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Instrumented indentation is often used in the study of small-scale mechanical behavior
of “soft” matters that exhibit viscoelastic behavior. A number of techniques have
recently been proposed to obtain the viscoelastic properties from indentation
load–displacement curves. In this study, we examine the relationships between
initial unloading slope, contact depth, and the instantaneous elastic modulus for
instrumented indentation in linear viscoelastic solids using either conical or spherical
indenters. In particular, we study the effects of “hold-at-the-peak-load” and
“hold-at-the-maximum-displacement” on initial unloading slopes and contact depths.
We then discuss the applicability of the Oliver–Pharr method (Refs. 29, 30) for
determining contact depth that was originally proposed for indentation in elastic and
elastic-plastic solids and recently modified by Ngan et al. (Refs. 20–23) for
viscoelastic solids. The results of this study should help facilitate the analysis of
instrumented indentation measurements in linear viscoelastic solids.

I. INTRODUCTION

Instrumented indentation is becoming a powerful tool
for the study of small-scale mechanical behavior of
“soft” matters, such as polymers, composites, biomateri-
als, and food products. Since many of these materials
exhibit viscoelastic behavior, modeling of indentation in
viscoelastic solids is essential. Theoretical studies of in-
dentation in linear viscoelastic bodies can be traced back
to the mid 1950s by the work of Lee,1 Radok,2 Lee and
Radok,3 Hunter,4 Graham,5,6 Yang,7 and Ting.8,9 In re-
cent years, a number of authors have extended the early
work to the analysis of indentation measurements in vis-
coelastic solids.10–27

One of the widely used methods is to obtain the elastic
modulus from the initial unloading stiffness or slope
(Fig. 1), S � (dF/dh)m, of the unloading curve at the
maximum indenter displacement hm

28–30

S =
dF

dh�h=hm

=
4G

1 − �
a =

2E

���1 − �2�
�A , (1)

where G is the shear modulus, E � 2G(1 + �) is Young’s
modulus, � is Poisson’s ratio, a is the contact radius,
and A � �a2 is the contact area. Equation (1) can be
derived from the theory for elastic contacts between flat
surfaces and spheres,31 flat punches,31 and conical
punches.32 More generally, Sneddon has derived expres-
sions for load, displacement, and contact depth for elastic
contacts between a rigid, axisymmetric punch with an
arbitrary smooth profile and an elastic half-space.33 Us-
ing Sneddon’s results, Pharr et al.29 showed that Eq. (1)
holds true for rigid indenters of arbitrary smooth profiles
indenting elastic solids. Equation (1) has also been ap-
plied to indentation experiments where plastic deforma-
tion occurs. Doerner and Nix28 suggested that if the area
in contact remains constant during initial unloading, the
elastic behavior might be modeled as that of a blunt
punch indenting an elastic solid. Oliver and Pharr30

pointed out that Eq. (1) can be used even when the con-
tact area between the indenter and the solid changes con-
tinuously as the indenter is withdrawn and the indenter
does not behave like a flat punch. We have recently
shown that Eq. (1) is true for indentation in elastic-plastic

a)Address all correspondence to this author.
e-mail: yang.t.cheng@gm.com
This author was an editor of this journal during the review and
decision stage. For the JMR policy on review and publication of
manuscripts authored by editors, please refer to http://www.mrs.
org/publications/jmr/policy.html.

DOI: 10.1557/JMR.2005.0389

J. Mater. Res., Vol. 20, No. 11, Nov 2005 © 2005 Materials Research Society 3061



solids with or without work hardening and residual
stress.34 However, Lu et al.18 and Kumar and Narasim-
han19 have recently suggested that Eq. (1) may not be
applicable to indentation in viscoelastic solids. For
conical and spherical indentation in linear viscoelastic
solids, we have recently shown that Eq. (1) is valid pro-
vided the unloading rate is sufficiently fast.24–27

To use Eq. (1) to determine the elastic modulus, the
contact radius a or contact area A must be known. For a
given indenter, the contact radius or area can be obtained
from the contact depth hc (see Fig. 2). The most widely
used method for estimating the contact depth is the pro-
cedure proposed by Oliver and Pharr,29,30 in particular,
the equation for hc at the indenter displacement hm

hc = hm − �
Fm

�dF�dh�m
, (2)

where Fm and (dF/dh)m are the respective load and the
initial slope of the unloading curve at the indenter dis-
placement hm. The numerical values of � are (2/�)(� − 2)
� 0.727 and 3/4 for conical and paraboloid revolution,
respectively. Although Eq. (2) was derived from solu-
tions to elastic contact problems, it has been used to
estimate contact depth for indentation in elastic-plastic
solids29,30 and viscoelastic solids.10,17 However, our re-
cent work suggests that Eq. (2) may not be applicable for
conical and spherical indentation in linear viscoelastic
solids under certain loading–unloading protocols.25,26

