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Abstract

Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diam-
eters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid,
respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the tra-
jectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger
drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time.
The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even
moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behav-
ior of two drops are basically consistent with the theoretical predictions, there are also apparent differences.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A bubble or drop will move when placed in another fluid
with temperature gradient. This motion happens as a
consequence of the variation of interfacial tension with
temperature. Such a phenomenon is already known as
Marangoni migration problem. With the development of
microgravity science, bubble dynamics and droplet dynam-
ics became a hot point problem of research because this
investigation is very important for basic research as well
as for applications in reduced gravity environment, such
as space material science, chemical engineering and so on.

Young et al. first investigated the thermocapillary
migration of bubbles or drops with their linear YGB model
when convective momentum and energy transport are both
negligible [1]. The YGB model assumes that the applied
temperature gradient is parallel to the direction of gravity
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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and the migration velocity of a drop is the sum of two
parts. That is

V YGB ¼ V m þ V g ð1Þ

V m ¼
2ð�rTÞRj

ð2lþ 3l0Þð2jþ j0ÞC ð2Þ

V g ¼
2ðq� q0ÞgR2ðlþ l0Þ

3lð2lþ 3l0Þ ð3Þ

where Vm is due to thermocapillary effect, and Vg is due to
gravitational effect; R is drop radius; C is the temperature
gradient of fluid field; rT is the temperature coefficient of
interfacial tension; l and l 0, j and j 0, q and q 0 are the
dynamic viscosity, thermal diffusivity, and density of drop
and matrix liquid, respectively.

The results from space experiments conducted by Had-
land and Balasubramaniam et al. [2] and Xie [3,4] qualita-
tively confirm that the migration velocity trend of drop is
accordant with the trend predicted by the YGB model, but
the velocity are smaller than that given by the YGB model,
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Fig. 2. Densities of 5cSt silicon oil and pure soybean oil plotted against
temperature.
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and the velocity difference increases with the augment of
drop radius.

In most applications, drops are not isolated. It is impor-
tant to study the interactions of two or more drops. Up to
date theoretical work was restricted to very small Reynold
number and very small Marangoni number, so that all
non-linear effects were omitted. Meyyappan [5] solved the
axisymmetric thermocapillary migration of two gas bub-
bles in the quasi-steady state with bispherical coordinate.
The result shows that two bubbles with the same size will
migrate with same velocity regardless of thermal conduc-
tivity and interaction between two bubbles. The velocity
is identical to that obtained from YGB model. Feuillebois
[6] obtained an analytical solution. Bipolar coordinate is
proper for analyzing axisymmetric problem but not for
arbitrary ones. Subsequently, Meyyappan and Subrama-
nian [7] solved the thermocapillary migration of two bub-
bles at arbitrary angle to the applied temperature
gradient with zeroth-order reflection approximation. Then
Anderson [8] extended the reflection solution to the first
order and obtained the velocities of two arbitrarily oriented
droplets up to terms of Oðr�6

12 Þ, where r12 is the distance
between the two drops. But all of these approximate solu-
tions are invalid when the bubbles or drops move close
enough. Acrivos et al. [9] estimated the average thermocap-
illary migration velocity of a cloud of identical bubbles.
Keh and Chen [10] and Wei and Subramanian [11] used
the boundary-collocation method to study the thermocap-
illary migration of a small number of bubbles. Sun and Hu
[12,13] used successive reflection technique to obtain ana-
lytical solution in 2002. The results indicate that the inter-
action between two bubbles has a significant influence on
the migration of the smaller bubble. And when the larger
bubble approaches to the smaller one and drives it aside,
the smaller one’s speed may decrease to zero and even
move backwards. Fig. 1 gives one of their results, where
z1, z2 and y1, y2 are the vertical and horizontal positions
for small and large bubbles, respectively. The ratio k of
larger radius R2 to smaller radius R1 is 10. The initial cen-
ter-to-center dimensionless distance h0/R1 is equal to 5.8,
where h0 is initial center-to-center horizontal distance of
Fig. 1. Motions o
two bubbles, and applied temperature gradient is
C = 30 K/cm.

