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Abstract

A generalized JKR model is established for non-slipping adhesive contact between two dissimilar

elastic spheres subjected to a pair of pulling forces and a mismatch strain. We discuss the full elastic

solution to the problem as well as the so-called non-oscillatory solution in which tension and shear

tractions along the contact interface is decoupled from each other. The model indicates that the

mismatch strain has significant effect on the contact area and the pull-off process. Under a finite

pulling force, a pair of adhering spheres is predicted to break apart spontaneously at a critical

mismatch strain. This study suggests an adhesion mediated deformation sensing mechanism by which

cells and molecules can detect mechanical signals in the environment via adhesive interactions.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There is accumulating biological evidence that cells actively sense and react to
mechanical forces and deformation in the environment (Galbraith and Sheetz, 1998;
Huang and Ingber, 1999; Geiger and Bershadsky, 2002). For example, fibroblasts on
elastic substrates tend to orient in the direction of tensile strain (Haston et al., 1983) and
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migrate towards regions of larger stiffness (Lo et al., 2000). Similar response has also been
reported for cells in hydrogels and for vascular smooth muscle cells on substrates with
stiffness gradients (Wong et al., 2003). Almost every type of cells on cyclically stretched
substrates has been found to align nearly perpendicular to the primary stretching direction,
with cytoskeleton of the stretched cells remodeled into bundles of actin filaments oriented
near the perpendicular direction (Dartsch and Hammerle, 1986; Dartsch and Betz, 1989;
Iba and Sumpio, 1991; Neidlinger-Wilke et al., 1994). The cell orientation appeared to
depend on the stretching magnitude: the larger the stretch, the more cells re-orient away
from the stretching direction (Wang et al., 1995; Takemasa et al., 1997). Active
mechanosensing allows cells to remodel their contacts and cytoskeleton to facilitate
migration and re-orientation in response to mechanical forces in their environment. Lorz
et al. (2000) have studied deformation and unbinding of weakly adhering giant vesicles
under hydrodynamic shear forces. Bischofs and Schwarz (2003) have demonstrated that
linear elasticity theory can be useful in explaining why typical cellular reaction to
mechanical input seems to show preference for large effective stiffness.

At the molecular level, specific binding between protein molecules is believed to play an
important role in cell adhesion and signal transduction. Protein molecules are deformable
and can alter their conformations under mechanical forces. The conformation changes can
in turn affect protein–protein and protein–DNA recognition, binding and unbinding (Bao,
2000; Zhu et al., 2000). Bao (2002) discussed that mechanical forces can cause a receptor
molecule to deform, thereby altering the conformational match between the receptor and
its ligand. In some cases, the effect of mechanical deformation may decrease the
receptor–ligand binding and in others it may enhance the interactions by exposing the
binding sites.