For indentation in viscoelastic solids, it has been

customary to have a “hold-at-peak-load” period between
loading and unloading in load-controlled instrumented
indentation measurements. This hold period is to avoid
the occurrence of the “bulge” on the unloading
curves,10,17,20–23 thus facilitating the determination of a
meaningful unloading slope. Recently, Ngan et al. have
suggested20–23 that, for load-controlled indentation meas-
urements in a viscoelastic situation, the corrected elastic
stiffness Se can be calculated from the measured unload-
ing stiffness S � dF/dh

1

Se
=

1

S
+

dh�dt|t=tm
−

�F
, (3)

where dh/dt|t�tm
− is the indenter displacement rate at the

end of the load hold just prior to unloading, and �F �
|dF/dt| is the initial unloading rate. Se calculated this
way should replace dF/dh in Eqs. (1) and (2) for calcu-
lating the elastic modulus and contact depth, respective-
ly. In this work, we examine the validity of Eqs. (1)–(3)
using analytical modeling and finite element calcula-
tions. Furthermore, we derive a corresponding equation
for unloading slopes after a “hold-at-the-maximum-
displacement” for displacement-controlled indentation
measurements. These relationships should facilitate the
analysis of instrumented indentation in viscoelastic solids.

II. DERIVATION

A. Linear viscoelastic solids

We assume that the linear viscoelastic solid can be
described by the following constitutive relationships35,36

between deviatoric stress and strain sij and dij and be-
tween dilatational stress and strain �ii and �ii

sij�t� = 2 �
0

t
G�t − ��

�dij���

��
d� ,

(4)

�ii�t� = 3 �
0

t
K�t − ��

��ii���

��
d� ,

where G(t) is the relaxation modulus in shear and K(t) is
the relaxation modulus in dilatation. The time-dependent
Young’s modulus and Poisson’s ratio are then given by
E(t) � [9K(t)G(t)]/[3K(t) + G(t)] and �(t) � [E(t)/2G(t)]
− 1, respectively. Alternatively, the stress–strain relations
can be written as35,36

2dij�t� = �
0

t
Js�t − ��

�sij���

��
d� ,

(5)

3�ii�t� = �
0

t
J��t − ��

��ii���

��
d� ,

where Js(t) is the shear compliance and Jv(t) is the volu-
metric compliance. G(t) and Js(t), as well as K(t) and
Jv(t), are related, which can be demonstrated using
Laplace transformation.35,36 In the following, we as-
sume that Poisson’s ratio is time independent. As a

FIG. 1. Typical indentation load–displacement curve and initial un-
loading slope.

FIG. 2. Illustration of conical indentation.
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result, either G(t) and � or Js(t) and � are sufficient to
describe the linear viscoelastic behavior.

We discuss conical indentation in the main text and
provide the corresponding equations for spherical inden-
tation in the appendix since the approach and conclusions
are similar for the two types of indenters.

B. Conical indentation in linear viscoelastic
solids: Relationships between force,
displacement, and contact depth

For a rigid, smooth, and frictionless conical indenter
with half-angle � indenting a linear viscoelastic solid
with a constant Poisson’s ratio and when force F(t) is
the independent variable, the displacement h(t) is given
by5–9,13–15,24,25

h2�t� =
��1 − ��

4tan� �
0

t
Js�t − ��

dF���

d�
d� . (6)

When h(t) is the independent variable, the force is
given by

F�t� =
8tan�

��1 − �� �
0

t
G�t − ��h���

dh���

d�
d� . (7)

Under either displacement- or load-controlled indenta-
tion, the relationship between contact depth hc and in-
denter displacement h is given by

hc�t�

h�t�
=

2

�
. (8)

Equations (6)–(8) are special cases of more general ex-
pressions derived by Graham5 and Ting.8 They suggested
that Eqs. (6)–(8) are valid when the contact area is a
monotonically increasing function of time. We note that
Eq. (8) is exactly the same as that derived by Sneddon for
conical indentation in purely elastic solids.33

C. Conical indentation in linear viscoelastic
solids: Initial unloading slopes without a
holding period

We have recently demonstrated, through analysis and
finite element calculations, that Eqs. (6)–(8) can be used
to analyze initial unloading after a loading period with
non-decreasing functions of h(t) or F(t).24,25 Specifically,
the initial unloading slopes are given by, using Eqs. (6)–
(8)

dF

dh�h�hm

=
4hctan�

1 − �

×
1

J�0� −
1

�F
�

0

tm dJs�	�

d	
�
	=tm−�

dF���

d�
d�

.