2. Experimental apparatus and procedure

This paper uses a liquid pair of matched densities to
reduce the gravitational effect on drop migration. Immisci-
ble pure soybean oil and 5cSt silicon oil are used as exper-
imental media of the matrix liquid and drop, respectively.
They are immiscible around room temperature. The pure
soybean oil has the same density as 5cSt silicon oil at about
15 �C and the difference of two liquid density is very small
in the range of 15–90 �C. The difference of densities of two
liquids is less than 0.02 g/cm3, the relative difference is less
than 2.4%, and the variation of drop radius due to thermal
expansion is less than 2%. In this experiment, drops will
migrate to hot wall under thermocapillary effect. Fig. 2
shows the variation of densities of 5cSt silicon oil and
soybean oil plotted versus temperature.

As shown in Fig. 3, the rectangular test cavity is 70 mm
high with the horizontal cross-section of 40 · 40 mm2. The
cell is composed of four optical glass walls and two alumi-
num blocks at the top and the bottom. A piece of electric
heating film and a Peltier element are placed at the top
f two bubbles.



Fig. 3. Schematic representation of the experimental apparatus.
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   (a) Numerical simulation  (b) Measurement with single thermocouple
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Fig. 4. Temperature field in the test cell.

2638 Q. Kang et al. / International Journal of Heat and Mass Transfer 49 (2006) 2636–2641



-2-1012345
Droplet's abscissa (mm)

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

D
ro

p
le

t's
 o

rd
in

at
e 

(m
m

)

Smaller droplet's trajectories
Bigger droplet's trajectories

Fig. 5. Droplet’s trajectories.
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and the bottom surface, respectively, to maintain the tem-
perature gradient. A grid plate is placed near the top to keep
the uniformity of the temperature distribution and let drops
staying at the top from disturbing temperature field.

In order to ensure a steady applied temperature gradi-
ent, a temperature controller of EUROTHERM 2132
(made in England) is used to measure and maintain a con-
stant temperature at the bottom. And other temperature
controller with a difference T type thermocouple is used
to measure and control the temperature difference between
the top and the bottom by controlling electric heating film
at the top of cell.

In order to confirm the temperature field adequate to the
experiment, numerical simulation is carried out by Fluent
software. A 2D model is based on the experiment set-up
mentioned in the foregoing statement. The size of the cell
is 70 mm · 40 mm. The thermal conductivity of optical
glass and aluminum is 1.207 W/m K and 203 W/m K. Con-
vective heat transfer boundary condition is specified at the
glass wall and a fixed temperature condition is applied at
the aluminum block. Fig. 4(a) shows the numerical simula-
tion result of the temperature distributions in the cell, and
Fig. 4(b) shows the measured result with a scanned thermo-
couple, when the temperature at the bottom is 20 �C and
the temperature difference between top and bottom is
60 �C. Fig. 4(c) shows the difference of temperature at
X = 7 mm between numerical simulation and measure-
ment. The mean of the difference is 2.41 �C. The results
show that the measurement is identical to the numerical
simulations and there is enough uniformity temperature
gradient in the middle part of the cell. Besides, before the
experiments of drop migration were made, PIV technique
was used to learn convective situation in the test cell. The
experimental result showed that convection really does
not exist in the fluid field.

In order to control the radius of drop injected accu-
rately, a small diameter of cylinders (made by FESTO in
Germany) and Stepper-Mike Actuators (made by PI in
Germany) are used to control the volume of drop injected.
A CCD camera, the illumination lamp and VTR consist of
the recording system of drop track.

3. Experimental results

In the experiment, after a steady temperature gradient
parallel to the direction of gravity is established, a small
drop is injected first. When the small drop moves near to
the middle of the cell, a large drop will be injected. The
large trailing drop will chase and pass the small leading
drop, because the large drop migrates faster than the small
one under an applied temperature gradient according to
the YGB model. Moving drops are monitored and
recorded on-line by the recording system, so drop size, tra-
jectories and velocities can be obtained by analyzing the
image. Fig. 5 shows typical trajectories of two drops.

