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Abstract : The nonlinear behavior varying with the instantaneous response was analyzed
through the joint time-frequency analysis methodfor aclass d S. D. O. F nonlinear system.
A masking operator on definite regions is defined and two theorems are presented. Based on
these, the nonlinear system is modeled with a special time-varying linear one, called the
generalized skeleton linear system( G3.S) . The frequency skeleton curve and the damping
skeleton curve are defined to describe the main feature o the non-linearity as well. More-
over, an identification method is proposed through the skeleton curves and the time

frequency filtering technique.
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I ntroduction

Identification of nonlinear systems has received considerable attention in recent years because
most structures exhibit some degree of nonlinearity. Both parametric and non-parametric
techniques have been studied intensively , such as the linearization, higher order spectra, restoring
force surface, nonlinear auto-regressive moving average model (NARMAX) , neural networks
and so on. There seems that the choice of a particular algorithm is closely linked to the objectives
of the analysis and that there are no universaly applicable procedures[l]. In Refs. [2,3], the
nonlinear system is analyzed with a time varying linear model called the pseudo-linear one. And
the backbone curve and instantaneous logarithmic decrement were obtained through the narrow
band filtering technique together with the Hilbert transform. Ref. [4] deduced the relationship
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between the two systems by using a so-called band-pass mapping. But the narrow band filtering
technique used in the previous references doesn’ t work in many cases because the response of the
nonlinear system is not a narrow- band signal . Also the bandwidth lacks practical meaning and is
difficult to be estimated.

It is well-known that the dynamic nature and behavior of nonlinear systems generaly vary
with the values of the response and excitation. And this information is usualy contained in the
nor stationary vibration signals. To study the nonlinearity by using the non-stationary signals, the
guadratic time-frequency distribution of Cohen class is adopted due to its ability to express a
signa in both time and frequency domain simultaneously.

1 Mathematical Basis

For non-stationary signals, classicd methods based on the Fourier transform are not
gpplicable. The Fourier spectrum gives no time-localized information but the total energy at a
certain frequency. Thus the instantaneous dynamic characters of the signal can not be obtained.
On the contrary , with the conception of time-frequency domain, the joint time-frequency analysis
expresses a signal by a function with both time and frequency as the variables. The change with
time can be described directly through this method. In particular, the quadratic time-frequency
distribution of Cohen class defined as follows can indicate the energy density of a signal in the
time-frequency plane roughly :

B _l_ + 00 _+00_+ 00 . . -ﬁt-'w+j6u
P (t,w) _m{_J_J‘_wwe,r)x [uéTJ X[u+']2‘TJe ForPugud o |

(1)
where X(t) is the analytic form of the real-valued signal , that is
X(t) = x(1) +jx(1),
where X (t) is the Hilbert transform of x(t)
~ 1 et x@
0 =g R
and ¢© 1) is the kernel function of the quadratic time-frequency distribution.

Generally the high timefrequency resolution and low cross-terms are the most important
properties expected for a certain distribution. The Wigner-Vile distribution is the best one with
consideration of the time-frequency resolution, but it is of a large cross-term. The quasi- Wigner
distribution, the exponential distribution (aso called the Choi- Williams distribution) and the
cone-shaped kernel distribution are some practica distributions in common use. The distribution
used in this paper is one with a exponential- cone-shaped kernel !,

The asymptotic signal is an important concept that will be referred in this paper. It can be
expressed as

x(t) = a()e®, (2)
where
1 ‘ da(n)| ‘M
a(t) | dt dt |”

In this section, the masking operator within a definite region and the effective time
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frequency region of an asymptotic signal are defined and two important theorems are deduced.
These provide mathematical basis for the work in section 2.

Definition 1  Suppose P, (t,w) is a certain quadratic time-frequency distribution of a
continuous signal x(t) , and Q is a finite closed region on the time-frequency plane.

Let
2t ) :{px(t,w) Lt Q,
(t,w) /1Q.
If the same quadratic time-frequency distribution of a signa y(t) , py(t,w) , approaches
P$ (t,w) best, we cal y(t) the projection of x(t) onQ , and the mapping from x(t) to y(t)
the time-frequency masking operator on definite regionQ , denoted by
M(-,Q) :x(t) - y(t).
The masking operator on Q can be taken as a filtering with pass region Q in the time
frequency plane.
Definition 2  The dfective timefrequency region of an asymptotic signal x(t) =
a(t)cosp (t) is defined as
Q,(1) =Ll -dw()/2, w(t) +Aw(t)/2 (3)

where
W) =@ (1),0w) = laral.