(9)
for load-controlled indentation with an initial unloading
rate �F � |dF/dt| and

dF

dh�
h=hm

=
4tan�

1 − � �G�0�hc�tm
+ �

−
2

��h
�

0

tm dG

d	�
	=tm−�

h���
dh���

d�
d�� ,

(10)
for displacement-controlled indentation with initial un-
loading displacement rate �h � |dh/dt|. In deriving
Eqs. (9) and (10), we assumed that Eq. (8) is valid at the
moment of initial unloading. Equations (9) and (10) have
been validated using finite element calculations for fast
unloading after loading with monotonically increasing
functions h(t) or F(t).24,25 Under fast unloading, the sec-
ond terms in Eqs. (9) and (10) are negligible; these equa-
tions become the same as Eq. (1) with G(0) � 1/Js(0) in
place of G. Thus, the “instantaneous” properties, G(0)/
(1 − �) or E(0)/(1 − �2), can be obtained from either
displacement or load-controlled indentation measure-
ments using Eqs. (8)–(10), provided that the unloading
rate, �h or �F, is sufficiently fast. When unloading rates
are sufficiently fast, the unloading slope is no longer a
function of the unloading rate. Earlier finite element cal-
culations suggest that “sufficiently fast” unloading can
be achieved when the time duration of liner unloading is
about 0.1 to 0.01 times the relaxation time of linear vis-
coelastic materials.25,26 In practice, several indentation
experiments with different unloading rates spanning sev-
eral orders of magnitudes may be required to assess
whether unloading rates are fast enough. It is therefore
convenient to develop a technique in which an arbitrary
unloading rate is sufficient to allow the determination of
the instantaneous modulus. Applying a “hold” period be-
tween the loading and unloading is shown, as seen be-
low, to provide this expediency.

D. Conical indentation in linear viscoelastic
solids: Initial unloading slopes with a
holding period

We consider a load profile shown in Fig. 3(a). It has a
loading period where the force is given by an arbitrary
monotonically increasing function, a “hold-at-the-peak
load” period with a constant force, and an arbitrary un-
loading period with an initial unloading rate �F � |dF/dt|.
The load profile can be described as follows for 0 < t < tm

F�t� = �f�t�, 0 
 t 
 t1
f�t1�, t1 
 t � tm

, (11)

where f(t) is a monotonically increasing function with
f(0) � 0. Assuming that Eq. (6) is applicable up to initial
unloading, we inserted Eq. (11) into Eq. (6) and obtained,
after differentiation, the velocity of the indenter at tm

−

dh�t�

dt �tm− =
��1 − ��

8h�tm
− �tan�

�
0

t1 �Js�	�

�	
�
	=tm

− −�
�df���

d� � d� .

(12)
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Since dF(�)/d� � 0 during the hold period, we obtain,
using Eq. (9), the unloading slope at tm

+

1

dF�dh
=

�1 − ��

4hctan� �Js�0�

−
1

�F
�

0

tm dJs�	�

d	 �
	=tm−�

dF���

d�
d��

=
�1 − ��

4hctan� �Js�0�

−
1

�F
�

0

t1 dJs�	�

d	 �
	=tm−�

dF���

d�
d��

=
�1 − ��

4hctan�
Js�0� −

dh�dt|t=tm
−

�F
, (13)

where in the last step we used Eq. (12). Equation (13) can
be written as

�1 − ��

4a
Js�0� =

1

dF�dh
+

dh�dt|t=tm
−

�F
. (14)

Equation (14) shows that the instantaneous properties,
G(0)/(1 − �) � 1/[Js(0)(1 − �)], can be obtained from the
measurement of initial unloading slope dF/dh, the veloc-
ity of the indenter immediately before unloading dh/
dt|t�tm

− , and the rate of unloading �F. Equation (14) is
equivalent to combining Eqs. (1) and (3), thus providing
an alternative derivation of these equations first sug-
gested by Ngan et al.20–23 Equation (14) shows that the
“hold-at-the-peak-load” method provides a convenient
means to use instrumented indentation under load-
control to determine the instantaneous modulus.

We now derive the corresponding equations for a
“hold-at-the-maximum-displacement” method for inden-
tation measurements when displacement is the indepen-
dent variable. We consider a displacement profile shown
in Fig. 3(b). It has a loading period where the displace-
ment is given by an arbitrary monotonically increasing
function, a hold period with a constant displacement, and
an arbitrary unloading period with an initial unloading
rate, �h � |dh/dt|. The displacement profile can be de-
scribed, for 0 < t < tm, as

h�t� = �g�t�, 0 
 t � t1
g�t1�, t1 
 t � tm

, (15)

where g(t) is a monotonically increasing function with
g(0) � 0. Assuming that Eq. (7) is applicable up to initial
unloading, we insert Eq. (15) in Eq. (7) and obtain, after
differentiation, the rate of force relaxation at tm

−

dF�t�

dt �
tm
−

=
8tan�

��1 − �� �
0

t1 �G�	�

�	
�
	=tm

− −�

g����dg���

d� �d� .