Contact mechanics theories have been increasingly used in helping understand bio-
adhesion mechanisms such as cell–cell contact (Chu et al., 2005), cells on stretched
substrates (Chen and Gao, 2006), and hierarchical structures of Geckos and insects
(Autumn et al., 2002; Artz et al., 2003; Persson, 2003; Gao and Yao, 2004; Glassmaker
et al., 2004; Hui et al., 2004; Gao et al., 2005; Spolenak et al., 2005; Huber et al., 2005, Yao
and Gao, 2006). These studies have significantly expanded the literature on classical
adhesive contact mechanics represented by the models of JKR (Johnson, Kendall and
Roberts, 1971), DMT (Derjaguin, Muller and Toporov, 1975), Maugis-Dugdale (Maugis,
1992) and others (Roberts and Thomas 1975; Muller et al., 1980; Greenwood and Johnson,
1981; Barquins, 1988; Carpick et al., 1996; Chaudhury et al. 1996; Greenwood, 1997;
Johnson and Greenwood, 1997; Barthel, 1998; Robbe-Valloire and Barquins, 1998;
Greenwood and Johnson, 1998; Kim et al., 1998; Morrow et al., 2003; Schwarz, 2003).
Motivated by the question of whether contact mechanics model can be established to
explain how cells and molecules sense mechanical deformation induced by environmental
forces, in this paper we consider non-slipping adhesive contact between two dissimilar
elastic bodies subjected to a pair of pulling forces and a mismatch strain induced
by environmental forces such as changes in temperature and/or pressure. The model
predicts that the mismatch strain has significant effect on both the contact area and
the pull-off process. Under a finite pulling force (which may be interpreted as an effec-
tive force due to thermal or entropic forces), a pair of adhering particles is predicted to
break apart spontaneously at a critical mismatch strain, thereby suggesting a mechanism
by which cells and molecules can detect environmental changes via specific binding
interactions.
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In most of the existing contact mechanics models, tangential tractions inside the contact
region are usually neglected. A few exceptional cases have been studied in the past. The
non-slipping Hertz contact problem was treated by Spence (1968a). Kendall (1975)
investigated the effects of shrinkage stress on brittle interfacial failure of a bonded
laminate. Savkoor and Briggs (1977) conducted experiments to show that an applied
tangential force can reduce the area of contact between elastic solids. In the present model,
the contact interface is assumed to be well bonded except that the contact edge is allowed
to shift according to the thermodynamic equilibrium between elastic and surface energies.
This boundary condition leads to a stress field with an oscillatory singularity near the
contact edge, similar to that near an interfacial crack between dissimilar elastic materials.
On the other hand, our analysis indicates that the oscillation has only negligible effect on
the contact area and the pull-off process, hence can be neglected for all practical purposes.
Our model can be regarded as a generalization of the JKR model to cases in which slip
along the contact interface is not allowed and shear tractions become so important
that interfacial fracture mechanics must be used to describe the elastic field near the
contact edge.
In applying simple elastic models to biological phenomena, we caution that the

mechanical properties of cells or proteins can be extremely complex (Howard, 2001; Bao,
2002). Although bio-adhesion would in principle be better described by viscoelastic contact
models (Maugis and Barquins, 1978; Hui et al., 1998; Lin et al., 1999; Barthel and Haiat,
2002; Haiat et al., 2003), such solutions rely on detailed descriptions of biological systems
that are often uncertain or unavailable. On the other hand, elastic models, with their
limitations well understood, can provide useful insights into the basic principles of a
complex problem. This viewpoint is adopted in the present study.

2. Model

Fig. 1 shows a schematic illustration of the problem under consideration. Two dissimilar
elastic spheres are brought into adhesive contact and then subjected to the combined
action of a pair of pulling forces with magnitude F and a mismatch strain em induced by
environmental forces such as changes in pressure and/or temperature. The contact
interface is assumed to be perfectly bonded and the contact edge is allowed to shift in
position according to thermodynamic equilibrium between elastic energy and surface
energy. If the shear traction along the contact interface is neglected, as in the classical JKR
model, one would predict that the mismatch strain em should have no influence on the
contact area. In contrast, our model assumes no slipping along the contact interface so that
the contact area will be influenced by both the pulling force F and the mismatch strain em.
The contact radius a is assumed small so that the deformation of each sphere can be
approximated by that of an elastic half-space.
Our assumption that the contact area is perfectly bonded has been inspired by specific

binding between receptors and their corresponding ligands in cell adhesion as well as
specific sequence matching in adhesion between biomolecules. If there is one to one
bonding between specific molecules, shear deformation along the contact interface would
not be easily relaxed.
A pair of cylindrical coordinates (r, y, z1), (r, y, z2) are placed at the center of the contact

region of each sphere, with z1, z2 pointing into the corresponding body. The present
contact problem has a number of features in common with an external circular interfacial
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Fig. 1. Schematic illustration of two elastic spheres in non-slipping adhesive contact under a pair of pulling forces

F and a mismatch strain em. The spheres have radii R1, R2, contact radius a and elastic properties (E1, n1), (E2, n2).
A pair of cylindrical coordinates (r, y, z1), (r, y, z2) are attached at the center of the contact region of each sphere,

with z1, z2 pointing into the corresponding body.
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crack, the energy release rate of which can be expressed as (Rice, 1965; Erdogan, 1965;
Westmann, 1965)

G ¼
1

cosh2pk

Kj j2

2En
, (1)

where k is the so-called oscillation index to be defined in Eq. (23), K is a complex valued
stress intensity factor to be determined in Eq. (28) and E� is the combined Young’s
modulus

1

En
¼

1� n21
E1
þ

1� n22
E2

, (2)

E1, n1, E2, n2 being the Young’s moduli and Poisson’s ratios of the two contacting objects,
as shown in Fig. 1.
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The thermodynamic equilibrium between elastic and surface energies at the contact edge
can be expressed in terms of Griffith’s condition

G ¼ Dg ¼ g1 þ g2 � 2g12, (3)

where Dg is the work of adhesion, g1, g2 are the surface energies of the two contacting
bodies and g12 is the energy of the contact interface.

