2
; ð3Þ
Fig. 1. Schematic of cantilever switch: (a) cantilever switch, and (b) fixed–fixed switch.



Fig. 2. One-dimensional lumped models for the pull-in parameters estimation.
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where e0 is the permittivity of vacuum, w is the width of the beam, L is the length of the beam, and V is the applied

voltage. The restoring force of the beam is assumed to take the standard mass-spring form
F res ¼ kðg � rÞ; ð4Þ
where k is the spring constant for the beam. It is defined as k = F/rmax in the continuum model, where F is the uniform

force applied on the beam and rmax is the maximum deflection of the beam. Thus, the spring constant depends on the

cross-section shape as well as on the boundary conditions. Considering the model in this paper, the spring constant

k = 8EI/L3 for a cantilever structure, k = 384EI/L3 for a fixed–fixed structure, E is the Young�s modulus, I = wd3/12

is the moment of inertia, and d is the thickness of the beam. According to Eq. (2), the corresponding Casimir force

of this model is
F C ¼ p2�hcwL
240r4

: ð5Þ
The electrostatic force and Casimir force are attractive, the restoring force is repulsive. Their directions are shown in

Fig. 2. According to Newton second law, we obtain the equation of motion of this model as
m
d2r
dt2

¼ F res � F elec � F C; ð6Þ
where m is the mass of the beam. Introducing five dimensionless variables, u = r/g, s = t/T, M = m/kT2, a = p2�hcwL/kg5,
b = e0wLV

2/kg3, and T is the characteristic time, we transform the equation above into dimensionless form
M
d2u
ds2

¼ 1� u� b
2u2

� a
240u4

: ð7Þ
According to the definition of these parameters, physically meaningful solutions exist in the region 0 < u < 1. The

dimensionless parameter a denotes the order of magnitude of ratio between the Casimir and the restoring forces, b

denotes the order of magnitude of ratio between the electrostatic and the restoring forces, M denotes the order of mag-

nitude of ratio between the inertia and the restoring forces.
3. Pull-in parameters

Setting zero the left-hand side of Eq. (7), one gets an equation as follows:
f ðu; a; bÞ ¼ 120bu2 þ a� 240u4ð1� uÞ ¼ 0: ð8Þ
The equilibrium is stable provided of(u)/ou < 0. As the voltage, i.e. the parameter b increases, the gap distance decreases

until instability or collapse condition is reached. By the critical condition of(u)/ou = 0 [24], one has
of ðuÞ=ou ¼ bu� 4u3 þ 5u4 ¼ 0: ð9Þ
Combining Eqs. (8) and (9), we can solve the pull-in parameter bPI = e0wLVPI
2/kg3 which is related to the pull-in voltage

VPI and the pull-in gap uPI. Thus, we can discuss the pull-in parameter bPI instead of the pull-in voltage VPI for the given

dimensions of this model. The pull-in parameter bPI is given by
bPI ¼ 240u4PIð1� uPIÞ � a
� � 1

120u2PI
; ð10Þ
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where uPI should be computed by solving the following nonlinear equation:
aþ 240u4PI � 360u5PI ¼ 0: ð11Þ
If we neglect the contribution of the Casimir force in the analysis above, the pull-in gap and the pull-in parameter can

be solved by Eqs. (10) and (11) as
u0 ¼
2

3
; and b0 ¼

8

27
; ð12Þ
which are the same as the expressions derived in [13].