(16)

Since dh(�)/d� � 0 during the hold period, we obtain
using Eq. (10) the unloading slope at tm

+ :

dF

dh�
h�hm

=
4tan�

1 − � �G�0�hc�tm
+ �

−
2

��h
�

0

tm dG

d	�
	=tm−�

h���
dh���

d�
d��

=
4tan�

1 − � �G�0�hc�tm
+ �

−
2

��h
�

0

t1 dG

d	�
	=tm−�

g���
dg���

d�
d��

=
4tan�

1 − �
G�0�hc�tm

+ � −
dF�dt|tm−

�h
, (17)

where in the last step we have used Eq. (16). Equation
(17) can be written as

4G�0�

1 − �
a =

dF

dh�h=hm

+
dF�dt|tm−

�h
. (18)

FIG. 3. Illustration of (a) a load profile for load-controlled indentation
and (b) a displacement profile for displacement-controlled indentation.
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Equation (18) shows that G(0)/(1 − �) can be obtained
from the measurement of initial unloading slope dF/dh,
the rate of relaxation of force on the indenter immedi-
ately before unloading dF/dt|t�tm

− , and the rate of unload-
ing �h.

The above derivations make clear the underlying as-
sumptions, namely that the general equations, Eqs. (6)–
(8), are applicable up to initial unloading for either load
or displacement control. However, Eqs. (6)–(8) were de-
rived under the assumption of monotonically increasing
contact area with time. Therefore, it is not obvious that
the relationship between contact depth and indenter dis-
placement, hc � (2/�)h [Eq. (8)], should be true for the
hold period, especially during the “hold-at-the-
maximum-displacement” period. Finite element calcula-
tions are, therefore, conducted to test the validity of Eqs.
(8), (14), and (18). The numerical calculations also pro-
vide an opportunity for evaluating the validity of Eqs. (2)
and (3) for contact depth determination.

III. FINITE ELEMENT ANALYSIS

A. Finite element model

A three-parameter “standard” linear viscoelastic
model with a constant Poisson’s ratio is used to describe
the extension relaxation modulus E(t) � 2G(t)(1 + �)

E�t� = k1 + k2 exp�−t

� � = �k1 + k2, for t � �

k1, for t  �
,

(19)

where � is the relaxation time. From Eq. (19), we have
E0 � k1 + k2 and E� � k1 for t � 0 and t � �,
respectively. In this work, we choose a linear viscoelastic
material with E0 � 696 MPa, E� � 68.9 MPa, � � 0.99
s, and � � 0.4833. Finite element calculations were car-
ried out using the classical isotropic linear viscoelastic
model implemented in ABAQUS (HKS, Inc., Pawtucket,
RI) using either load or displacement as the independent
variable. The finite element mesh is the same as that used
in Ref. 37.

B. Load-controlled conical indentation in linear
viscoelastic materials

We consider a frictionless, rigid conical indenter of
half angle � � 70.3° indenting an isotropic linear vis-
coelastic solid. This indenter half angle is chosen since
its depth-to-volume relation is the same as that for the
Berkovich indenter so that the results are expected to be
applicable to Berkovich indentation.

We first investigate the relationship between the con-
tact depth and indentation depth by considering a load-
control indentation with the force profile of 10 s loading,
2 s holding, and 5 s unloading [see Fig. 4(a)]. The maxi-
mum applied load is 273 �N. The load–displacement

curve is shown in Fig. 4(b), where a “nose” appears due
to the slow unloading rate. The appearance of the nose is
the result of continuing forward movement of the
indenter after unloading has occurred, as seen from
Fig. 4(c). Although both the indenter displacement and
contact depth are time dependent, Fig. 4(c) clearly shows

FIG. 4. Load-controlled conical indentation in linear viscoelastic sol-
ids: (a) force profile as the input to the finite element calculation;
(b) the calculated load–displacement curve; and (c) the calculated ratio
of contact depth to indenter displacement hc(t)/h(t), and the indenter
displacement h(t).
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that the ratio of contact depth to indenter displacement,
hc(t)/h(t), remains a constant (≅ 0.62) during the loading,
holding, and initial unloading periods. Finite element
method (FEM) calculations with different loading, hold-
ing, and unloading duration (see Table I) further verify
that Eq. (8) is true for conical indentation in linear vis-
coelastic solids up to initial unloading. Therefore, the
contact depth at initial unloading can be readily deter-
mined from the indentation depth using Eq. (8).

We now verify Eq. (14) using finite element calcula-
tions and the following procedure:

(i) Calculate Se using Eq. (3) where the initial unload-
ing rate �F is the input for finite element calculations,
dh/dt|t�tm

is the velocity of the indenter at the end of the
holding period just before unloading which can be ob-
tained from h(t), and S is the initial unloading stiffness
from the calculated load–displacement curves.