Theorem 1 Suppose x(t) is an asymptotic signal with effective regionQ,. The projection
of a continuous function f (x(t)) on Q, can be expressed as
1_1 "
at a(t))o

Proof  f(x(t)) = f(a(t)e®?) is afunction of time t. acan be taken as a variable
independent of @ because a(t) varies slowly compared with €®. And thus it can be taken as a
constant within any period of €”. So f(x(t)) = f(a(t)€®?) can be taken as afunction of two
independent variables, aand@ . Besides, it is aperiodic function of @ . Taking the Fourier series
expansion with @

MLF(x(1),Q,]= fla()e®]-e®dp- x(1). (4)

fx()] = ick(t)é““”, (5)
n ) .
C(D) = ;'T]’(Jf[a(t)e""]e"”’dp. (6)

Let
O (¢ ) :{EO.S(ZK S D), 0.5k +Dw(n] . k=123, |, -
0,0.50(1)] , k = 0.

Obviously Q,(t,w) C Q(t,w) , and the central line of the two regions coincides with
each other. Because C&' is localized around the central line of Q*(t,w) , the projection of
f[ x(t) ] on Q,(t,w) approaches the first term of the Fourier series, that is, C,(t)&® (",

MIFLX(D].Qd= MIf[x(D],Q"1= C(ne®? =
11

ot acof - framet1e’®ap- x(n. (8)
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A continuous nonlinear function defined in a close region can be approximated by a
polynomia function with arbitrary precision, so the power series plays an important role in the
study of nonlinear dynamic systems. For the projection of the symmetric power series of an
asymptotic signal on its effective time-frequency region, there yields

2 r n/2+]] n_lX
AT ((n+Dn/2+ 2 %

ML x| " sgn(x) ,Q,] = (9)

wherel” (-) denotes thel” function.

Theorem 2 Suppose x(t) is an asymptotic signal with efective time-frequency region
Q,. The projections of the first two order derivatives on Q, can be expressed as follows

MEx(1) Q1= x(t), M[X(t) ,Qx]= X%(1). (10)

Proof
x() = [a(t) +ja(pw(t) e, (11)
x(1) = [a(t) - a(t)w?(t) + 24w (t) a(t) +ja(t)w(t)1e*V. (12)

If a(t) and @ (t) are smooth and non-oscillating signals, the terms in the brackets are slow
signals compared with €® Y. So the instantaneous frequency of both x(t) and X (t) equals to
W(t). Thus x(t) and x(t) are all located around Q. Then the desired results hold.

2 Time Frequency Filtering and the General Skeleton Linear System

Consider the following S. D. O. F. autonomous nonliner system
my + F(y,y) = 0. (13)
The response is an asymptotic signal with a constant frequency if the system is linear.
Generally the response is no longer an asymptotic signal but contains multiple components if there
is nonlinearity in the system. But for weak nonlinear systems and several piecewise linear
systems, one asymptotic component is dominant. We call this asymptotic component the principal
component in this paper, and express it as

x(t) = a(t)oos[® (1) ], (14)
while the instantaneous amplitude, a(t) , and instantaneous frequency ,
w(t) = dp(t)/dt, (15)
be calculated as follows
a(t) = J/x(1) + X(1), (16)
. ~ ,
w(p = xxliexxln (17)

XC(1) + X2(t)
a(t) andw(t) are both variables varying with time slowly.
The response signal of (13) can be expressed as
y(t) = x(1) + z(1), (18)
where z(t) is the sum of the other components including the sub-harmonic components and the
super- harmonic components of x(t) . z(t) and its derivatives are of much lower energy compared
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with x(t) and its derivatives.
Denote the effective time-frequency region of x(t) as Q,. Considering the projection of
Eq. (13) on Q, with the contributions of z(t) and its derivatives be neglected, one has

M(mix,Q,) + M(F(x,x) ,Q,) =0. (19)
According to Theorems 1 and 2, x(t) satifies the following differential equation approxi mately
X +2hox + W5x = 0, (20)
where

n 2

Wy = [Tt_l_J F(acosp , - awsir(p)cos(pdp] \ (21)
ma o
- 1 2-[ . .

ho = - 7t manl o F(acosp , - dosin®)sin®dp. (22)

This is a time-varying linear system with slowly varying instantaneous parametersg and hp. The
response equals to the principal component of that of system (20) approximately. And the
variation of the instantaneous parameters with the instantaneous response can indicate the main
nonlinear property of system (13). So the time varying linear system is called the general
skeleton linear system of system (13) in this paper, denote by GSLS for short, while Wgand hg
are called the instantaneous undamped inherent frequency and the instantaneous decay coefficient
o GSLS, respectively.

