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Abst ract : The nonlinear behavior varying with the instantaneous response was analyzed

through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system.

A masking operator on definite regions is defined and two theorems are presented. Based on

these , the nonlinear system is modeled with a special time-varying linear one , called the

generalized skeleton linear system ( GSLS) . The frequency skeleton curve and the damping

skeleton curve are defined to describe the main feature of the non-linearity as well . More2
over , an identification method is proposed through the skeleton curves and the time-

frequency filtering technique.

Key wor ds : system identification ; nonlinear dynamic system ; non-stationary signal ; time-

frequency analysis ; Hilbert transform
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I nt rod uction

Identification of nonlinear systems has received considerable attention in recent years because

most structures exhibit some degree of nonlinearity. Both parametric and non-parametric

techniques have been studied intensively , such as the linearization , higher order spectra , restoring

force surface , nonlinear auto- regressive moving average model ( NARMAX) , neural networks

and so on. There seems that the choice of a particular algorithm is closely linked to the objectives

of the analysis and that there are no universally applicable procedures [1 ] . In Refs . [ 2 , 3 ] , the

nonlinear system is analyzed with a time- varying linear model called the pseudo- linear one . And

the backbone curve and instantaneous logarithmic decrement were obtained through the narrow

band filtering technique together with the Hilbert transform. Ref . [ 4 ] deduced the relationship
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between the two systems by using a so-called band-pass mapping. But the narrow band filtering

technique used in the previous references doesn’t work in many cases because the response of the

nonlinear system is not a narrow- band signal . Also the bandwidth lacks practical meaning and is

difficult to be estimated.

It is well- known that the dynamic nature and behavior of nonlinear systems generally vary

with the values of the response and excitation. And this information is usually contained in the

non- stationary vibration signals . To study the nonlinearity by using the non-stationary signals , the

quadratic time-frequency distribution of Cohen class is adopted due to its ability to express a

signal in both time and frequency domain simultaneously.

1 　Mat he matical Basis

For non-stationary signals , classical methods based on the Fourier transform are not

applicable. The Fourier spectrum gives no time- localized information but the total energy at a

certain frequency. Thus the instantaneous dynamic characters of the signal can not be obtained.

On the contrary , with the conception of time-frequency domain , the joint time-frequency analysis

expresses a signal by a function with both time and frequency as the variables . The change with

time can be described directly through this method. In particular , the quadratic time-frequency

distribution of Cohen class defined as follows can indicate the energy density of a signal in the

time-frequency plane roughly :

ρx ( t ,ω) =
1

4π2∫
+ ∞

- ∞∫
+ ∞

- ∞∫
+ ∞

- ∞
<(θ,τ) X 3 u -

1
2
τ·X u +

1
2
τ e - jθt - jτω+jθud udτdθ,

(1)

where X ( t) is the analytic form of the real- valued signal , that is

X ( t) = x ( t) + j �x ( t) ,

where �x ( t) is the Hilbert transform of x ( t)

�x ( t) =
1
π pv∫

+ ∞

- ∞

x (τ)
t - τdτ,

and <(θ,τ) is the kernel function of the quadratic time-frequency distribution.

Generally the high time-frequency resolution and low cross- terms are the most important

properties expected for a certain distribution. The Wigner-Vile distribution is the best one with

consideration of the time-frequency resolution , but it is of a large cross- term. The quasi- Wigner

distribution , the exponential distribution ( also called the Choi- Williams distribution) and the

cone-shaped kernel distribution are some practical distributions in common use . The distribution

used in this paper is one with a exponential- cone-shaped kernel [5 ] .

The asymptotic signal is an important concept that will be referred in this paper . It can be

expressed as

x ( t) = a ( t) ejφ( t) , (2)

where

1
a ( t)

d a ( t)
d t

ν dφ( t)
d t

.

　　In this section , the masking operator within a definite region and the effective time-
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frequency region of an asymptotic signal are defined and two important theorems are deduced.

These provide mathematical basis for the work in section 2.

Defi nition 1 　Suppose ρx ( t ,ω) is a certain quadratic time-frequency distribution of a

continuous signal x ( t) , and Ω is a finite closed region on the time-frequency plane .

Let

ρΩ
x ( t ,ω) =

ρx ( t ,ω) , 　　( t ,ω) ∈Ω,

0 , 　　　　　 ( t ,ω) ∈/ Ω.