Numerical method can be used to solve the nonlinear equation (11). Perturbation theory was used in [10] to give an

approximate analytical expression for the pull-in gap, that is
~u ¼ u0 þ
9a
640

: ð13Þ
The corresponding pull-in parameter is computed by
~b ¼ 240~u4ð1� ~uÞ � a
� � 1

120~u2
: ð14Þ
According to Eq. (11), we first plot the variation of the pull-in gap with parameter a in Fig. 3. The variation of the

corresponding pull-in parameter bPI with parameter a is drawn as Fig. 4 according to Eq. (10). In these two figures,

there are two special points which are plotted by ‘‘·’’ and ‘‘*’’, respectively. The point ‘‘·’’ in Fig. 3 corresponds to

(a0,u0) = (0,2/3), when it is (a0,b0) = (0,8/27) in Fig. 4. This means that there is no effect of Casimir force on the actu-

ators. With the appearance of the Casimir force, the pull-in gap uPI increases when the pull-in parameter bPI decreases.

At another special point ‘‘*’’, it corresponds to (a*,u*) = (12,288/625,4/5), when it is (a*,b*) = (12,288/625,0) in Fig. 4.

That is, when a > a*, b will be negative. It means the actuator will lose its stability even though there is no voltage ap-

plied at the two electrodes.

In order to compare the linear approximation with nonlinear results, we also plot the linear approximate results in

Figs. 3 and 4 according to Eqs. (13) and (14). From Figs. 3 and 4, we know the linear approximations are identical to

nonlinear results when 27a2/320� 1.
4. The analysis of equilibrium points

In Section 3, we discuss its critical condition in static state. In this section, we will discuss its dynamics behavior.

First we set y ¼ _u, Eq. (7) can be transformed into the following form:
du
ds

¼ y; M
dy
ds

¼ 1� u� b
2u2

� a
240u4

: ð15Þ
The equilibrium points are obtained by setting zero the left-hand sides of Eq. (15). The second equation is equivalent to

Eq. (8), which has two parameters a and b. Eq. (8) can be solved numerically for u as a function of a and b. First, we
Fig. 3. Variation of the pull-in gap uPI with parameter a.



Fig. 4. Variation of the pull-in parameter bPI with parameter a.
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plot the variation of u with parameter b for the given different parameter a, the solution is shown in Fig. 5. From this

figure, we know that: no solution exists in 0 < u < 1 when a is larger than the critical value a*. When a is less than a*,

two solutions exist in 0 < u < 1 for any given b P 0. The critical value a* is determined in Section 3. From the discussion

above, we know that Eq. (15) has two equilibrium points with parameter a less than the critical value a* for any given b.

In order to check for their stability of the equilibrium points, the following Jacobian matrix is needed
J ¼
0 1

b
u3 þ a

60u5 � 1 0

" #
:

We first discuss the stability of the equilibrium points with the given parameters b = 0 and a < a*. According to Fig. 5,

there are two equilibrium points (u1,0) and (u2,0) with satisfying this inequality u1 > u* > u2.

We first substitute b = 0, a < a* and u = u1 into the Jacobian matrix above, and get
J ju¼u1
¼

0 1
a

60u5
1

� 1 0

" #
:

Its corresponding eigenvalue equation of Jju=u1 satisfies k2 � a
60u5

1

þ 1 ¼ 0. Due to a < a* and u1 > u*, we know that

k2 ¼ a
60u5

1

� 1 < 0. Then it has two pure imaginary roots, which means that the equilibrium point (u1,0) is a Hopf point.

Applying the same method to the other equilibrium point (u2,0), its eigenvalue satisfies k2 ¼ a
60u5

2

� 1 > 0, then it has two

real eigenvalues, one is positive, and the other is negative. It means this equilibrium point (u2,0) is an unstable saddle

point. Using the same method, we can discuss the stability of the two solutions with any different given a and b. Then we
Fig. 5. Variation of equilibrium points with parameter b for different a values.



Fig. 6. Bifurcation diagram: variation of equilibrium points with parameter a for given different b.

Fig. 7. Phase diagram with given a = 10 and b = 0.

Fig. 8. Phase diagram with given a = 10 and b = 1/5.
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Fig. 9. Variation of the detachment length with the initial gap.
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can plot its bifurcation diagram as Fig. 6. The real lines represent the Hopf point, and the dotted lines represent the

unstable saddle point.