When the larger drop overtakes the smaller one, the lar-
ger drop only has a small horizontal movement, but the
smaller is greatly affected. The smaller does not only move
horizontally much more than the larger, but also move
backwards. Its trajectory looks like an oblique number ‘8’
that is consistent with the results given by Sun and Hu
[12,13].

The major properties of the liquid system used in the
experiment are listed in Tables 1 and 2.

The temperature coefficient of interfacial tension rT =
�0.0088 dyn/cm K. Applied temperature gradient C =
10.6 K/cm. The ratio of radius k = 3.5, initial center-to-
center dimensionless distance h0/R1 = 2.5. Figs. 6 and 7
show the dimensionless velocity V/VYGB against time
where V is the real velocity of drop, VYGB is the velocity
obtained from the YGB model.

From Figs. 6 and 7, while the large drop chases after the
small drop, the interaction between the two drops can
be neglected, when one drop is far from the other as
h/R2 > 2, where h is vertical distance of two drops. And
two drops migrate with their individual steady velocities
that much less than VYGB. When one drop is close enough
to the other, the vertical velocities of the two drops all
appear with great oscillations, and the max speed of drops
are even close to or more than VYGB. Especially, the small



Table 1
Physical property parameters of pure soybean oil

Properties Temperature (�C)

17.25 26.26 42.60 52.48 62.80 74.24 85.15

q (g/cm3) 0.9200 0.9142 0.9041 0.8990 0.8925 0.8860 0.8804
j (mW/mg K) 176.1 175.3 173.7 172.8 171.8 170.8 169.7
l (cp = 10�2 dyn s/cm2) 86.3 62.6 31.6 22.5 17.3 12.5 10.9

Table 2
Physical property parameters of 5cSt silicon oil

Properties Temperature (�C)

15.0 25.0 35.0 50.0 57.0 70.0 75.0

q (g/cm3) 0.9190 0.9185 0.9020 0.8870 0.8823 0.8690 0.86424
j (mW/mg K) 112.1 111.0 109.9 108.3 107.6 105.4 104.5
l (cp = 10�2 dyn s/cm2) 5.09 4.27 3.61 2.86 2.67 2.17 2.01
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Fig. 6. Vertical velocity of bigger droplet.
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drop moves backwards with the velocity of twice VYGB,
and the large one decreases its speed close to zero.

In the experiment, the maximum Re and Ma are 0.028
and 5.68, respectively, for the small drop, and 0.146 and
29.09 for the large one. The results show that the drop
migrations in the case of small Re < 1 and intermediate
Ma of O(101), so non-linear effects, especially caused by
thermocapillary effect, should be considered. This is an
important reason why there are some differences between
the experiment result and the simulation result by Sun
and Hu [12,13]. On the other hand, buoyancy effect cannot
be ignored in the extent of experiment temperature because
of the difference of thermal dilatability between two liquids.
At 70 �C thermocapillary migration velocity of the small
drop Vm1 = 0.1497 mm/s and buoyancy migration velocity
of the small drop Vg1 = 0.0230 mm/s, the ratio of the two
velocities Vm1/Vg1 = 6.5 was obtained from the YGB
model; and that for the large drop, Vm2 = 0.5240 mm/s,
Vg2 = 0.2815 mm/s, Vm2/Vg2 = 1.86. The results show that
buoyancy effect increases with drop size. This in accord
with Eq. (3).

4. Conclusion

The presented results on the motion and interaction of
two drops demonstrate that the interaction between the
two drops can be neglected, when one drop was far from
the other (h/R2 > 2), and that the effect of the larger drop
on the motion of the smaller one becomes significant with
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the two drops approaching each other, while the effect of
the smaller one on the larger remains weak. It is found that
both migration velocities oscillate during the approaching
process. Even the smaller one moves backwards in a short
period when two drops migrate side by side so that the tra-
jectory of smaller one looks like a number ‘8’. They display
the congruence and difference between the experimental
results and numerical results.
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