(ii) Calculate E 0
cal using the contact area A obtained

from finite element calculations, Se, and Eq. (14) in the
form of

E 0
cal =

��

2

Se�1 − �2�

�A
. (20)

(iii) Compare E 0
cal with the actual instantaneous modu-

lus E0, used as an input parameter for the finite element
calculation.

The results are summarized in Table I together with
some representative load–displacement curves presented
in Fig. 5. Case I in Table I shows that for indentation
without a holding segment, the initial unloading stiffness
is negative when the unloading rate is slow. Accordingly,
a negative modulus is obtained when Eq. (1) is used,
which is obviously incorrect. With increasing rate of un-
loading, the nose disappears. As shown in case II, Eq. (1)

can be used to obtain the instantaneous modulus when �F

is very large since, according to Eq. (14), 1/Se ≈ 1/S. This
finding is consistent with an earlier study of conical in-
dentation in linear viscoelastic solids.24,25 For the inden-
tation with a holding segment (cases III–VIII in Table I),
the instantaneous modulus calculated using Eqs. (14) and
(20) agrees to within 4% with the actual instantaneous
modulus. Therefore, Eq. (14), which was first proposed
by Ngan et al.,20–23 is correct for the load-controlled
conical indentation in linear viscoelastic solid. Although
the finite element calculations assumed linear loading and
unloading, the analytical derivation of Eq. (14) shows that
we can, in practice, use a monotonically increasing load-
ing, any duration for the holding period, and unloading
with a well-defined initial unloading rate to obtain the
instantaneous modulus using Eq. (14).

TABLE I. Load-controlled conical indentation in a linear viscoelastic solid.

Case number I II III IV V VI VII VIII

Maximum force Fmax (�N) 273 273 273 273 273 273 273 273
Loading time (s) 10 10 10 10 10 10 10 1
Hold time (s) 0 0 5 2 2 10 1 5
Unloading, time (s) 5 0.01 5 5 10 1 1 5
Unloading rate, �F (�N/s) 54.6 27300 54.6 54.6 27.3 273 273 54.6
Apparent stiffness, S (�N/�m) −1574 2913 −5110 −2440 −878 4941 5977 −1923
Velocity of the indenter, dh/dt�t=t−m

(�m/s) ��� ��� 0.0266 0.0401 0.0401 0.0145 0.0461 0.0469
Elastic stiffness, Se (�N/�m) −1574 2913 3425 3073 2933 3913 2973 2944
Contact area, A (�m2) 7.34 7.34 11.34 9.11 9.11 13.72 8.32 8.31
Calculated instantaneous modulus, E 0

cal (MPa) −395 730 691 692 678 718 700 694
Actual instantaneous modulus, E0 (MPa) 696 696 696 696 696 696 696 696
Relative error, (E 0

cal − E0)/E0 −157% 4.9% −0.7% −0.6% −2.6% 3.2% 0.6% −0.3%
Indentation depth, h (�m) 0.833 0.833 1.020 0.924 0.924 1.117 0.882 0.878
Contact depth by FEM, hc (�m) 0.516 0.516 0.635 0.574 0.573 0.697 0.548 0.545
Average hc/h 0.620 0.620 0.623 0.621 0.620 0.624 0.621 0.620
Contact depth by Ngan’s method, hNgan (�m) 0.958 0.765 0.963 0.861 0.859 1.067 0.816 0.811

FIG. 5. Load-controlled conical indentation in linear viscoelastic sol-
ids: the calculated load–displacement curves for various loading–
holding–unloading protocols. Details about each case are given in
Table I.
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Ngan and his co-workers have proposed that the con-
tact depth can be determined by replacing the (dF/dh)m

term in Eq. (2) with the corrected stiffness (Se).
20–23 The

contact depth so determined (hNgan) is compared with the
contact depth obtained directly from finite element cal-
culations (hc), and both are shown in Table I. Obviously,
there are considerable discrepancies between the hNgan

and hc, which show that contact depth cannot be deter-
mined using Eq. (2) with the corrected stiffness. How-
ever, the contact depth can be determined using the
simple relation given in Eq. (8), i.e., hc/h � 2/� for
ideally sharp conical indenters.

C. Displacement-controlled conical indentation in
linear viscoelastic materials

We first study the contact depth for the displacement-
controlled conical indentation in linear viscoelastic solids
with the displacement profile of 10 s loading, 2 s holding,
5 s unloading [see Fig. 6(a)]. The maximum indenter
displacement is 1 �m. Figure 6(b) presents the calculated
load–displacement curve for this displacement history.
Figure 6(c) shows the dependence of indentation force
(F) and the ratio of contact depth to indentation depth
hc(t)/h(t) as a function of time. Figure 6(c) shows that the
force decreases when the indenter position is held con-
stant, as expected from stress relaxation. The calculations
also show that hc(t)/h(t) is a constant (≈0.62) during the
loading and holding and at the moment of initial unload-
ing.