3. Analysis

3.1. General solution

In order to formulate the axisymmetric contact problem described in Section 2, we first
consider an elastic half space (zX0) subjected to axisymmetric normal and tangential
tractions over a circular region of radius a on the surface. The displacement and stress
components inside the half space can be expressed as (Sneddon, 1951; Spence, 1968a)

urðr; zÞ ¼
lþ m
m

Z 1
0

x2
dG

dz
J1ðxrÞd x,

uzðr; zÞ ¼

Z 1
0

x
d2G

dz2
�

lþ 2m
m

x2G

� �
J0ðxrÞd x, ð4Þ

srzðr; zÞ ¼

Z 1
0

x2 l
d2G

dz2
þ lþ 2mð Þx2G

� �
J1ðxrÞd x,

szzðr; zÞ ¼

Z 1
0

x lþ 2mð Þ
d3G

dz3
� 3lþ 4mð Þx2

dG

dz

� �
J0ðxrÞd x, ð5Þ

where l and m are Lame’s elastic constants of the half space, J0(rt) and J1(rt) are Bessel
functions, G satisfies d4G=dz4 � 2x2d2G=dz2 þ x4G ¼ 0 with solution

Gðx; zÞ ¼ AðxÞ þ zBðxÞ½ �e�xz (6)

for zX0, A(x) and B(x) being two unknown functions to be determined from the boundary
conditions.
Along z ¼ 0, letting x ¼ t=a, r ¼ r=a and

lþ mð Þx3AðxÞ þ mx2BðxÞ
a2

¼ �mgðtÞ;

lþ mð Þx3AðxÞ � lx2BðxÞ
a2

¼ �mhðtÞ;

(7)

allow the surface displacements uz, ur and stresses szz, srz to be expressed as

uzðrÞ ¼ a
R1
0 2 1� nð ÞgðtÞ � 1� 2nð ÞhðtÞ½ �J0ðrtÞdt;

urðrÞ ¼ a
R1
0

2 1� nð ÞhðtÞ � 1� 2nð ÞgðtÞ½ �J1ðrtÞdt;
(8)

szzðrÞ ¼ �2m
R1
0 tgðtÞJ0ðrtÞdt;

srzðrÞ ¼ �2m
R1
0 thðtÞJ1ðrtÞdt:

(9)
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In this form, the unknown functions g(t) and h(t) correspond to the Hankel transforms
of szz and srz, respectively.

Now consider two elastic spheres that have been brought into non-slipping adhesive
contact at a reference state. After the binding is formed, a pair of pulling forces F and a
mismatch strain em are imposed on the two spheres. This means that, if the interface is not
bonded, the two spheres would undergo a relative tangential displacement

Dur ¼ ur1 � ur2 ¼ emar, (10)

along the contact interface, where the subscripts ‘‘1’’ and ‘‘2’’ denote the upper and lower
spheres, respectively. However, since the interface is bonded, this relative displacement can
not occur and is instead compensated by elastic deformation in the two spheres. Such
mismatch strain could be induced by, for example, a sudden change in pressure Dp or in
temperature DT in the environment, in which cases

em ¼ Dp
1

K1
�

1

K2

� �
or em ¼ ða1 � a2Þ � DT , (11)

where K1 and K2 denote the bulk moduli, while a1 and a2 denote the thermal expansion
coefficients, of the two spheres.

We adopt the usual parabolic approximation of contacting surfaces near the contact
region where the normal surface displacements uz1, uz2, measured positive into each body,
should satisfy

Duz ¼ uz1 þ uz2 ¼ d�
a2

2R
r2. (12)

Here, R is the combined radius 1=R ¼ 1=R1 þ 1=R2 and d is the relative displacement
between the centers of the two objects (Johnson, 1985).

