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Abstract

Discussed are the underlying background of statistical microdamage mechanics, the fundamental partial differential
equation of evolution of microdamage number density, two basic solutions, and the saturation of microdamage number
density evolution. Knowledge of microdamage number density evolution is applied to engineering practice by using the
field equations of microdamage number density and continuum damage. The addition of continuum equations renders
a complete system of field equations of deformation and damage. However, they are open-ended in character at the
continuum level although the dynamic damage function is completed from the meso- to the macro-scale level. Once
decoupling of the function is made, the system of equations can be connected in an approximate manner. This provides
a reasonable approximation to the continuum field of deformation and damage. The open literature prediction based
on damage evolution relies on assuming arbitrary critical damage states. In this work, use is made of the criterion for
damage localization. Several applications of statistical microdamage mechanics are made. This includes damage evo-
lution in a heterogeneous medium and failure forecast under impact. The results show that statistical microdamage
mechanics and the derived closed approximate continuum formulations are physically sound and practically effec-
tive. © 2001 Elsevier Science Ltd. All rights reserved.

1. Background of statistical microdamage mechan-
ics

When a large crack dominates in a solid, frac-
ture mechanics (linear elastic or elastic-plastic) can
be used to characterize the mechanical behavior of
solids. However, for most heterogeneous materi-
als, such as alloys, ceramics, composites, rocks,
etc., there might be distributed microcracks or
microvoids rather than a single macroscopical
crack. In particular, it is well known that distrib-
uted microdamages usually dominate failure of
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solids under various loadings such as impact. In-

stead of fracture mechanics, continuum damage

mechanics may be more appropriate [1-5]. The

essence of continuum damage mechanics consists

of evolution and a critical damage parameter D..

An evolution law is usually assumed in the form
K

b=—oy W

where 7y is an undetermined parameter and K is a
stress-dependent function K(o). The nominal
stress ¢ in the damaged solid is assumed to be re-
lated to the stress o in the intact portion of the
materials:

o =as(1 —D). (2)
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To forecast failure, a critical damage state should
be assumed. Suggested in [4] is the range of
D, ~ 0.2-0.5.

As a matter of fact, the continuum damage D
should be a collective representation of micro-
damage [5-10], Fig. 1. The evolution of damage
should be based on physics and a critical damage
D. which is not arbitrarily assumed. It can be
quoted from ASTM [8] that “‘rigorous treatment
of non-uniformly distributed defects requires tools
not yet fully developed in continuum damage
mechanics. Weighing the influence of distributed
damage at the microscale on the collective macro-
scale stiffness and evolution of damage is a chal-
lenge as well. In fact, the overall framework of
continuum damage mechanics, based on the use of
internal state variables to represent evolving
structure of the material, appeals strongly to irre-
versible statistical thermodynamics.

Generally speaking, microdamage gives rise to
inhomogeneities such as particulates or grains of
the order of micrometres. On the metal surface,
the microdamage is in the range 10°>-10*/mm?
[6,10]. Some of the microdamages may grow and
coalesce causing eventual failure. Hence, the main
issues in microdamage evolution are nucleation,
growth and coalescence of microdamage [6-10].
Hence, there is a need to understand trans-scale
(from meso- to macroscopic) damage evolution.

This work focuses on the basic concepts and
fundamentals of statistical microdamage mechan-
ics. Included are the equations of microdamage
evolution and their solutions. Because of the sep-
arate division of meso- and macroscopic entities,
effort is made to reduce the discrete nature of the
governing equations. A criterion for damage lo-
calization is used to forecast failure. Statistical
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Fig. 1. Schematic of length scales.

microdamage mechanics is applied to a prototyped
heterogeneous medium and failure under impact
loading. It is shown that statistical microdamage
mechanics and the corresponding approximate
formulation at the continuum level yield realistic
results.

2. Evolution of microdamage number density
2.1. Fundamental equation

A framework of statistical microdamage me-
chanics [10] is established. An evolution equation
of microdamage number density n given by

on < 0(n-P)
Tl oy T ®

is introduced in the phase space {p;} (see Fig. 2),
where ¢ is the generalized time. P, = p; are the rates
of variables p;. ny and n, are nucleation and an-
nihilation rate densities of microdamage, respec-
tively. For simplicity, ignore the term of
annihilation.