This seemingly unintuitive result that, for the displace-
ment-controlled indentation, the contact depth does not
change when the indenter is held at a fixed depth may be
understood by considering the holding period as a second
loading period with an infinitesimally small positive in-
denter displacement rate. During this period, hc(t)/h(t) is
expected to be a constant since the displacement is an
increasing function of time. We can also conduct a
thought experiment where a very slow loading rate is
used such that the material behaves approximately as a
purely elastic solid with a modulus given by E�. The
hc(t)/h(t) is a constant for both the loading and holding
for elastic solids. FEM results also show, as seen from
Fig. 6(c), that Eq. (8) does not apply to the entire un-
loading period. In fact, hc(t)/h(t) decreases with time.
Nevertheless, these results confirm that Eq. (8) can be
used to obtain the contact depth for the loading and hold-
ing periods, as well as at the point of initial unloading for
displacement-controlled conical indentation in linear vis-
coelastic solids.

We now verify Eq. (18) using finite element calcula-
tions. Equation (18) can be rewritten as

Se = S +
dF�dt|tm−

�h
, (21)

where

Se =
4G�0�

1 − �
a =

2E�0�

���1 − �2�
�A . (22)

FIG. 6. Displacement-controlled conical indentation in linear vis-
coelastic solids: (a) displacement profile as the input to the finite
element calculation; (b) the calculated load–displacement curve; and
(c) the calculated ratio of contact depth to indenter displacement hc(t)/
h(t), and the indentation force F(t).
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Since �h is specified and S � dF/dh|h�hm
, dF/dt|t�tm

− , and
the contact area A can be obtained from finite element
calculations, the instantaneous modulus E 0

cal can then be
obtained from Eq. (22) and be compared with the actual
instantaneous modulus E0, used as an input parameter
for the finite element calculations. Table II summarizes
the results for displacement-controlled indentation with
various loading, holding, and unloading period, and
Fig. 7 shows several representative load–displacement
curves. Cases I and II in Table II show that when there
is no holding segment, the smaller the unloading rate,
the larger the deviation from the actual instantaneous
modulus. However, for the indentation with a hold seg-
ment, after correcting the stiffness using Eq. (21), the
instantaneous modulus calculated using Eq. (22) agrees
well with the actual value. Thus, Eq. (18) is valid for

displacement-controlled conical indentation in linear vis-
coelastic solids. Furthermore, the data in Table II show
that the method proposed by Ngan et al.20–23 for deter-
mining contact depth is incorrect for the displacement-
controlled conical indentations. Similar results are given
in the Appendix for spherical indentation in linear vis-
coelastic solids.

IV. CONCLUSIONS

Using analytical and numerical modeling, we exam-
ined the relationships between initial unloading slope,
contact depth, and the instantaneous elastic modulus for
instrumented indentation in linear viscoelastic solids us-
ing either conical or spherical indenters. In particular, we
studied the effects of “hold-at-the-peak-load” and “hold-
at-the-maximum-displacement” on initial unloading
slopes and contact depths. For load-controlled indenta-
tions, we verified the relationship first proposed by Ngan
et al., Eq. (14). For displacement-controlled indentations,
we derived and verified a new relationship, Eq. (18).
These relationships, together with the relationships be-
tween contact depth and indenter displacement, Eqs. (8)
and (8A), for the respective conical and spherical indent-
ers, allow the determination of the instantaneous elastic
modulus of viscoelastic solids. We also showed that the
Oliver–Pharr method with or without the correction by
Ngan et al. is not applicable to indentation in viscoelastic
solids.

We re-emphasize that the above conclusions are based
on the assumption that the material under consideration
is linear viscoelastic during the entire duration of the
deformation, from the initial loading, to holding at either
the peak load or displacement, and to the onset of
the unloading. The applicability of Eqs. (8), (14), and
(18) to more general cases, such as power-law creep

TABLE II. Displacement-controlled conical indentation in a linear viscoelastic solid.