The continuity of normal and tangential tractions requires

szz1 ¼ szz2 ¼ szz; srz1 ¼ �srz2 ¼ srz, (13)

where szz1 and srz1 denote the normal and tangential tractions on the surface of the upper
sphere, and szz2 and srz2 those on the lower sphere. Note that the axes z1, z2 are defined
such that they point separately into each of the two corresponding contacting bodies.

Making use of Eq. (9), one can express Eq. (13) as

m1g1ðtÞ ¼ m2g2ðtÞ ¼ m̄ḡðtÞ; m1h1ðtÞ ¼ �m2h2ðtÞ ¼ m̄h̄ðtÞ, (14)

where

m̄ ¼
En

4ð1� bÞ
; b ¼

1

2

ð1� 2n1Þð1þ n1Þ=E1 � ð1� 2n2Þð1þ n2Þ=E2

ð1� n21Þ=E1 þ ð1� n22Þ=E2

� �
, (15)

b being one of Dundurs’ constants (Durdurs, 1969) for the bimaterial system.
Combining Eqs. (8)–(10), (12) and (14) yields a set of coupled dual integral equations

that govern the non-slipping adhesive contact problem,

szzðrÞ ¼ �
En

2ð1� bÞ

Z 1
0

tḡðtÞJ0ðrtÞdt; srzðrÞ ¼ �
En

2ð1� bÞ

Z 1
0

th̄ðtÞJ1ðrtÞdt, (16)
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DuzðrÞ ¼
a

1� b

Z 1
0

ḡðtÞ � bh̄ðtÞ
� �

J0ðrtÞdt; DurðrÞ ¼
a

1� b

Z 1
0

h̄ðtÞ � bḡðtÞ
� �

J1ðrtÞdt,

(17)

to be solved with the boundary conditions,

Dur rð Þ ¼ emar; Duz rð Þ ¼ d�
a2

2R
r2; rp1ð Þ (18)

srz rð Þ ¼ szz rð Þ ¼ 0; r41ð Þ (19)

and

F ¼ 2pa2

Z 1

0

rszzðrÞdr. (20)

The solution to the governing equations (16)–(20) can be obtained by adapting a
Wiener–Hopf method developed by Spence (1968a, b) for treating axisymmetric non-
slipping Hertzian contact problems. The calculations are lengthy but the methodology is
quite standard. Here, we skip all the details and present only the final solution. The
interfacial tractions in the contact region have the solution,

szzðrÞ ¼
En

2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q d

dr

Z 1

r

w R0ðwÞ cos kyþ wR1ðwÞ sin ky½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � r2

p dw, (21)

srzðrÞ ¼
En

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q d

dr

Z 1

r

R0ðwÞ sin ky� wR1ðwÞ cos ky½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � r2

p dw, (22)

where

k ¼
1

2p
ln
1þ b
1� b

(23)

is the so-called oscillation index for a bimaterial interfacial crack and

yðwÞ ¼ ln
wþ 1

w� 1










 ¼ 2 tanh�1w wj jo1;

2 coth�1w wj j41;

(
yðwÞ ¼ �yð�wÞ, (24)

R0ðwÞ ¼
2d
a
þ 8kem þ

4ak2

R
�

2aw2

R
, (25)

R1ðwÞ ¼ �4em �
4ak
R

. (26)

The force balance equation (20) leads to

d
a
¼

�F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
2Ena2

R 1
0 cos kydw

þ 2em

R 1
0 w sin ky dwR 1
0 cos kydw

� 2k

" #

þ
2ka

R

R 1
0 w sin ky dwR 1
0 cos kydw

�
2k2a

R
þ

a

R

R 1
0 w2 cos kydwR 1
0 cos kydw

. ð27Þ
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It can be shown (details omitted here) that the interfacial tractions in Eqs. (21) and (22)
exhibit oscillatory singular behaviors near the contact edge with a complex valued stress
intensity factor

K ¼ lim
r!1

ffiffiffiffiffiffi
2p
p

a1=2þikð1� rÞ1=2þik szzðrÞ þ isrzðrÞ½ �

¼
En

ffiffiffi
a
p
ð2ki � 1Þð2aÞki

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� b2Þ

q R0ð1Þ � iR1ð1Þ½ �
X1
n¼0

dn

2þ 2n� 2ki
, ð28Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

and

d0 ¼ 1; dn ¼
ð2n� 1Þ!!