Phase space of microdamage consists of vari-
ables p;, such as the size and orientation of mi-
crodamage and the macroscopic position where
microdamage is located, etc. Here, confinement is
made to the phase space {c, co, x} of current size ¢
and initial size ¢, of microdamage and its macro-
scopic position x. The product of number density
of microdamage n(c,x) and element volume in

/ Flow of number density
f / n,: nucleation

X = n,: annihilation
v { i

<—dpl_.

Phase space p,
[
K

Phase space p;

Fig. 2. Schematic of phase space of microdamage; derivation of
the fundamental evolution equation of microdamage number
density n.
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phase space dc - dx corresponds to the total mi-
crodamage with the current size from ¢ to ¢ + dc at
the macroscopic position from x to x + dx. For
instance, n(c,x) = 10/um mm?® means that a vol-
ume of 1 mm?® at macroscopic point x has alto-
gether 10 microdamages with size from ¢ to
c+ 1 pm.

2.2. Basic solutions

Two basic solutions n(¢,¢;a) and ny(¢,c, cp; o)
are obtained from the fundamental equation of
microdamage number density (3) in phase spaces
{c} and {c,co} with constant stress parameter o.
The details can be found in [11-13]. The first so-
lution [11] is given by

. nn(c; o) - ¢, c<b,
n(t,c;0) = f:(tx) nn(c';o) -dd'JA(c;o), c=b>
(4)
where the growth rate
.0, c<b, and t_/" d¢
A(C; 0)7 c= b7 n(t,c) A(C’; O—).

The distinct aspect of this solution is that for a
given  microdamage size c¢>b, when
t>1y= [, dc'/A(c;0), microdamage number
density will become saturated. In other words, for
a given time ¢ there is a saturation front ¢, of mi-
crodamage, defined by 7 = [;* dc’/4(c; 0), Fig. 3.
In this situation, the contribution of the micro-
damage less than ¢, and greater than b remains
unchanged. Damage evolution will be governed
mainly by microdamage greater than c¢;. This
phenomenon is attributed to the incoming and
outgoing flux of microdamage across the element
as governed by the balance of nucleation in the
element dc in phase space {c}. The second solution
[13] is

nN(COQU)
1,¢,¢0;0) = ————
nO( ,C,Co,O') V(C,C();(T)
when c¢<¢ and ny=0
when ¢ > ¢y, (5)

with a moving front ¢;. Note that 7= [ ,CUF dc'/
V(c',co;0), where V is the growth rate of micro-

Nucleation only

Nucleation and growth

Saturation front

Density of microdamage n(t,c)
N

. 30 40 50
Size of microdamage c

Fig. 3. Solution of number density of microdamage n(¢,¢) un-
der constant stress. All variables are dimensionless and num-
bers shown on axes are divisions of dimensionless maximum.
Notice that high number density of microdamage within the
region where growth rate is zero (left) and the front of satura-
tion of microdamage number density moving rightward.

damage. In most situations, the growth rate of
microdamage under a given stress ¢ is not only a
function of microdamage size ¢ only but also de-
pends on a binary function of the current size ¢
and original size ¢y of microdamage, V(c,co;0).
Another interesting aspect of this solution is that
eventhough the right-hand side of Eq. (5) appears
to be in a steady state, it has a time-dependent
front c;, Fig. 4. Hence, the evolution aspect of
microdamage would be contributed mainly made
by the moving front ¢; only [13]. This reflects the
essence of microdamage saturation discussed ear-
lier. The connection between the two solutions
becomes clear:

c
n(t,c;0) = / no(t, ¢, co; 0) - deg
0

_ Jo (nn/ V) - dey, c<cr (©)

S /V) -deg, >

2.3. Field equations of microdamage number density

Microdamage evolution will now be examined
in terms of inhomogeneous damage field and its
effect on eventual failure. As shown in Fig. 1, the
number density of microdamage should be de-
pendent on their macroscopic position x as well,
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Fig. 4. Solution of number density of microdamage ny(¢,c, c)
under constant stress. All variables are dimensionless and
numbers shown on axes are divisions of dimensionless maxi-
mum. Notice that the front of microdamage number density
moving towards larger size of microdamage ¢ and the steady
high number density of microdamage after the front.

namely n = n(¢,X,¢). The number density of mi-
crodamage is governed by the field equation [14]:
on 0O(n-A) d(n-v)

e o N @

Clearly, this equation should be related to other
continuum equations, such as mass, momentum
and energy equations. The coupled nature of this
system of equations at the meso- and macroscale
level makes the problem of damage field evolution
very complicated. For engineering practice, it
suffices to connect these equations approximately
at the macroscopic level.