For a S. D. O. F. nonlinear non-autonomous system excited by an asymptotic signal ,when
the harmonic component is dominant in the response, GSLS has the same form as (20) - (22) .
It should be noted that (20) - (22) no longer works if the harmonic component is not dominant.

GSL S developed above has the same expression as the equivalent linear system deduced
through the classical methods such as the KBM. The concept of GSLS is adaptable to the non
stationary vibrations of both linear and nonlinear systems. Moreover, the response signal of GSLS
can be obtained from that of the corresponding nonlinear system with the time-frequency filtering
technique. So GSLS together with skeleton curves discussed in the next section can be identified
directly with just one sample of non-stationary vibration data. As time varying signals, the
responses of GSLS can not be obtained through common methods based on the Fourier
transf ormation.

3 The Skeleton Curves

The regressive curve Wo(a,w) and hp(a,w) can describe the nonlinear stiffness and
damping of system (13) in visual forms, respectively. The main nature of the nonlinearity can be
learned immediately at a glance of them. So we call them the frequency skeleton curve and the
damping skeleton curve, respectively. Generadly, the skeleton curves are both three di mensional
curves. But for severa specia systems, they have more concise forms.

Consider a system with the following form

y+ P(y) + Q(y) =0, (23)

where P(y) and Q(y) are rea-valued odd functions. The instantaneous parameters of GSLS are
2

an
Wo(a,w) = Wo(a) = [;LJO P(aoosp)oospokp] , (24)
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n
w(a.0) = ho(@) =~ 7if Q- aSm) S . (25)

The skeleton curves can be expressed by two planar curves, Wo(a) and hg (&) .
Obviously, the skeleton curves of a linear system are both horizontal straight lines. There exists
nonlinearity in stiff ness or damping whenever the corresponding skeleton curve is not a horizontal
straight line.

Suppose that P(-) and Q(-) can be asymptatically expanded with polynomial functions,
then Eq. (23) becomes

y+ Salylldon(y) + 3kl yl'son(y) =0, (26)

with the skeleton curves

i C (/2 +1) I- vz
Wo( ) :[»Zﬁr((ill)72+l) ka 1“)] ! (27
w(@) = Y R (aw())” 29

4 ldentification of Skeleton Curves

In this section we discuss the identification of the skeleton curves concisely. The process
includes three steps as follows.
4.1 Choice of the excitation signal

First choose an appropriate excitation to guarantee that Egs. (20) - (22) hold. An impact
signal can be used but it is with poor precision for systems with large damping, because the
effective data number is limited due to the quick decay of the response. To avoid this shortage a
forced response can be adopted. To guarantee that the harmonic component is dominant in the
response the instantaneous frequency of the excitation should approach the resonance frequency.
Besides ,the forced response signal may be of large amplitude even by using excitation with small
energy in the primary resonance case. A prior knowledge about the system is needed for the
identification in this case.
4.2 Extraction of the response signal of GSLS

Because the asymptotic signal x(t) is dominant in y(t) , Q,can be estimated using the
modulus of P, (t,w). | Py(t,w) | takes the maximum value at W (t) a any moment t. With a
cut off pointd (0 <O < 1) , we can take the maximum zone with midline® (t) as the estimation
o Q, which satisfies

| Py(t,@) | =20 |py(t,w(t))|.

Then x(t) can be extracted from y(t) using the time-frequency masking operator on Q.

Because

x() = M(y(1) Q4 , (29)
where M (- , -) denotes the time-frequency masking operator on a definite region.
py(tyw) ’ (t;w) QX:
Px(t,w) = (30)

0, (t,w) /Q,.
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Taking the inverse transform of P, (t,w) , one yields

_ 1 e Pt®) juipiti
x(1) = x*(O)J_U ¢ dtdood (31)

0 1)
where (0 1) is the kernel of the quadratic time-frequency distribution of Cohen class.

There are singularities in (31) that will bring difficulties in calculation. In Ref. [6] another
timefrequency filtering technique based on the wavelet transform along the wavelet ridge is
proposed.

It needs specia notice that mast amount of the random noise in the response is filtered out
ater the previous procedure because Q, is a narrow band in the time-frequency plane. So the
method proposed here is excellent with consideration of precision.