2n!!
n41ð Þ, (29)

are the coefficients of the series expansion

ð1� xÞ�1=2 ¼
X1
n¼0

dnxn. (30)

Calculating the energy release rate by inserting Eq. (28) into Eq. (1), and then applying
the Griffith energy balance in Eq. (3) yield the following relation:

�F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
Ena2

R 1
0
cos kydw

þ 4em þ
4ka

R

� �R 1
0 w sin ky dwR 1
0
cos kydw

�
2a

R
þ

2a

R

R 1
0 w2 cos kydwR 1
0
cos kydw

0
@

1
A

2

þ 4em þ
4ka

R

� �2

¼
8pDg

Enað1þ 4k2Þ

X1
n¼0

dn

2þ 2n� 2ki













�2

, ð31Þ

among the contact radius a, the mismatch strain em and the pulling force F.

3.2. The non-oscillatory solution

In a recent study on two-dimensional non-slipping adhesive contact problem (Chen and
Gao, 2006), we found that the Dundurs’ constant b has negligible effects on the contact
radius and the pull-off process. In the case of b ¼ 0, the governing equations (16) and (17)
become

szzðrÞ ¼ �
En

2

Z 1
0

tḡðtÞJ0ðrtÞdt; DuzðrÞ ¼ a

Z 1
0

ḡðtÞJ0ðrtÞdt, (32)

srzðrÞ ¼ �
En

2

Z 1
0

th̄ðtÞJ1ðrtÞdt; DurðrÞ ¼ a

Z 1
0

h̄ðtÞJ1ðrtÞdt, (33)

where the normal and shear tractions along the contact interface are decoupled from each
other. The boundary conditions remain the same as those given in Eqs. (18)–(20). In this
case, the stress field is no longer oscillatory near the contact edge, the oscillation index
vanishes, i.e. k ¼ 0 and the corresponding non-oscillatory solutions is much simpler than
the fully coupled solutions given in Eqs. (21)–(31).
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The non-oscillatory solutions to the governing equations (32) and (33) and boundary
conditions (18)–(20) are

szzðrÞ ¼ �
2Ena

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
pR

þ
En

p
2a

3R
þ

F

2Ena2

� �
ð1� r2Þ�1=2, (34)

srzðrÞ ¼
�2Enem

p
ð1� r2Þ�1=2. (35)

Eq. (27) is reduced to

d
a
¼

a

3R
�

F

2Ena2
. (36)

In the non-oscillatory case, the complex valued stress intensity factor in Eqs. (1) and (28)
becomes decoupled as K ¼ K I þ iK II, where

K I ¼ lim
r!1

ffiffiffiffiffiffiffiffi
2pa
p

ð1� rÞ1=2szzðrÞ ¼
2Ena3=2

3
ffiffiffi
p
p

R
þ

F

2
ffiffiffi
p
p

a3=2
(37)

is the mode I stress intensity factor and

K II ¼ lim
r!1

ffiffiffiffiffiffiffiffi
2pa
p

ð1� rÞ1=2srzðrÞ ¼ �2Enem

ffiffiffi
a

p

r
(38)

is the mode II stress intensity factor. The mode I solution of Eq. (37) is consistent with that
given by the JKR model (Johnson et al., 1971) and the mode II solution of Eq. (38) is
consistent with a solution derived by Gao (1990) using a different method. Inserting Eqs.
(37) and (38) into the Griffith energy balance for k ¼ 0,

G ¼
ðK2

I þ K2
IIÞ

2En
¼ Dg (39)

results in an equation

a3 þ 9R2e2ma�
9DgpR2

2En
þ

9R2F 2

16En2a3
þ

3FR

2En
¼ 0, (40)

which allows the contact radius a to be determined as a function of the mismatch strain em

and the pulling force F. When em ¼ 0, the non-oscillatory solution of a is found to be
identical to that of the JKR model (Johnson et al., 1971)

ajem¼0 ¼ aJKR ¼
3R

4En
�F þ 3pRDgþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6pRDgF þ 3pRDgð Þ