3. Continuum damage field and damage localization
3.1. Continuum damage field

Consider an element of solid that is large en-
ough to contain a number of microdamages as
shown in Fig. 1. Make use of the microdamage
number density, and define the continuum
damage D:

D(t,x) = /n(t,xm) -1 - de, (8)

where 7 is the failure volume of an individual mi-
crodamage with size ¢. For a spherical micro-
damage, © ~ mc/6. Hence, the field equation of
number density of microdamage can be converted
to the continuum damage field equation by inte-
gration. Application of the appropriate boundary
conditions, [14,15] gives

oD 9d(D-v)

D /A, 9
&t = )
where

f:/o nn(c;o)-1-de
+/ n(t,x,c) - A(e,0) - ' - de (10)
0

is the dynamic function of damage (DFD). The
function bridges the micro- and macrodamage.
The entire system of continuum damage and de-
formation become

oD oD ov
op op v
a—+v-a—x+p-a—x—0, (12)
ov ov _, Oo
§+V'67x_p X (13)
Ole—q)  9e—q)

ot ox

ov o’h
fr— 71. " —_— 71.
PR TP Txoax (14)

where p is the density while e and ¢ are the specific
internal energy and heat source, respectively. The
Cauchy stress tensor is ¢ and h is the heat flux. The
energy equation is dropped for simplicity. For
planar impact problem, the one-dimensional strain
state will be examined. Hence, all velocity com-
ponents and spatial derivatives are zero except for
the velocity component v and derivative (0/0y).
The problem is also transformed from the Eu-
clidean (z,y) to the Lagrangian coordinates (7,7).
The transformation is t = 7 and y = Y + u with u
being the displacement or
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o o o o p 0
94y 229 o_r. 9 15
a Vo 5T,y (15)

Obtained is a system of continuum equations in
the one-dimensional strain state:

oD p Ov

4+ ptt " _ 1
ot TP oy f (16)
W o -
or  p, oY

ov 1 60_

a—T—Po a_Y_O‘ (18)

The damage field equation (16) may be regarded as
a rate-dependent damage evolution law:

D=D c.D)=f—D .
(0,6,6,D) = f TTs

(19)

Preference is made to Eq. (11) or (16) as a field
equation.

3.2. Closing approximation on continuum level

The main issue is the meso- and macroscopic
coupling in DFD f. Note from Eq. (10) that f must
depend on stress ¢ and several mesoscopic factors
such as nucleation and growth laws, failure vol-
ume of microdamage, and number density of mi-
crodamage. These quantities are closely related to
continuum damage D, Eq. (8). An educated guess
is that f is dependent on stress ¢ and damage D.
This is reminiscence of the assumption associated
with damage evolution in the internal variable
theory of damage mechanics [1-4]:

. oD

D= a7 F(o,D). (20)
The problem now is to determine the approxima-
tion such that the dependence of function f on
nucleation, growth law of microdamage and
number density of microdamage would reduce to a
single variable D. Consider the damage field
equation and attempt to find the relation between
DFD fand the damage evolution law F. Compare
the two terms on the right side of Eq. (16) or (19)

involving the damage rate and flux. Because of

p 1 and v  *u Qe

o Tre oy ~oror T’ 1)
an inequality is obtained:
oD/OT _ 0¢/0T

é 1 {I— g’ (22)

provided that D <« 1 and ¢ < 1, i.e. small damage
and deformation. The damage rate and strain rate
are of the same order, i.e., ¢ ~ D. These approxi-
mations lead to

oD
7=/ =F. (23)

For a fixed macroscopic point Y, DFD f can thus
be approximated by the damage rate of the point.
This is similar to the damage evolution law in the
internal variable theory of continuum damage
mechanics. The approximate assumption

f=/(D,o). (24)

thus prevails. Here, damage is examined as a field
variable, Eq. (16). This is in contrast to the passive
dependency of the stress field as in the internal
variable theory.