Case number I II III IV V VI VII VIII

Maximum displacement, hmax (�m) 1 1 1 1 1 1 1 1
Loading time (s) 10 10 10 10 10 10 10 1
Hold time (s) 0 0 5 2 2 10 1 5
Unloading, time (s) 5 0.01 5 5 10 1 1 5
Unloading rate, �h (�m/s) 0.2 100 0.2 0.2 0.1 1 1 0.2
Apparent stiffness, S (�N/�m) 4945 3508 3549 3737 3925 3523 3652 3570
Force relaxation rate, dF/dt�t−m (�N/s) ��� ��� −2.18 −44.4 −44.4 −0.040 −122 −8.70
Elastic stiffness, Se (�N/�m) 4945 3508 3538 3515 3480 3523 3530 3526
Contact area, A (�m2) 10.78 10.78 10.73 10.76 10.76 10.71 10.76 10.69
Calculated instantaneous modulus, E 0

cal (MPa) 1023 726 734 728 721 731 731 733
Actual instantaneous modulus, E0 (MPa) 696 696 696 696 696 696 696 696
Relative error, (E 0

cal − E0)/E0 47% 4.3% 5.4% 4.6% 3.6% 5.1% 5.0% 5.2%
Contact depth by FEM, hc (�m) 0.624 0.624 0.623 0.624 0.624 0.622 0.624 0.622
Average hc/h 0.621 0.621 0.622 0.622 0.622 0.622 0.621 0.622
Force at unloading, Fmax (�N) 456 456 174 210 210 172 276 179
Contact depth by Ngan’s method, hNgan (�m) 0.933 0.905 0.964 0.957 0.956 0.965 0.943 0.963

FIG. 7. Displacement-controlled conical indentation in linear vis-
coelastic solids: load–displacement curves for various loading–
holding–unloading protocols. Details about each case are shown in
Table II.
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and plasticity, is beyond the scope of this work. How-
ever, we note that the earlier derivation of Eq. (3) by
Ngan et al.20,23 requires only that the material obeys the
viscoelastic law momentarily just before and just after
the onset of the unloading process, and not necessarily
during the preceding loading and holding processes. Fur-
thermore, Ngan et al. have shown that Eq. (3) is appli-
cable to power-law viscoelastic material, while Eq. (2) is
an approximation.23 These results should therefore help
us understand and facilitate the analysis of instrumented
indentation measurements in linear viscoelastic solids.
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APPENDIX: ANALYSIS OF SPHERICAL
INDENTATION IN LINEAR VISCOELASTIC SOLIDS
USING EITHER FORCE OR DISPLACEMENT AS
THE INDEPENDENT VARIABLE

We take the same approach as that used in the main
text for conical indentation. The corresponding equations
are numbered Eq. (x) and Eq. (xA) for the conical and
spherical indentations, respectively. In the “classical
spherical” indenter approximation, where the indenter
shape is a paraboloid of revolution, the displacement h(t)
is given by1–9

h3�2�t� =
3�1 − ��

8�R
�

0

t
Js�t − ��

dF���

d�
d� , (6A)

when force F(t) is the independent variable. When dis-
placement h(t) is the independent variable, the force F(t)
is given by1–9

F�t� =
8�R

3�1 − �� �
0

t
G�t − ��

dh3�2���

d�
d� . (7A)

The relationship between contact depth hc(t), contact ra-
dius a(t), and indenter displacement h(t) is the same as
that in the purely elastic case5,8

h�t� =
a2�t�

R
= 2hc�t� . (8A)

The expression for the initial unloading slopes when
force is the independent variable is given by26

dF

dh
=

4�Rh

�1 − ��

1

Js�0� −
1

�F
�

0

tm dJs�	�

d	
�
	=tm−�

dF���

d�
d�

,

(9A)

and that when displacement is the independent variable is
given by26

dF

dh
=

8�R

3�1 − �� �3

2
G�0�h1�2�tm

+ �

−
1

�h
�

0

tm dG

d	�
	=tm−�

dh3�2���

d�
d�� . (10A)

For the load profile shown in Fig. 3(a), the velocity of
the indenter at tm

− is

dh�t�

dt �tm− =
1 − �

4�Rh�tm
− �

�
0

t1 �Js�	�

�	
�
	=tm

− −�
�df���

d� �d� .

(12A)

Since dF(�)/d� � 0 during the hold period, we obtain the
unloading slope at tm

+ using Eq. (9A)

1

dF�dh
=

�1 − ��

4�Rh
�Js�0� −

1

�F
�

0

tm dJs�	�

d	 �
	=tm−�

dF���

d�
d��

=
�1 − ��

4�Rh
Js�0�

−
�1 − ��

4�Rh

1

�F
�

0

t1 dJs�	�

d	 �
	=tm−�

df���

d�
d�

=
�1 − ��

4a
Js�0� −

dh�dt|t=tm
−

�F
, (13A)

where in the last step we used Eqs. (8A) and (12A).
Equation (13A) can be written in the same form as Eq.
(14).

For the displacement profile shown in Fig. 3(b), the
rate of force relaxation at tm

− is

dF�t�

dt �
tm
−

=
4�R

1 − � �
0

t1 �G�	�

�	
�
	=tm

− −�

g1�2����dg���

d� �d� .