2

q� �� �1=3

. (41)

Eq. (40) can be expressed in a normalized form as

â3
þ 9R̂

2
e2mâ� 1þ F̂

2
â�3 � F̂

2
¼ 0, (42)

where

â ¼ a=aJKR; R̂ ¼
R

aJKR

; F̂ ¼
3FR

4Ena3
JKR

. (43)

When F ¼ 0, Eq. (42) becomes

â3
þ 9R̂

2
e2mâ� 1 ¼ 0, (44)
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which has the explicit solution

a ¼ aJKR

1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ

729R̂
6
e6m

27

s0
@

1
A

1=3

� 3R̂
2
e2m

1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ

729R̂
6
e6m

27

s0
@

1
A
�1=32

64
3
75, (45)

where

aJKR ¼
9pR2Dg
2E�

� �1=3

. (46)

Alternatively, Eq. (40) can also be used to express the pulling force as a function of
contact area and mismatch strain as

~F ¼ �
4

3
~E ~a3 þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32p ~E ~a3 � 64e2m ~E

2
~a4

q
, (47)

where

~a ¼
a

R
; ~E ¼

EnR

Dg
; ~F ¼

F

DgR
. (48)

4. Discussions

4.1. Non-slipping adhesive contact without a mismatch strain: the JKR model

The case without a mismatch strain em ¼ 0 shall be referred to as the non-slipping JKR
model. In this case, we can compare the contact radius predicted by the full elastic solution
and the JKR solution in Eq. (41) is

a0

aJKR

� �3

¼

�FA2

3pRDgþ A3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 � A1A4

� �
F

3pRDg

 �2
þ A2

3 �
2FA2A3

3pRDg

r

A1
�F

3pRDgþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2F
3pRDgþ 1

qh i , (49)

where

A1 ¼
9

4

2k
R 1
0 w sin kydwR 1
0
cos kydw

� 1þ

R 1
0 w2 cos kydwR 1
0
cos kydw

 !2

þ 9k2, (50)

A2 ¼
�3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
2
R 1
0 cos ky dw

2k
R 1
0 w sin kydwR 1
0 cos kydw

� 1þ

R 1
0 w2 cos ky dwR 1
0 cos kydw

 !
, (51)

A3 ¼
1

ð1þ 4k2Þ
P1

n¼0dn= 2þ 2n� 2kið Þ


 

2 ; A4 ¼

1� b2R 1
0 cos ky dw

 �2 . (52)

In principle, the ratio a0/aJKR depends on the non-dimensional parameter F/(pRDg) and
Dundurs’ parameter b. However, numerical evaluation of Eq. (49), as plotted in Fig. 2,
indicates that a0/aJKR is close to 1 for � 1

4
obo 1

4
, the range for most materials, at different

values of F/(pRDg), with maximum difference of about 2%. The influence of F/(pRDg) on
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Fig. 2. Effect of Dundurs’ parameter b on the contact radius a0 in the absence of a mismatch strain (em ¼ 0). The

JKR solution aJKR corresponds to the non-oscillatory solution when b is set to zero. The ratio between a0 and

aJKR is plotted as a function of b for different values of the normalized pulling force F/(pRDg), showing that the

difference between a0 and aJKR is less than 2% for the parameters ranges considered.
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a0/aJKR also seems quite small, as shown for three representative cases in Fig. 2. This result
indicates that the coupling between normal and shear tractions is practically negligible
(Johnson, 1985). The non-oscillatory solution, which in this case corresponds to the
classical JKR model, serves as a good approximate solution to the non-slipping adhesive
contact problem. For practical purposes, we can assume a0EaJKR.