　　If the same quadratic time-frequency distribution of a signal y ( t) , ρy ( t ,ω) , approaches

ρΩ
x ( t ,ω) best , we call y ( t) the projection of x ( t) on Ω, and the mapping from x ( t) to y ( t)

the time-frequency masking operator on definite region Ω, denoted by

M (·,Ω) : x ( t) → y ( t) .

　　The masking operator on Ω can be taken as a filtering with pass region Ω in the time-

frequency plane .

Defi nition 2 　The effective time-frequency region of an asymptotic signal x ( t) =

a ( t) cosφ( t) is defined as

Ωx ( t) = ω( t) - Δω( t) / 2 , 　ω( t) +Δω( t) / 2 , (3)

where

ω( t) = Ûφ( t) , Δω( t) = Ûa ( t) / a ( t) .

　　Theore m 1 　Suppose x ( t) is an asymptotic signal with effective regionΩx . The projection

of a continuous function f ( x ( t) ) on Ωx can be expressed as

M[ f ( x ( t) ) ,Ωx ] ≈ 1
2π

1
a ( t)∫

2π

0
f [ a ( t) ejφ]·e - jφdφ·x ( t) . (4)

　　Proof 　 f ( x ( t) ) = f ( a ( t) ejφ( t) ) is a function of time t . a can be taken as a variable

independent of φbecause a ( t) varies slowly compared with ejφ. And thus it can be taken as a

constant within any period of ejφ. So f ( x ( t) ) = f ( a ( t) ejφ( t) ) can be taken as a function of two

independent variables , a andφ. Besides , it is a periodic function of φ. Taking the Fourier series

expansion withφ

　　　　　　　　　　　f [ x ( t) ] = ∑
+ ∞

k = - ∞
Ck ( t) ej kφ( t) , (5)

　　　　　　　　　　　Ck ( t) =
1

2π∫
2π

0
f [ a ( t) ejφ]e - j kφdφ. (6)

Let

Ωk ( t ,ω) =
015 (2 k - 1)ω( t) , 015 (2 k + 1)ω( t) , 　k = 1 ,2 ,3 , ⋯,

0 , 015ω( t) , 　　　　　　　　　　　 k = 0.
(7)

　　Obviously Ωx ( t ,ω) < Ω1 ( t ,ω) , and the central line of the two regions coincides with

each other . Because Cke
j kφ is localized around the central line of Ωk ( t ,ω) , the projection of

f [ x ( t) ] on Ωx ( t ,ω) approaches the first term of the Fourier series , that is , C1 ( t) ejφ( t) ,

M[ f [ x ( t) ] ,Ωx ] ≈ M[ f [ x ( t) ] ,Ω1 ] ≈ C1 ( t) ejφ( t) =

1
2π

1
a ( t)∫Γ

f [ a ( t) ejφ]e - j kφdφ·x ( t) . (8)
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　　A continuous nonlinear function defined in a close region can be approximated by a

polynomial function with arbitrary precision , so the power series plays an important role in the

study of nonlinear dynamic systems . For the projection of the symmetric power series of an

asymptotic signal on its effective time-frequency region , there yields

M[| x | n·sign ( x) ,Ωx ] ≈ 2
π

Γ n/ 2 + 1
Γ( ( n + 1) / 2 + 1) an - 1 x , (9)

where Γ(·) denotes the Γfunction.

Theore m 2 　Suppose x ( t) is an asymptotic signal with effective time-frequency region

Ωx . The projections of the first two order derivatives on Ωx can be expressed as follows

M[ Ûx ( t) ,Ωx ] ≈ Ûx ( t) , M[ ẍ ( t) ,Ωx ] ≈ ẍ ( t) . (10)

　　Proof

　　　　Ûx ( t) = [ Ûa ( t) + j a ( t)ω( t) ]ejφ( t) , (11)

　　　　 ẍ ( t) = [ ä ( t) - a ( t)ω2 ( t) + 2jω( t) a ( t) + j a ( t) Ûω( t) ]ejφ( t) . (12)

If a ( t) and φ( t) are smooth and non- oscillating signals , the terms in the brackets are slow

signals compared with ejφ( t) . So the instantaneous frequency of both Ûx ( t) and ẍ ( t) equals to

ω( t) . Thus Ûx ( t) and ẍ ( t) are all located around Ωx . Then the desired results hold.