3.3. Damage localization and Deberah number

Failure of solids is a highly nonlinear process. A
reduction in dimensionality is usually made by
considering a two-dimensional fracture surface
formed in a three-dimensional body. Of interest is
the intrinsic factor that would govern the localized
failure. The damage field concept invokes damage
localization, Fig. 5:

(/@) (3)

The interpretation is that the relative rate of
damage gradient becomes greater than the relative
rate of the damage itself as shown in Fig. 5. For
the damage field equation (11) or (16), consider the
approximate form f = f(D,s) and differentiate
damage field equation (16) with respect to spatial
ordinate Y. The quasi-static assumption is used to
derive the inequality for damage localization [16];
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The second term on the left of Eq. (26),

“G2) /()

becomes the order O(D), provided that
0(0D/oY) 0(0e/0Y)

or aT
and 0D/0Y ~ 0¢/0Y. Hence, this term can be ig-

nored if damage D < 1. An approximate criterion
for damage localization is thus obtained:

> f/D. (27)
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This approximate condition can be easily inter-
preted and applied in practice according to Fig. 5
when the tangent fp of DFD on an iso-stress
section in coordinates (f,D,o) becomes greater
than its secant f/D, damage localization will oc-
cur. To illustrate the application of the criterion,
consider a sample DFD such that

f=/(D;0) =G(o)-(1+f-D"), (28)

where G is a function of stress. u and f§ are two
parameters relevant to damage growth and co-
alescence. Davison and Stevens [17] have named
the two terms in Eq. (28) as simple and com-
pound damages corresponding to nucleation and
growth (as well as coalescence) of microdamage,
respectively. Generally speaking, the DFD has
u > 1 and appears to be concave. In particular, f§
is the ratio of compound rate over nucleation rate
of damage. It is an intrinsic Deborah number. In
this case, the critical damage for damage local-
ization becomes

De=[(p—1)- 7" (29)

It seems that the index u remains in the range 2-3,
but Deborah number  may change from tens in
creep to million in impact. The variation of the
critical damage for localization with Deborah
number f is shown in Fig. 6.
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4. Examples
4.1. Failure forecast of heterogeneous media

Mesoscopic heterogeneity is encountered fre-
quently in engineering materials and its influence
on failure is very elusive. By comparison, meso-
scopic strength is much more sensitive than that at
the macroscopic scale. The heterogeneity of mes-
oscopic strength in an elastic-brittle medium may
be represented by a distribution function, 4(a.).
Then damage D can be expressed by the integral

D= / " (oo - do, (30)

where o, is normalized mesoscopic strength, o is
nominal stress and o, = o/(1 — D) the stress sus-
tained by portion of the material that is still intact.
From Eq. (30), the DFD f = dD/dT can be de-
rived as

dD do h-(1-D) do
— = D) —=—"—"s—— — 31
dr g(a, ) dr (1—D)2—O'-h ar’ ( )
where & = h(a/(1 — D)). The Weibull distribution
w(o.;m:) is usually adopted as the distribution
function 4(o.). It can be represented by

w(ae) = meal ™ exp[—(oc)™] (32)

for describing the diversity of mesoscopic strength
[5,18,19], where m, is shape factor or say Weibull
modulus. The smaller the Weibull modulus m, is,
the more diverse the strength is. That is to say that

2
s (X SOIGmax)

the medium is more heterogencous. Examine
damage localization by a criterion similar to that
in Eq. (25). The condition of damage localization
thus takes the form

o> (33)

This requires

H-o-D(1-D)>h-(1-2D)(1—-D)—h-o.
(34)

For Weibull distribution, function g is (see Fig. 7)

_me- (1 =D)-In(1 - D)
&= 5 Ime-In(1—D)— 1] (35)

and the damage localization criterion becomes
(mc+ l) 'DL = 1 —+ mg - (1 —DL) ln(l —DL)
(36)

Table 1 gives the critical damage corresponding to
different Weibull modula m,, in comparison with
assumed critical damage [4]. It is seen that the less
the Weibull modulus m, is (or the more heteroge-
neous of the mesoscopic strength is) the more
difficult is for the materials to under damage lo-
calization and failure. This explains the experi-
mental results of failure in rocks [20].

Simulation analyses were carried out by means
of a network algorithm [21]. A medium consisting
of mesoscopic elements with unique elastic stiffness
K was examined. These elements possess but di-

0.01 .
9.378x10°°
Q" 0.005 - —
[m]
3.477x10°° |
0 0.05 0.1
0 D, 0.094

1
Iso-c section

Fig. 7. Function g(D, o) in DFD of heterogeneous brittle media with Weibull distribution and Weibull modulus m. = 10.
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Table 1
Critical damage for damage localization D, in heterogeneous
elastic-brittle media with different Weibull modulus m,

Weibull 15 10 4 2 1.6
modulus m,

Localization .033 .048 1 21 25
damage D,

verse strength g, with Weibull modulus m. = 5.
The evolution of damage patterns in Fig. 8 shows
that the criterion of damage localization does
forecast of failure occurrence well.