According to the property of the Hopf point and the unstable saddle point, we know that there exists periodic orbits

around the Hopf point, and there is a homoclinic orbit passing through the unstable saddle point. Given different

parameters a and b, the corresponding phase portraits are plotted as Figs. 7 and 8, respectively.
5. Detachment parameters

The maximum length of the MEMS/NEMS structure without application of external voltage that will not stick to

the substrate is called detachment length [23], which is obviously a basic design parameter for MEMS/NEMS. It is

interesting to note that the detachment length of the cantilever and fixed–fixed beam can be obtained by critical value

a* = 12,288/625. That is, the detachment length of the cantilever beam that will not adhere with the substrate due to

Casimir force is
Lmax ¼
8g
5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ed3g
p2�hc

4

s
ð16Þ
and the detachment length of the fixed–fixed beam is
L0
max ¼

16g
5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6Ed3g
p2�hc

4

s
: ð17Þ
From Fig. 9, one can see the variation of the maximum length with the initial gap distance of the cantilever and

fixed–fixed switches, respectively. As an alternative case, if the length is known, we can calculate the minimum gap, gmin,

between the switch and the substrate to ensure that the switch does not adhere to the substrate due to the Casimir force.
6. Conclusions

A theoretical analysis is presented for the influence of Casimir effect on the nonlinear behavior of nanoscale electro-

static actuators.

We first study the variation of pull-in parameters uPI and bPI with parameter a. From Figs. 3 and 4, we know that the

movable beam will collapse onto the ground plane without any voltage applied at the two electrodes when a P a*.

From the expression of critical value a*, we can obtain the detachment length Lmax ¼ 8g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ed3g=p2�hc4

q
=5 for cantilever

type switch, and L0
max ¼ 16g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Ed3g=p2�hc4

q
=5, for fixed–fixed type switch. The minimum gap between the switch and the

substrate of the nanoscale actuators can be derived in the same manner for the given switch length.
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We then study the equilibrium points and their corresponding stability of Eq. (15) when considering a and b as two

parameters. From Fig. 5, no solution exists in 0 < u < 1 satisfying b P 0 when a P a*. There are two equilibrium points

for any b P 0 when a < a*. By discussing the stability of its equilibrium points, it is noted that one equilibrium point is a

Hopf point, and the other is an unstable saddle point. Thus Eq. (15) has periodic orbits around the Hopf point, and a

homoclinic orbit passing though the unstable saddle point seen by Figs. 7 and 8.

By using a simple mass-spring model we show that there exists bifurcation as the geometry of the device is changed.

Compared these results with [18,19], Casimir force will not change the number of equilibrium points and their corre-

sponding stability. The attractive nature of the Casimir force just decreases the pull-in voltage.
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Appendix A

Main parameters in the present paper
Symbol
 Physical meaning
 Dimension
a
 p2�hcwL/kg5, order of magnitude of ratio of Casimir and restoring forces
 Dimensionless
b
 e0wLV
2/kg3, order of magnitude of ratio of electrostatic and restoring forces
 Dimensionless
c
 Speed of light
 LT�1
d
 Thickness of beam
 L
E
 Effective modulus of beam
 ML�1T�2
g
 Initial gap between movable and ground plates
 L
�h
 Planck�s constant divided by 2p
 ML2T�1
I
 Moment of the inertia of cross-section
 L4
k
 Effective spring constant of beam k = 8EI/L3 for cantilever

k = 384EI/L3 for fixed–fixed beam
MT�2
L
 Length of beam
 L
Lmax
 Detachment length of actuator
 L
M
 m/kT2
 Dimensionless
r
 Gap between movable and ground plates
 L
T
 Characteristic time
 T
u
 r/g
 Dimensionless
w
 Width of beam
 L
V
 Voltage applied
 ML2T�2Q�1
e0
 Vacuum permittivity
 M�1L�3T2Q2
s
 t/T
 Dimensionless
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