2 　Ti me- Fre q ue ncy Filt e ri ng a n d t he Ge ne ral S keleton Li nea r Syste m

Consider the following S . D. O. F. autonomous nonliner system

mÿ + F( y , Ûy) = 0. (13)

　　The response is an asymptotic signal with a constant frequency if the system is linear .

Generally the response is no longer an asymptotic signal but contains multiple components if there

is nonlinearity in the system. But for weak nonlinear systems and several piecewise linear

systems , one asymptotic component is dominant . We call this asymptotic component the principal

component in this paper , and express it as

x ( t) = a ( t) cos[φ( t) ] , (14)

while the instantaneous amplitude , a ( t) , and instantaneous frequency ,

ω( t) = dφ( t) / d t , (15)

be calculated as follows

　　　　　　　　　　 a ( t) = x2 ( t) + �x2 ( t) , (16)

　　　　　　　　　　ω( t) =
x ( t) Ûx～ ( t) + �x ( t) Ûx～ ( t)

x2 ( t) + �x2 ( t)
, (17)

a ( t) and ω( t) are both variables varying with time slowly.

The response signal of (13) can be expressed as

y ( t) = x ( t) + z ( t) , (18)

where z ( t) is the sum of the other components including the sub- harmonic components and the

super- harmonic components of x ( t) . z ( t) and its derivatives are of much lower energy compared
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with x ( t) and its derivatives .

Denote the effective time-frequency region of x ( t) as Ωx . Considering the projection of

Eq. (13) on Ωx with the contributions of z ( t) and its derivatives be neglected , one has

M ( mẍ ,Ωx) + M ( F( x , Ûx) ,Ωx) = 0. (19)

According to Theorems 1 and 2 , x ( t) satisfies the following differential equation approximately

ẍ + 2 h0 Ûx + ω2
0 x = 0 , (20)

where

ω0 =
1

πma∫
2π

0
F( acosφ, - aωsinφ) cosφdφ

1/ 2

, (21)

h0 = -
1

2πmaω∫
2π

0
F( acosφ, - aωsinφ) sinφdφ. (22)

This is a time- varying linear system with slowly varying instantaneous parametersω0 and h0 . The

response equals to the principal component of that of system (20 ) approximately. And the

variation of the instantaneous parameters with the instantaneous response can indicate the main

nonlinear property of system ( 13 ) . So the time- varying linear system is called the general

skeleton linear system of system (13) in this paper , denote by GSLS for short , while ω0 and h0

are called the instantaneous undamped inherent frequency and the instantaneous decay coefficient

of GSLS , respectively.

For a S . D. O. F. nonlinear non-autonomous system excited by an asymptotic signal , when

the harmonic component is dominant in the response , GSLS has the same form as (20) - (22) .

It should be noted that (20) - (22) no longer works if the harmonic component is not dominant .

GSLS developed above has the same expression as the equivalent linear system deduced

through the classical methods such as the KBM. The concept of GSLS is adaptable to the non-

stationary vibrations of both linear and nonlinear systems . Moreover , the response signal of GSLS

can be obtained from that of the corresponding nonlinear system with the time-frequency filtering

technique . So GSLS together with skeleton curves discussed in the next section can be identified

directly with just one sample of non-stationary vibration data . As time- varying signals , the

responses of GSLS can not be obtained through common methods based on the Fourier

transformation.

3 　The S keleton Curves

The regressive curve ω0 ( a ,ω) and h0 ( a ,ω) can describe the nonlinear stiffness and

damping of system (13) in visual forms , respectively. The main nature of the nonlinearity can be

learned immediately at a glance of them. So we call them the frequency skeleton curve and the

damping skeleton curve , respectively. Generally , the skeleton curves are both three- dimensional

curves . But for several special systems , they have more concise forms .

Consider a system with the following form

ÿ + P( y) + Q ( Ûy) = 0 , (23)

where P( y) and Q ( Ûy) are real- valued odd functions . The instantaneous parameters of GSLS are

ω0 ( a ,ω) = ω0 ( a) =
1

πa∫
2π

0
P( acosφ) cosφdφ

1/ 2

, (24)
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h0 ( a ,ω) = h0 ( aω) = -
1

2πaω∫
2π

0
Q ( - aωsinφ) sinφdφ. (25)

　　The skeleton curves can be expressed by two planar curves , ω0 ( a) and h0 ( aω) .

Obviously , the skeleton curves of a linear system are both horizontal straight lines . There exists

nonlinearity in stiffness or damping whenever the corresponding skeleton curve is not a horizontal

straight line .