4.2. Non-slipping adhesive contact with a mismatch strain

The shear tractions across the contact interface cannot be ignored in the presence of a
mismatch strain. In this case, the shear tractions play a very important role. Interestingly,
the non-oscillatory solution still remains a valid approximation, as discussed below.
Normalizing the contact radius a in Eq. (31) with a0EaJKR in Eq. (49) gives

B1e2m þ B2em þ B3 ¼ 0, (53)

where

B1 ¼ 16âR̂
2
1þ

Z 1

0

w sin kydw

� �2 Z 1

0

cos ky dw

� ��2" #
, (54)

B2 ¼
�32

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
R̂F̂

3â

Z 1

0

w sin ky dw

Z 1

0

cos kydw

� ��2

þ 16â2R̂ 2kþ

R 1
0 w sin ky dwR 1
0 cos kydw

2k
R 1
0 w sin kydwR 1
0 cos kydw

� 1þ

R 1
0 w2 cos ky dwR 1
0 cos kydw

 !" #
, ð55Þ
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B3 ¼ 4ðâ3
� 1Þ

2k
R 1
0

w sin kydwR 1
0 cos kydw

� 1þ

R 1
0

w2 cos kydwR 1
0 cos kydw

 !2

þ 16k2ðâ3
� 1Þ

þ
16F̂

2
ð1� b2Þ

9
R 1
0
cos kydw

 �2 1

â3
� 1

� �
, ð56Þ

and

â ¼ a=a0 � a=aJKR; R̂ ¼ R=a0 � R=aJKR; F̂ ¼
3FR

4Ena3
0

�
3FR

4Ena3
JKR

. (57)

Numerical calculations show that the influence of Dundurs’ parameter b on the above
solution is negligible. Fig. 3 plots a/aJKR as a function of em for five different values of b
under two representative choices of R̂ ¼ R=aJKR and F̂ ¼ 3FR=4Ena3

JKR. In all cases, the
effect of b is quite small and can be neglected for practical purposes. Therefore, the non-
oscillatory solutions in Eqs. (34)–(48) can serve as an approximate solution to the non-
slipping adhesive contact problem between two dissimilar elastic spheres.

The non-oscillatory solution in (42) and (43) shows that the normalized contact radius
a/aJKR depends on the mismatch strain em and the normalized radius R̂ ¼ R=aJKR only
through the combined parameter R̂em. In addition, a/aJKR depends on the normalized
pulling force F̂ ¼ 3FR=4Ena3

JKR. Fig. 4 plots a/aJKR as a function of R̂em for different
values of F̂ . In the absence of the pulling force F̂ , the contact radius varies smoothly with
the mismatch strain em and exhibits three distinct regimes of behaviors characterized by
two threshold strains: (i) the contact size is hardly affected by em when em is below the first
threshold level; (ii) the contact radius decreases quickly with em as em increases between the
two threshold levels; (iii) the contact size approaches zero when the substrate strain exceeds
the second threshold level. This result is qualitatively similar to our previous study on the
two dimensional non-slipping adhesive contact problem of an elastic cylinder on a
stretched substrate (Chen and Gao, 2006).

More interestingly, under a finite pulling force F̂ (which can be interpreted as an
effective force due to thermal or entropic forces), there exists a critical mismatch strain,
shown by the critical values of R̂em in Fig. 4, at which a pair of adhering spheres is
predicted to break apart spontaneously. The larger the value of F̂ , the smaller the critical
value of R̂em. If thermal fluctuations are considered as an effective pulling force on two
adhering molecules or cells, our result immediately suggests a mechanism by which cells or
molecules can sense mechanical deformation: the number density of molecules or cells in
contact may sensitively depend on the mismatch strain induced by environment forces. For
example, changes in temperature or pressure or PH values would induce mismatch strains
between adhering molecules or cells, which could then influence the behaviors of receptor-
ligand bonds, thereby transmitting mechanical signals via adhesive interactions.

4.3. The influence of mismatch strain on the pull-off process

In Eq. (47), we have expressed the normalized force ~F ¼ F=ðDgRÞ as a function of the
mismatch strain em, the normalized contact radius ~a ¼ a=R and the normalized Young’s
modulus ~E ¼ EnR=Dg. Fig. 5 plots ~F as a function of ~a for three different values of the
mismatch strain when ~E ¼ 10 000. For a given em, the contact radius decreases as the force
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Fig. 3. Effect of Dundurs’ parameter b on the contact radius a in the presence of a mismatch strain em. The

normalized contact radius a/aJKR is plotted as a function of em for different values of b and parameters choices of

(a) R̂ ¼ 50:0, F̂ ¼ 0:001 and (b) R̂ ¼ 10:0, F̂ ¼ 0:01, where R̂ ¼ R=aJKR and F̂ ¼ 3FR=ð4Ena3JKRÞ. The results

indicate that b has negligible effect so that the non-oscillatory solution can be used as a good approximate

solution.