(16A)

Since dh(�)/d� � 0 during the hold period, we obtain,
using Eq. (10A), the unloading slope at tm

+

dF

dh
=

8�R

3�1 − �� �3

2
G�0�h1�2�tm

+ �

−
1

�h
�

0

tm dG�	�

d	 �
	=tm−�

dh3�2���

d�
d��

=
4�Rh

�1 − ��
G�0�

−
8�R

3�1 − ��

1

�h
�

0

t1 dG

d	�
	=tm−�

dh3�2���

d�
d�

=
4a

�1 − ��
G�0� −

dF�dt|t=tm
−

�h
, (17A)

where, in the last step, we used Eqs. (8A) and (16A).
Equation (17A) can be written in the same form as
Eq. (18).

Finite element calculations are used to verify Eqs.
(8A), (13A), and (17A) for a frictionless, spherical in-
denter of radius R � 2 �m indenting the same isotropic,
three-parameter “standard” linear viscoelastic model
solid used for the conical indentation calculations. The
FEM results show that, for the load-controlled and the
displacement-controlled indentation, the ratio of contact
depth to indentation depth is a constant (∼0.52) during
the loading, holding, and at the moment of initial unload-
ing (see Tables IA and IIA). These results confirm that
Eqs. (8A), (14), and (18) can be used to obtain the in-
stantaneous modulus for load-controlled and displace-
ment-controlled spherical indentation, respectively.
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TABLE IA. Load-controlled indentation in a linear viscoelastic solid using a spherical indenter of 2 �m radius.

Case number I II III IV V VI VII VIII

Maximum force, Fmax (�N) 273 273 273 273 273 273 273 273
Loading time (s) 10 10 10 10 10 10 10 1
Hold time (s) 0 0 5 2 2 10 1 5
Unloading time, (s) 5 0.01 5 5 10 1 1 5
Unloading rate, �F (�N/s) 54.6 27300 54.6 54.6 27.3 273 273 54.6
Apparent stiffness, S (�N/�m) −1197 2220 −3615 −1772 −635 3243 4711 −1429
Velocity of the indenter, dh/dt�t=t−m

(�m/s) ��� ��� 0.0381 0.0548 0.0548 0.0219 0.0619 0.0625
Elastic stiffness, Se (�N/�m) −1197 2220 2370 2271 2296 2573 2277 2241
Contact area, A (�m2) 4.59 4.59 5.98 5.19 5.19 6.63 4.97 4.95
Calculated instantaneous modulus, E 0

cal (MPa) −380 704 658 677 685 679 694 684
Actual instantaneous modulus, E0 (MPa) 696 696 696 696 696 696 696 696
Relative error, (E 0

cal − E0)/E0 −155% 1.1% −5.4% −2.7% −1.6% −2.5% −0.3% −1.7%
Indentation depth, h (�m) 0.783 0.783 1.042 0.906 0.906 1.186 0.849 0.843
Contact depth by FEM, hc (�m) 0.406 0.406 0.552 0.467 0.467 0.625 0.445 0.443
Average hc/h 0.521 0.521 0.521 0.521 0.521 0.522 0.521 0.520
Contact depth by Ngan’s method, hNgan (�m) 0.954 0.691 0.956 0.816 0.817 1.106 0.759 0.751

TABLE IIA. Displacement-controlled indentation in a linear viscoelastic solid using a spherical indenter of 2 �m radius.

Case number I II III IV V VI VII VIII

Maximum displacement, hmax (�m) 1 1 1 1 1 1 1 1
Loading time (s) 10 10 10 10 10 10 10 1
Hold time (s) 0 0 5 2 2 10 1 5
Unloading, time (s) 5 0.01 5 5 10 1 1 5
Unloading rate, �h (�m/s) 0.2 100 0.2 0.2 0.1 1 1 0.2
Apparent stiffness, S (�N/�m) 3501 2425 2436 2571 2717 2429 2524 2456
Force relaxation rate, dF/dt�t−m (�N/s) ��� ��� −1.70 −31.72 −31.72 −0.068 −91.58 −8.20
Elastic stiffness, Se (�N/�m) 3501 2425 2427 2412 2400 2429 2432 2415
Contact area, A (�m2) 5.79 5.79 5.73 5.76 5.76 5.70 5.77 5.67
Calculated instantaneous modulus, E 0

cal (MPa) 989 685 689 683 679 691 688 689
Actual instantaneous modulus, E0 (MPa) 696 696 696 696 696 696 696 696
Relative error, (E 0

cal − E0)/E0 42% −1.6% −1.0% −1.9% −2.4% −0.7% −1.2% −1.0%
Contact depth by FEM, hc (�m) 0.531 0.531 0.525 0.528 0.528 0.521 0.529 0.519
Average hc /h 0.521 0.521 0.524 0.523 0.523 0.524 0.523 0.520
Force at unloading, Fmax (�N) 378 378 171 198 198 169 246 176
Contact depth by Ngan’s method, hNgan (�m) 0.919 0.883 0.947 0.939 0.938 0.948 0.924 0.945
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