Suppose that P(·) and Q (·) can be asymptotically expanded with polynomial functions ,

then Eq. (23) becomes

ÿ + ∑
n

j =1

ci | Ûy | j·sign ( Ûy) + ∑
m

i =1

ki | y | i·sign ( y) = 0 , (26)

with the skeleton curves

　　　　ω0 ( a) = ∑
m

i =1

2
π

Γ( i/ 2 + 1)
Γ( ( i + 1) / 2 + 1) ki·ai - 1 ( t)

1/ 2

, (27)

　　　　 h0 ( aω) = ∑
n

j =1

1
π

Γ( j/ 2 + 1)
Γ( ( j + 1) / 2 + 1) cji·[ a ( t)ω( t) ] i - 1 . (28)

4 　I de ntif ication of S keleton Curves

In this section we discuss the identification of the skeleton curves concisely. The process

includes three steps as follows .

4. 1 　Choice of t he excit ation signal

First choose an appropriate excitation to guarantee that Eqs . (20) - (22) hold. An impact

signal can be used but it is with poor precision for systems with large damping , because the

effective data number is limited due to the quick decay of the response . To avoid this shortage a

forced response can be adopted. To guarantee that the harmonic component is dominant in the

response the instantaneous frequency of the excitation should approach the resonance frequency.

Besides ,the forced response signal may be of large amplitude even by using excitation with small

energy in the primary resonance case . A prior knowledge about the system is needed for the

identification in this case .

412 　Ext raction of t he resp onse signal of GSLS

Because the asymptotic signal x ( t) is dominant in y ( t) , Ωx can be estimated using the

modulus of ρy ( t ,ω) . | ρy ( t ,ω) | takes the maximum value atω( t) at any moment t . With a

cut off pointα(0 <α< 1) , we can take the maximum zone with midlineω( t) as the estimation

of Ωx which satisfies

| ρy ( t ,ω) | ≥α| ρy ( t ,ω( t) ) | .

　　Then x ( t) can be extracted from y ( t) using the time-frequency masking operator on Ωx .

Because

x ( t) ≈ M ( y ( t) ,Ωx) , (29)

where M (·, ·) denotes the time-frequency masking operator on a definite region.

ρx ( t ,ω) =
ρy ( t ,ω) , 　　( t ,ω) ∈Ωx ,

0 , 　　　　　 ( t ,ω) ∈/ Ωx .
(30)
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Taking the inverse transform of ρx ( t ,ω) , one yields

x (τ) =
1

2π·x 3 (0)∫∫∫
ρx ( t ,ω)

<(θ,τ) ej tω+jθ( t -τ/ 2) d tdωdθ, (31)

where <(θ,τ) is the kernel of the quadratic time-frequency distribution of Cohen class .

There are singularities in (31) that will bring difficulties in calculation. In Ref . [6 ] another

time-frequency filtering technique based on the wavelet transform along the wavelet ridge is

proposed.

It needs special notice that most amount of the random noise in the response is filtered out

after the previous procedure because Ωx is a narrow band in the time-frequency plane . So the

method proposed here is excellent with consideration of precision.

413 　Calculation of t he i ns t a nt a neous p a ra met e rs of GSLS

For GSLS , a special time- varying linear system whose instantaneous parameters are slowly

varying functions of time , the parameters can be expressed by analytic functions of the response

as follows [2 ,3 ,6 ]

ẍ ( t) + 2 h0 ( t) Ûx ( t) + ω2
0 ( t) x ( t) = m - 1 u ( t) , (32)

the instantaneous parameters can be calculated as follows

ω2
0 ( t) = ω2 ( t) +

α( t)
m

-
β( t) Ûa ( t)
ma ( t)ω( t)

-
ä ( t)
a ( t)

+ 2
Ûa2 ( t)

a2 ( t)
+

Ûa ( t) Ûω( t)
a ( t)ω( t)

, (33)

h0 ( t) =
β( t)

2 mω( t)
-

Ûa ( t)
a ( t)

-
Ûω( t)

2ω( t)
, (34)

where

α( t) =
x ( t) u ( t) + �x ( t) �u ( t)

x2 ( t) + �x2 ( t)
,

β( t) =
x ( t) �u ( t) - �x ( t) u ( t)

x2 ( t) + �x2 ( t)
,

�u ( t) and �x ( t) are the Hilbert transform of u ( t) and x ( t) , respectively. It is the case of free

vibration whenαandβequals to zero.