S. Chen, H. Gao / J. Mech. Phys. Solids 54 (2006) 1548–15671560
~F changes from compression to tension until the two spheres are pulled off at a critical
force. The case em ¼ 0 corresponds to the classical JKR model. The results in Fig. 5
indicate that the mismatch strain has significant effects on the pull-off process. The pull-off
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mismatch strain em is seen to have a significantly effect on the pull-off process.
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force decreases as the mismatch strain increases. Fig. 6 plots the normalized pull-off force
~F
� �

pull�off
as a function of the mismatch strain em for three different values of ~E. In the

classical JKR theory, the pull-off force is independent of the Young’s modulus (the point
of em ¼ 0). This is seen to be no longer true in the presence of a mismatch strain. The pull-
off force decreases with increasing modulus at a finite em, as shown in Fig. 6.
It can be observed from Fig. 5 that the critical contact radius at pull-off decreases with

increasing mismatch strain. Fig. 7 plots the normalized critical radius ~a½ �pull�off as a
function of em for three different values of ~E. The result shows that ~a½ �pull�off decreases with
increasing modulus.
Therefore, the mismatch strain has significant effect on both the critical force and critical

contact radius at pull-off. Under a fixed pulling force, there exists a critical mismatch strain
at which a pair of adhering spheres is predicted to break apart spontaneously.

4.4. Adhesion mediated deformation sensor

The generalized JKR model discussed in the present paper suggests that two adhering
objects under thermal fluctuation have an increasing chance to break up in the presence of
a mismatch strain induced by environmental forces. Thermal forces tend to break apart
any adhering particles and are therefore analogous to the pair of pulling forces considered
in the present model. Mismatch strains can arise under changes in environmental pressure
or temperature or PH values. The concept of an adhesion mediated deformation sensor is
schematically illustrated in Fig. 8.
The total adhesion energy DU of two adhering spheres under a given mismatch strain em

(with no pulling force) can be written as

DU ¼ DUsurface � DUelastic, (58)
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forces), the adhesion strength and contact area would be sensitive to any environmental forces that can induce a

mismatch strain in the bimaterial system.
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where DUsurface is the change in surface energies and DUelastic is the change in elastic energy
as the contact is formed. These quantities can be calculated as

DUsurface ¼ pa2
eqDg, (59)

DUelastic ¼

Z aeq

0

2paGjF¼0ema0 da, (60)
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where

GjF¼0ema0 ¼
K2

I þ K2
II

2En
(61)

is the strain energy release rate when F ¼ 0, ema0 and aeq is given in Eq. (45). In this case,
the corresponding stress intensity factors can be obtained from Eqs. (37) and (38) as

K I ¼
2Ena3=2

3
ffiffiffi
p
p

R
, (62)

K II ¼ �2Enem

ffiffiffi
a

p

r
, (63)

which, when inserted into Eq. (60), gives

DUelastic ¼
4a2

eq

45R2
þ

4

3
e2m

 !
Ena3

eq. (64)

Figs. 9 and 10 plot the normalized adhesion energy DU/(KBT), where KB is the
Boltzmann constant and T ¼ 300K denotes the room temperature, as a function of em for
two different sets of parameter variations. The surface energy is taken to be 2.5mJ/m2.
Fig. 9 shows that both particle sizes (through the combined radius R) and their elastic
properties (through the combined modulus E�) have significant effects on the relation
between DU/(KBT) and em. The results suggest that a mismatch strain on the order of 10%
and above would be needed to bring the adhesion energy down to the level of thermal
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Fig. 9. Variation of the normalized work of adhesion DU/(KBT) of a pair of particles as a function of the

mismatch strain em for two values of the combined radius R ¼ 10 and 20 nm and other parameter choices of

Dg ¼ 2:5mJ=m2, En ¼ 100MPa and T ¼ 300K.
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energy KBT so that the adhering particles would spontaneously dissociate under thermal
fluctuation.
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