4.2. Impact

The rate-dependent on nature of material spal-
lation under impact has been analyzed by the in-
tegral criterion, continuum measure of spallation
[17], microstatistical fracture mechanics [6], etc. It
was stressed in [22] that quantitative/predictive
models are still needed to provide a continuum
measure of spalling that might involve nucleation-
and-growth of microcracks. As mentioned earlier,

the dynamic damage function f, that bridges
mesoscopic nucleation-and-growth of microdam-
age and continuum damage can be approximated
by Eq. (28). A dimensionless version of the func-
tion f for spallation is

f:f(D,G):G(O')-])-(l+ﬁ-D“), (37)

where G is a dimensionless function of stress. y is a
dimensionless parameter denoting the relative
nucleation rate, Fig. 9. In this formulation, a
characteristic time ¢ =c¢*/C* is used to non-
dimensionalize other parameters. Here, ¢* and C*
are characteristic size and growth rate of micro-
damage, respectively. More specifically the char-
acteristic time used is * ~ 0.527 ps.

Consider the fitting parameters in Eq. (37) [23].
For a tensile stress 1470 MPa, G-y ~ (2.7-2.8) x
1073 implies that for the characteristic time ¢* the
attained damage is about 10~* due to nucleation.
The characteristic damage D* = 3.09 x 10~* while
the intrinsic Deborah number f is as high as
10°-10°. The corresponding compound rate is

Stress ¢
[=]
N

0.0 /

+ /

0.0 0.2 0.4 0.6 0.8 1.0
Straine

Fig. 8. The simulated stress-strain relation of a heterogeneous model possessing Weibull distribution function with m. =5 and
corresponding damage patterns. The cross (+) indicates the damage localization condition (Eq. (23)).
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Table 2

Critical damage D,, predicted dimensionless life 7, and 7; (D = 1) as well as ratio of 7p, /7,

Diax D* 2D* Original data
G-y 2.818 x 1073 2.719 x 1073

u 2.552 2.814

B 2282 x 10° 2.246 x 10°

D, 6.49 x 1073 4.48 x 1073 4.03 x 1073
Tp. 2.01 (1.06 ps) 1.46 (0.77 ps) 1.35 (0.71 ps)
T 3.68 (1.94 ps) 2.53 (1.33 ps) 2.52 (1.33 ps)
Tp./Th 0.546 0.577 0.536

The figures in brackets are corresponding time.

about 10°-10° times the nucleation rate. For fur-
ther development of damage, compound damage
becomes pronounced. Table 2 gives the compari-
son of the calculated critical damage for damage
localization D., life to damage localization 7p, and
life to failure 7;(D = 1) for fitting ranges D* and
2D*. It is worthy noticing that D, D* and G - y are
in the same order. It implies that as soon as
damage due to nucleation develops to a stage
characterized by ¢*, to damage localization prevail;

this leads to eventual impact failure.

5. Discussions

Based on this work, the following points are

worthwhile emphasizing.

e Statistical microdamage mechanics is conduc-

tive for analyzing material with distributed mi-
crodamage.

e The underlying physics of the fundamental

evolution equation involve number density
associated with microdamage, saturation of
microdamage, and moving front of microdam-
age.

e The DFD bridges the evolution of meso-and

macroscopic damage. The condition to de-cou-
ple the function and then to reduce the
open-endness of these equations at the contin-
uum level is discussed.

e A criterion for damage localization is used by

application of intrinsic Deberah number. Even-
tual failure results when distributed nucleation
is overtaken by growth and coalescence of mi-
crodamage.



10 Y.L. Bai et al. | Theoretical and Applied Fracture Mechanics 37 (2001) 1-10

e Application of statistical microdamage mechan-
ics to heterogeneous medium and spallation un-
der impact are discussed. The results show that
the statistical microdamage mechanics and its
approximately connected continuum formula-
tions can be used in practice.

e The present approach has also been applied to
problems in creep, fatigue, etc. [23,24].
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