Thus the skeleton curves can be plotted directly once the instantaneous response and

instantaneous parameters of the GSLS are calculated.

5 　Exa mp les

Two numerical examples are considered to verify the validity of the technique developed in

this paper .

Exa mple 1 　Consider the following system

ÿ + c1 Ûy + c2 | Ûy | Ûy + k1 y + k2 y3 + k3 y5 = u , (35)

where

k1 = 5π2 , k2 = 3 ×106π2 , k3 = 2 ×109π2 , c1 = 0105 , c2 = 012 .

This is a polynomial system with hard spring , viscous damping and square damping. The skeleton

curves are

ω0 ( a) = k1 + (3/ 4) k2 a2 + (5/ 8) k3 a4 1/ 2
, (36)

h0 ( aω) = c1 + (4/ 3π) c2 aω. (37)
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Fig. 1 　Grayscale view of the quadratic time-frequency distribution of the

acceleration in example 1

Fig. 2 　The frequency and damping skeleton curves of example 1

Fig. 3 　The resilience versus

displacement 　in 　a

system with bilinear

stiffness

　 　 The 4th- order Runge- Kutta method is used in the

numerical calculation and a white noise is added to the response

with consideration of the noise in actual measurements . The free

vibration response is used with the following initial condition

y (0) = 0102 , 　Ûy (0) = 0 , 　ÿ (0) = 0.

　 　 The grayscale view of the quadratic time-frequency

distribution of the acceleration within 0～3107s is shown in

Fig. 1. The abscissa represents the time (0～3107s) while the

ordinate denotes the frequency ( 0 ～ 166167Hz ) . Skeleton

curves identified (solid line) and theoretical predicted ( dashed

line) through Eqs . (36) and (37) at 0～20148s are shown as

Fig. 2. In this case , the instantaneous frequency of the principal

component varies from 35155Hz to 6125Hz , and that of the

third- harmonic component varies from 106165Hz to 18175Hz. So the principal component can

not be extracted from the total response signal through the narrow- band filtering presented in

Refs . [ 2 - 4 ] because of the overlapping.

712Identification of Nonlinear Dynamic Systems



© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.    http://www.cnki.net

　　Exa mple 2 　Consider the following system

ÿ + cÛy + M·sign ( Ûy) + F( y) = u , (38)

where F( y) is the resilience of a bilinear spring shown as Fig. 3. The system is with viscous

damping and dry friction.

k1 = 1 600π2 , k2 = 2 500π2 , y0 = 015 , c = 018π, M = 60π.

Now we use the primary resonance for identification. Take the following excitation

u ( t) = 500 (1 + t) cos 2π 20 +
5

10124
t t .

　　Although this system is with high level of nonlinearity in the common point of view , the

response is an asymptotic signal approximately. And the instantaneous frequency of the response

approaches that of the excitation. So the method developed in this paper is valid here

ω0 ( a) =
k2 +

2 ( k1 - k2)
π arcsin

y0

a
+

y0

a
1 -

y2
0

a2

1/ 2

, 　a ≥ y0 ,

k1 , a < y0 ,

(39)

h0 ( aω) = c/ 2 + 2π- 1 M·[ aω] - 1 . (40)

Both the skeleton curves identified (solid line) and predicted ( dashed line) are plotted in

Fig. 4. It can be seen that the identified results are in good agreement with the theoretical

predictions .

Fig. 4 　The frequency and damping skeleton curves of example 2

6 　Concl usions

In general , the behavior of a nonlinear system varies with the value of the instantaneous

response. The nonlinearity is studied quantitatively based on the non-stationary response through

the time-frequency filtering method is this paper .

The time-frequency masking operator together with the effective time-frequency region of an

asymptotic signal are defined. The general skeleton linear system ( GSLS) and skeleton curves of

a class of nonlinear system are defined using the time-frequency filtering method. And the

relationship between the two systems is clarified. The concepts and results are adaptable to non-

stationary vibration of nonlinear systems within a large range .

The main nature of the nonlinear system is described quantitatively in visual forms through
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two skeleton curves . Compared with other methods , the approach developed here appears very

interesting in regard to precision , formulation , testing time , and computational time . The

numerical results are in good agreement with theoretical predictions . The work in this paper

proposes a new approach for identification of nonlinear dynamic systems . Further research is

expected in the future .
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