4.3 Calculation of the instantaneous parameters of GSLS

For GSLS, a specia time varying linear system whaose instantaneous parameters are slowly
varying functions of time, the parameters can be expressed by analytic functions of the response
as follows!?3°]

X(t) +2ho(t) x(t) +3(t) x(t) = m*u(t), (32)
the instantaneous parameters can be calculated as follows
a : 3 32 (1) W
W

where

_ox(nu(t) - x(1) u(t)
B(t) = (1) + 20 ,
u(t) and X(t) are the Hilbert transform of u(t) and x(t) , respectively. It is the case of free
vibration when® and3 equals to zero.
Thus the skeleton curves can be plotted directly once the instantaneous response and
instantaneous parameters of the GSLS are calculated.

5 Examples

Two numerical examples are considered to verify the validity of the technique developed in
this paper.
Example 1 Consider the following system
yroay+cel yly+ky+ky +ky = u, (35)
where
ki = B1%, ko = 3 x 107%, kg = 2 x 10ht%, ¢; = 0.05, ¢, = 0.2.
This is apolynomial system with hard spring, viscous damping and square damping. The skeleton
curves are
wo(a) = [ ki+ @ ked + (T8 ke *2, (30)
ho(d&) = ¢y + (4/31) c; aw. (37)
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Fg.1 Grayscale view o the quadratic timefrequency distribution of the
acceleration in example 1

wo

s 2K BB
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Fg.2 The frequency and damping skeleton curves of example 1

The 4th-order Runge Kutta method is used in the F(y)4 k,
numerical calculation and a white noise is added to the response
with consideration of the noise in actual measurements. The free k
vibration response is used with the following initial condition

y(0) =0.02, y() =0, y(0) =0. ye

The grayscale view of the quadratic time-frequency
distribution of the acceleration within O  3.07s is shown in
Fig.1. The abscissa represents the time (0 3.07s) while the
ordinate denotes the frequency (0  166.67Hz). Skeleton Fg.3 The resilience versus
curves identified (solid line) and theoretical predicted (dashed dsplacement in a
line) through Egs. (36) and (37) at 0 20.48s are shown as system with bilinear
Fg. 2. Inthis case, the instantaneous frequency of the principal Stiff ness
component varies from 35.55Hz to 6.25Hz, and that of the
third- harmonic component varies from 106. 65Hz to 18. 75Hz. So the principa component can
not be extracted from the total response signal through the narrow-band filtering presented in
Refs. [2- 4] because of the overlgpping.

a4

2% © 1994-2009 China Academic Journal Electronic Publishing House. All rightsreserved.  http://www.cnki.net
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Example 2 Consider the following system
y+ oy + M-dgn(y) + F(y) = u, (38)
where F(y) is the resilience of a bilinear spring shown as Fig. 3. The system is with viscous
damping and dry friction.
ky = 160072, k, = 250012, yo = 0.5, ¢ = 0.8T, M = 60TI.
Now we use the primary resonance for identification. Take the following excitation
5, t]
10. 24
Although this system is with high level of nonlinearity in the common point of view, the
response is an asymptotic signal agpproximately. And the instantaneous frequency of the response
agoproaches that of the excitation. So the method developed in this paper is valid here

2(k - k 2| V2
k i _XQ lo -_m‘| ’ = ’
wo(a) = { *Tom {a“’sr{ aJ *a J aZJ a2 (39)

ki, a< yo,
ho(&) = c/2+ AU M- [ a0] % (40)

u(t) = 500(1 + t)co 21[20+

Both the skeleton curves identified (solid line) and predicted (dashed line) are plotted in
Fg.4. It can be seen that the identified results are in good agreement with the theoretical
predictions.
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Fg.4 The frequency and damping skeleton curves of example 2

6 Conclusions

In general , the behavior of a nonlinear system varies with the value of the instantaneous
response. The nonlinearity is studied quantitatively based on the non-stationary response through
the time-frequency filtering method is this paper.

The time-frequency masking operator together with the eff ective time-frequency region of an
asymptotic signal are defined. The general skeleton linear system (GSLS) and skeleton curves of
a class of nonlinear system are defined using the time-frequency filtering method. And the
relationship between the two systems is clarified. The concepts and results are adaptable to nor+
stationary vibration of nonlinear systems within a large range.

The main nature of the nonlinear system is described quantitatively in visua forms through
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two skeleton curves. Compared with other methods, the approach developed here appears very
interesting in regard to precision, formulation, testing time, and computational time. The
numerical results are in good agreement with theoretical predictions. The work in this paper
proposes a new approach for identification of nonlinear dynamic systems. Further research is
expected in the future.
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